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Abundant intraneuronal neurofibrillary lesions within cer-
tain brain regions constitute a defining neuropathological
characteristic of Alzheimer’s disease.1 Ultrastructurally,
the neurofibrillary lesions consist of abnormal filamentous
deposits in the form of paired helical filaments (PHFs)
and the related straight filaments (SFs). These filaments
are made of the microtubule-associated protein tau in a
hyperphosphorylated state. In normal brain, tau protein is
soluble and nonfilamentous. Its ordered assembly into
filaments is therefore a pathological event. Tau pathology
is not limited to Alzheimer’s disease but is also present in
a number of other dementing disorders, such as Pick’s
disease, progressive supranuclear palsy, and cortico-
basal degeneration.2,3 In these disorders, as in Alzhei-
mer’s disease, the hyperphosphorylated tau protein is
filamentous. However, the filament morphologies and tau
isoform compositions differ from those of Alzheimer’s
disease. The good correlation between the presence of
tau pathology and the degree of cognitive impairment
has suggested that the events leading to the formation of
tau filaments or the mere presence of these filaments are
sufficient to produce nerve cell degeneration. Recently,
this view has been significantly reinforced by the discov-
ery of mutations in the tau gene in familial frontotemporal
dementia and parkinsonism linked to chromosome 17
(FTDP-17).4–8 The new work will no doubt lead to in-
creased efforts aimed at producing experimental animal
models of the tau pathology of Alzheimer’s disease and
other tauopathies.

Tau Protein and its Assembly into Filaments

Tau protein promotes microtubule assembly and binds to
microtubules, which are thus stabilized. In adult human
brain six tau isoforms are expressed; they are produced
by alternative mRNA splicing from a single gene located
on the long arm of chromosome 17 (Figure 1). They differ
by the presence of three or four tandem repeats of 31 or

32 amino acids each located in the carboxyl-terminal
region in conjunction with 0, 29, or 58 amino acid inserts
located in the amino-terminal region.9,10 There is also a
larger tau isoform, with an additional insert in the amino-
terminal region, which is mainly expressed in the periph-
eral nervous system.11,12 Eleven exons contribute to the
longest human brain tau isoform, with exons 2, 3, and 10
being subject to alternative mRNA splicing.9,10,13 Tau
expression is developmentally regulated in that only the
tau isoform with three repeats and no amino-terminal
inserts is present in fetal brain. There exist true species
differences in the expression of tau isoforms in adult
brain. Thus, only four-repeat tau isoforms are expressed
in rodent brain. By contrast, all six tau isoforms are ex-
pressed in adult human brain, where tau isoforms with
three repeats are slightly more abundant than tau iso-
forms with four repeats. The repeat regions of tau and
sequences flanking the repeats constitute microtubule-
binding domains.14,15 Tau is expressed predominantly in
nerve cells, with lower levels in some glial cells. Within
nerve cells, it is found mainly in axons.16 Inactivation of
the tau gene by homologous recombination leads to no
overt phenotype, indicating that tau is not an essential
protein.17

Tau is a phosphoprotein and phosphorylation is also
developmentally regulated. Thus, tau from developing
brain is phosphorylated more than tau from adult brain.
Tau from the PHFs and SFs of Alzheimer’s disease brain
is hyperphosphorylated and abnormally phosphorylated
on all six isoforms compared to tau from normal adult
human brain.18,19 This contrasts with progressive su-
pranuclear palsy and corticobasal degeneration, where
only four-repeat tau isoforms are found in the abnormal
filaments.20–22 In Pick’s disease, the tau filaments consist
only of three-repeat isoforms.23 Hyperphosphorylation
and abnormal phosphorylation are major biochemical ab-
normalities of filamentous tau. They are early events in the
development of tau filaments and as a result tau is unable
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to bind to microtubules.24–26 However, it is unclear
whether hyperphosphorylation and abnormal phosphor-
ylation are sufficient for the assembly of tau into filaments.

Tau Mutations in FTDP-17

Over the past few years, familial frontotemporal demen-
tias, some with parkinsonism, have been recognized as
FTDP-17, a previously unknown group of dementia dis-
orders.27 Their unifying pathological characteristic is the
presence of abundant filamentous hyperphosphorylated
tau deposits in the absence of Ab amyloid plaques. In
some of these families tau deposits are found in both
nerve cells and glial cells, whereas in others only nerve
cells are affected.28

