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The abilities of the H+-ATPe inhibitor N, N'-dicyclohexylcarbodiimide and
the antibiotic ionophore nigericin to enhance the bactericidal effect of subinhibi-
tory concentrations of gentamicin in two strains of Staphylococcus aureus were

studied. EAch compound sicantly increased both gentamicin uptake and
killing. The use of agents which alter the plasma membrane energy state is a novel
approach to enhance the activity of conventional antibiotics.

Antibiotics such as aminoglycosides must tra-
verse the plasma membrane before interacting
with their active sites on bacteri ribosomes.
Recent studies of antibiotic uptake in our labora-
tory suggest that the uptake of the cationic
aminoglycoside gentamicin in Staphylococcus
aureus is regulated by the electrical potential
(A4) (3, 4, 6), as predicted by chemiosmotic
theory (8). The clinically relevant synergy of cell
wall-active antibiotics and aminoglycosides
against enterococci has been shown by Moeller-
ing and Weinberg to involve enhanced amino-
glycoside cellular entry (9). Our studies suggest
an alternate approach to enhancing the entry of
aminoglycosides by using agents which alter the
plasma membrane energy state. The compounds
nigericin and N, N'-dicyclohexylcarbodiimide
(DCCD) are agents which cause specific alter-
ations in plasma membrane energization. Nigeri-
cin increases the uptake of subinhibitory con-
centrations of aminoglycosides in S. aureus at
acid pH and under anaerobiosis (3, 4, 6), condi-
tions often present in the microenvironment of
infected tissue. The present studies were under-
taken to determine whether this enhanced up-
take is associated with an increased bactericidal
effect in gentamicin-susceptible S. aureus.
Two previously characterized methicillin- and

gentamicin-susceptible strains of S. aureus (SA
121 [6] and SA Seattle [ATCC 25923]) were
studied. The minimal inhibitory concentrations
of gentamicin were determined (7) for each
strain in nutrient broth with 0.1% yeast extract
and were 0.4 and 0.1 pg/ml, respectively, at pH
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6.8 and 6.2 .g/mi for both strains at pH 5.0. The
uptake of radiolabeled gentamicin was deter-
mined by membrane filtration as previously de-
scribed (6). Nigericin and DCCD were added at
various times and final concentrations (see Fig.
1). Cell viability (in CFU per milliliter) was
determined by a standard pour plate technique
(7). [3HJgentamicin (Amersham Corp., Arling-
ton Heights, Ill.) was mixed with standard genta-
micin; powder (Shering Corp., Bloomfield, N.J.)
to a final specific activity of S ,uCi/mg. DCCD
was obtained from Sigma Chemical Co., St.
Louis, Mo., and nigericin was a gift from J.
Wesley of Hoffmann-LaRoche Inc., Nutley,
N.J.

Figure 1 shows both the bactericidal effect and
the uptake of gentamicin at pH 6.8 at one-fourth
the minimal inhibitory concentration ofgentami-
cin for SA Seattle and SA 121, with and without
20 PM DCCD. The standard minimal inhibitory
concentration of DCCD under these conditions
was greater than 500 PM, and there was no
killing with 20 ,uM DCCD. In the absence of
DCCD, there was little gentamicin uptake and
cells continued to replicate. In contrast, when
cells were exposed to 20 PM DCCD, gentamicin
uptake occurred after a lag of 10 min and was
associated with a diminution in CFU per millili-
ter. When these studies were repeated under
anaerobic conditions or in the presence of 0.2
mM KCN, DCCD showed no stimulation of
gentamicin uptake and no bactericidal effect
(data not shown).

Figure 2 shows both the [3Hlgentamicin up-
take and the bactericidal effect ofa subinhibitory
concentration of gentamicin at pH 5.0 in SA
Seattle and SA 121, with and without 0.5 P,M
nigericin. This concentration of nigericin was
associated with no killing. In the absence of
nigericin, there was little drug uptake and no
bactericidal effect. In contrast, when nigericin
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FIG. 1. (3H]gentamicin uptake (-) and killing in the presence (0) and absence (0) of 20 j.&M DCCD. Both

DCCD and gentamicin were added at 0 min. The gentamicin concentrations studied were 0.025 jig/ml for SA
Seattle (A) and 0.1 ,ug/ml for SA 121 (B), one-fourth of the minimal inhibitory concentration of gentamicin for
each strain at pH 6.8.

was added, there was immediate gentamicin
uptake and rapid killing.
These studies demonstrate that gentamicin

uptake induced by DCCD and nigericin is asso-
ciated with enhanced killing in gentamicin-sus-
ceptible strains of S. aureus. Previous studies of
SA 86 have demonstrated that nigericin in-
creases the magnitude of Ai (3). Similarly, as
predicted previously (6), 20 ,uM DCCD in-
creases the magnitude of A4 by ca. -20 mV
(unpublished data).
DCCD is a toxic carboxyl reagent which re-
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acts with the Fo portion (channel) of the proton-
translocating ATPase found in the cytoplasmic
membrane of procaryotes and blocks H+ trans-
location (2). The inability of DCCD to stimulate
gentamicin uptake in a respiratory mutant of S.
aureus (6) in the presence of KCN and under
anaerobic growth conditions reflects the require-
ment for a functioning respiratory chain to gen-
erate an adequate Ai for aminoglycoside up-
take.

Nigericin, like vancomycin, is an antibiotic
active against gram-positive organisms and is
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FIG. 2. [3H]gentamicin uptake (-) and killing (--) in the presence and absence of 0.5 ,uM nigericin in SA
Seattle (A) and SA 121 (B). Gentamicin concentrations studied were 1.0 and 5.0 .ag/ml, respectively, and
nigericin (0.5 FLM) was added at 0 min (O) and 10 min (0).
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derived from Streptomyces spp. Unlike DCCD,
which is exceedingly toxic, the concentration of
nigericin required to stimulate gentamicin up-

take in vitro is a small fraction of the 50o lethal
dose for mice (13). Nigericin catalyzes the elec-
troneutral exchange of K' for H+ which, at acid.
pH, is associated with a fall in ApH and an

increase in A, in SA 86 (3).
Our studies of S. aureus describe a strategy to

increase aminoglycoside uptake by manipulating
the bioenergetics of the cytoplasmic membrane.
The activity of other antibiotics may also be
dependent on the proton motive force and sub-
ject to similar manipulations of the membrane
energy state. Tetracycline, for example, re-

quires an electrochemical gradient of protons

(AIkH+) for transport (5). Moreover, it is likely
that chemiosmotic forces affect the activity of
antibiotics which do not require transport into
cells. Recent studies show that the lethal action
of 3-lactam antibiotics requires both the integri-
ty of extracytoplasmic binding proteins (12) and
protein channels (porins) (10) which permit the
entry of hydrophilic antibiotics into the peri-
plasm of gram-negative bacilli. The processing
and functional integrity of such proteins may
require the ability of cells to generate AI1H+ (1,
11). These findings suggest that manipulations of
the membrane energy state may provide a clini-
cally useful approach to enhancing the activity
of different classes of antibiotic compounds.
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Allergy and Infectious Diseases.
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