Besides having a filamentous tau pathology in com-
mon, the familial frontotemporal dementias also share
linkage to chromosome 17q21-22, the same region that
contains the tau gene.29 Recently, the first mutations in
the tau gene have been identified in several of these
families.4–8 They are either missense mutations in the
microtubule-binding repeat region and the carboxy-ter-
minal region or intronic mutations that change the ratio of
three-repeat to four-repeat tau isoforms. Missense muta-
tions have been found in exons 9, 10, 12, and 13 of the
tau gene; they change glycine residue 272 to valine
(G272V), asparagine residue 279 to lysine (N279K), pro-
line residue 301 to leucine (P301L), valine residue 337 to
methionine (V337M), and arginine residue 406 to trypto-
phan (R406W) (numbering accords with the 441-amino
acid isoform of human tau). The N279K and P301L mu-
tations lie in the extra repeat of tau, thus affecting only
four-repeat tau isoforms. By contrast, the other three
missense mutations are found in all six brain tau isoforms.
Four different intronic mutations are found in the region of
the exon 10 splice-donor site, where they disrupt a pre-
dicted stem-loop. This disruption leads to increased
splicing of exon 10, resulting in the overproduction of

four-repeat tau isoforms and reduced levels of tau iso-
forms with three repeats.5,6

The functional consequences of missense mutations in
tau have been studied in microtubule assembly experi-
ments.30 All the mutations investigated showed a mark-
edly reduced ability to promote microtubule assembly.
The P301L mutation produced the largest effect, the
R406W mutation the smallest effect, and the G272V and
V337M mutations intermediate reductions. This partial
loss of function may be the primary effect of these mis-
sense mutations in tau. It may be followed by the hyper-
phosphorylation of tau and, through interaction with other
cellular factors, by assembly into filaments. Similarly,
overproduction of four-repeat tau isoforms in cases with
intronic mutations may result in the inability of some of the
excess tau to bind to microtubules, leading to its hyper-
phosphorylation and assembly into filaments. Most mis-
sense mutations are likely to lead to a reduced ability of
tau to interact with microtubules. The N279K mutation
may be an exception, since it creates an exon splice
enhancer sequence, which may lead to increased splic-
ing of exon 10.8 There may be mutations in tau that
produce effects on both microtubule assembly and on
mRNA splicing of exon 10.

In Seattle family A (with the V337M mutation), in familial
multiple-system tauopathy with presenile dementia (with
the 13 mutation in the intron following exon 10), in the
Iowa family (with the R406W mutation), in pallido-ponto-
nigral degeneration (with the N279K mutation), and in
Dutch family 1 (with the P301L mutation), tau is hyper-
phosphorylated at the same sites as in Alzheimer’s dis-
ease.31–35 Pick-like bodies have been described in Dutch
family 2 (with the G272V mutation) that show tau staining
characteristics similar to those of classical Pick bodies.35,36

The balance between tau protein levels and available
binding sites on microtubules appears to be critical for
determining whether or not tau assembles into filaments.
Thus, a reduced ability to interact with microtubules ap-
pears to be the shared primary abnormality in tau protein
resulting from the different exonic and intronic mutations
described thus far. A partial loss of function may be
necessary for the assembly of tau into filaments.

The locations of the tau mutations appear to determine
the nature of the pathology. Mutations in exon 10 or in the
intron following exon 10 lead to a filamentous neuronal
and glial cell tau pathology.32,34,35 For exon 10 muta-
tions, the filaments are narrow twisted ribbons consisting
predominantly of tau isoforms with four microtubule-bind-
ing repeats.35 In the case of the intronic mutations, the
filaments are wide twisted ribbons consisting exclusively
of four-repeat tau isoforms.32 This is reminiscent of pro-
gressive supranuclear palsy and corticobasal degener-
ation, suggesting that these largely sporadic diseases
may also result from abnormalities in the splicing of exon
10 of the tau gene. Missense mutations located outside
exon 10 lead to a predominantly neuronal pathology.31,33

The tau filaments are PHFs and SFs and consist of all six
tau isoforms. In the case of the V337M mutation in exon
12, the tau filaments have been shown to be indistin-
guishable from those of Alzheimer’s disease.31

Figure 1. Isoforms of human brain tau. The region common to all isoforms is
shown in blue, with the amino-terminal inserts encoded by exons 2 and 3
shown in red and green, respectively. The alternatively spliced repeat en-
coded by exon 10 is in yellow. The three or four tandem repeats are indicated
by black bars. The tau isoforms range from 352 to 441 amino acids in length.
Isoform A is expressed in fetal brain, whereas all six isoforms (A-F) are
expressed in adult human brain. Transgenic mouse models based on the
expression of isoform F48 or isoform A49 have been described.
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Synthetic Tau Filaments

Phosphorylated full-length recombinant tau has consis-
tently failed to assemble into PHF-like filaments in in vitro
experiments. By contrast, incubation of recombinant tau
with sulphated glycosaminoglycans, such as heparin and
heparan sulphate, results in the bulk assembly of tau into
Alzheimer-like filaments.37–42 Tau isoforms with three re-
peats assemble into twisted paired helical-like filaments,
whereas tau isoforms with four repeats assemble into
straight filaments.37

Immunoelectron microscopy shows that the paired he-
lical-like filaments are decorated by antibodies directed
against the amino- and carboxy-termini of tau, but not by
an antibody directed against the microtubule-binding re-
peat region.37 These results, which indicate that in the
filaments the repeat region of tau is inaccessible to the
antibody, are identical to those previously obtained with
PHFs from the brains of Alzheimer’s disease patients.18

They establish that the microtubule-binding repeat region
of tau is essential for sulphated glycosaminoglycan-in-
duced filament formation. Three microtubule-binding re-
peats of tau are also believed to form the core of the PHFs
found in the brains of Alzheimer’s disease patients, sup-
porting the evidence for a similar organization of the two
types of filament. Previous experiments had shown that
three recombinant microtubule-binding repeats of tau as-
semble into twisted filaments in vitro.43,44 This assembly
is phosphorylation-independent and occurs in the ab-
sence of sulphated glycosaminoglycans. It confirms that
three repeats are required to give the morphology of the
PHF. However, these experiments do not shed light on
the mechanisms that lead to tau filament formation in the
brains of Alzheimer’s disease patients, because PHF-tau
is made of full-length tau. The dimensions of tau filaments
formed in the presence of sulphated glycosaminoglycans
are similar to those of filaments extracted from brains of
Alzheimer’s disease patients, with diameters of approxi-
mately 20 nm for twisted and 15 nm for straight filaments
and a crossing-over spacing of approximately 80 nm for
paired helical-like filaments, although their twist is in gen-
eral less regular than that found in Alzheimer’s disease
filaments.

Sulphated glycosaminoglycans also stimulate phos-
phorylation of tau by a number of protein kinases, prevent
the binding of tau to taxol-stabilized microtubules, and
disassemble microtubules assembled from tau and tubu-
lin.37,40 Moreover, heparan sulphate has been detected
in nerve cells in the early stages of neurofibrillary degen-
eration.37,45 Sulphated glycosaminoglycans stimulate tau
phosphorylation at lower concentrations than those re-
quired for filament formation. The pathological presence
of heparan sulphate within the cytoplasm of some nerve
cells, perhaps as a result of leakage from membrane-
bound compartments, would first lead to hyperphospho-
rylation of tau, resulting in its inability to bind to microtu-
bules. At higher concentrations of heparan sulphate, tau
would then assemble into PHFs and SFs.

Formation of tau filaments is also observed after incu-
bation of recombinant tau with RNA, which has been
shown to be sequestered in the neurofibrillary lesions of

Alzheimer’s disease.40,46,47 Whether the presence of
RNA is an early event remains to be determined. Sul-
phated glycosaminoglycans and RNA share a repeat
sugar backbone and negative charges in the form of
sulphates or phosphates. Tau protein is thought to be an
extended molecule with little secondary structure that
becomes partially structured upon binding to microtu-
bules. Binding of sulphated glycosaminoglycans or RNA
to tau may induce or stabilize a conformation of tau that
brings the microtubule-binding repeats of individual tau
molecules into close proximity, creating sites which favor
polymerization into filaments.

Transgenic Mice

The work on synthetic tau filaments has provided the first
robust method for producing Alzheimer-like filaments
from full-length tau. The same cannot yet be said of tau
filaments in nerve cells. To date, there has been no
demonstration of Alzheimer-like filaments in transgenic
mice. Two studies have directly addressed this issue by
expressing wild-type human tau in the brains of trans-
genic mice.48,49 It has been indirectly addressed in the
transgenic mouse models of Ab amyloid deposition,
which are based on the expression of mutated amyloid
precursor protein (APP).50–52 Although some staining for
hyperphosphorylated tau has been described in nerve
cell processes around Ab deposits in transgenic mice
expressing mutated APP,52,53 no somatodendritic stain-
ing of hyperphosphorylated tau was observed in these
mice. Two of these mouse lines did not exhibit nerve cell
loss,54,55 whereas a third showed a 17% reduction in the
number of nerve cells in layer CA1 of the hippocampus.56

However, it remains to be seen whether this cell loss is
mechanistically related to the nerve cell loss observed in
Alzheimer’s disease hippocampus. Mutated APP is ex-
pressed at high levels in these mice and this could in
itself result in degeneration of some nerve cells. It is well
established that in Alzheimer’s disease brain there exists
an inverse correlation between the number of extracellu-
lar tangles and the number of surviving nerve cells in the
hippocampus,57–59 suggesting that nerve cell loss is due
to the formation of neurofibrillary lesions.

The first study expressing human tau protein in trans-
genic mice was published in 1995 and described the
expression of the longest human brain tau isoform (four
repeats and the 58-amino acid amino-terminal insert)
under the control of the human Thy1 promoter48 (Figure
1). The new study, which describes expression of the
shortest human brain tau isoform (three repeats and no
amino-terminal inserts) under the control of the mouse
3-hydroxy-methyl-glutaryl CoA reductase promoter, is
published in this issue of the Journal49 (Figure 1).

Both studies describe broadly similar results with some
minor differences. They show strong somatodendritic
and axonal staining for hyperphosphorylated tau of sub-
populations of nerve cells. The somatodendritic staining
is pathological, because in control mouse brain tau stain-
ing is largely axonal. Götz et al described only nerve cell
staining,48 whereas Brion et al also describe some astro-
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cytic staining,49 presumably reflecting the use of a differ-
ent promoter. The presence of hyperphosphorylated hu-
man tau in mouse brain astrocytes is interesting in view of
the extensive glial tau pathology seen in some FTDP-17
pedigrees, as well as in progressive supranuclear palsy
and corticobasal degeneration. Both studies show soma-
todendritic staining of nerve cells with a number of phos-
phorylation-dependent anti-tau antibodies that also stain
the neurofibrillary pathology of Alzheimer’s disease and
other tauopathies. These antibodies also recognize tau
from normal adult human brain, albeit more weakly than
PHF-tau. Brion et al show that antibodies which are en-
tirely specific for PHF-tau, such as AP422 and
AT100,60–62 do not stain transgenic mouse brain, a find-
ing in agreement with the lack of tau filaments. By elec-
tron microscopy, they show that transgenic human tau is
associated with microtubules in axons and dendrites, but
not in nerve cell bodies, where it is associated with ribo-
somes or distributed more diffusely.49 Overexpression of
human tau in lamprey neurons has also been shown to
lead to the presence of hyperphosphorylated human tau
in the somatodendritic compartment.63 It thus appears
that an excess of tau over available binding sites on
microtubules results in the accumulation of tau in nerve
cell bodies. The same may be true of the FTDP-17 cases
with intronic mutations in the tau gene.

Somatodendritic staining for hyperphosphorylated tau
has been described as an early pathological change in
human brain, where it is characteristic of the so-called
pre-tangle stage of Alzheimer’s disease.24 In human
brain, the pre-tangle pathology progresses to the tangle
stage, which is followed by nerve cell degeneration and
death. In the case of the classical neurofibrillary tangle,
thick bundles of tau filaments survive the death of af-
fected nerve cells and are found in the extracellular
space in the form of ghost tangles.1 The presence of
neurofibrillary tangles does not appear to be a necessary
prerequisite for nerve cell degeneration, because they
are absent from a number of FTDP-17 brains.28 The in-
variant feature of the various tauopathies is the presence
of filaments made of hyperphosphorylated tau protein. So
far, such filaments have not been observed in the brains
of mice transgenic for tau protein. There is no evidence to
suggest nerve cell loss in the mice, indicating that the
prolonged presence of hyperphosphorylated tau in the
somatodendritic compartment of nerve cells is not suffi-
cient to lead to nerve cell degeneration. The current
transgenic mouse models thus go only part of the way
towards establishing a filamentous tau pathology.

The levels of expression of human tau protein in the
transgenic mouse lines were relatively modest, ranging
between 10–20% of total mouse brain tau. Adult mouse
brain tau consists of three four-repeat isoforms, whereas
only one human tau isoform was expressed in each of the
transgenic mouse studies. However, human tau ap-
peared to be concentrated in a relatively small number of
nerve cells, suggesting that the levels of human tau per
cell may be much higher. Nevertheless, the failure to form
tau filaments in mouse brain may be due to insufficient
levels of human tau. From the experiments on synthetic
tau filaments, it is clear that the assembly of recombinant

tau in presence of sulphated glycosaminoglycans is
strongly concentration-dependent, as befits a nucleation-
dependent process.37–40,42 Other differences between
mice and humans may also play a role. Mice express only
three four-repeat tau isoforms in adult brain, whereas
humans express an additional three isoforms with three
repeats. If cellular factors are needed to induce tau fila-
ment formation, they may not be present in sufficient
concentrations in mouse brain. Finally, differences may
be a function of the very different life spans of mouse and
human.

Outlook

The discovery of missense mutations in tau in FTDP-17
has demonstrated that tau dysfunction produces neuro-
degeneration. The existence of mutations in the intron
following exon 10 of the tau gene has shown that the
simple overproduction of four-repeat tau is sufficient to
lead to a filamentous pathology and to produce a demen-
tia disorder. This knowledge will be invaluable for future
efforts aimed at producing mouse lines transgenic for
tau. Higher expression levels of human transgenic tau
than have been achieved so far may be the key to suc-
cess. Animal models of FTDP-17, Pick’s disease, pro-
gressive supranuclear palsy, and corticobasal degener-
ation are eagerly awaited. Perhaps most importantly,
there will be no true transgenic mouse model of Alzhei-
mer’s disease without a filamentous tau pathology.
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