Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1988 Apr;93(4):739–746. doi: 10.1111/j.1476-5381.1988.tb11457.x

Role of bradykinin in the vascular permeability response induced by carrageenin in rats.

S Kumakura 1, I Kamo 1, S Tsurufuji 1
PMCID: PMC1853887  PMID: 2839262

Abstract

1 Bradykinin in carrageenin-induced inflammatory pouch fluid was measured by an enzyme immunoassay method. 2 The bradykinin showed a single peak in the 30-60 min period after the challenge and then decreased quickly, and there was a correlation between the bradykinin level and exudation of fluorescein-labelled bovine serum albumin in the first 60 min period. 3 Captopril (an inhibitor of kininase II) elevated both the bradykinin level in the inflammatory pouch fluid and vascular permeability, while DL-2-mercaptomethyl-3- guanidinoethylthiopropanoic acid (an inhibitor of kininase I) had no effect. 4 Soybean trypsin inhibitor (SBTI) inhibited the vascular permeability response in parallel with the decrease in the bradykinin level. 5 A bradykinin-degrading activity appeared in the pouch fluid within 1 h after the challenge and increased with time. 6 In the period of 3.5-4 h, bradykinin levels were suppressed below the sensitivity limit of the assay, i.e. 0.07 nm ml-1, in spite of active generation. This was because degradation of bradykinin was very rapid in this late stage. Nevertheless, bradykinin still played a definite role in sustaining a high level of vascular permeability response in the late stage in conjunction with prostaglandins.

Full text

PDF
739

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Di Rosa M., Giroud J. P., Willoughby D. A. Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J Pathol. 1971 May;104(1):15–29. doi: 10.1002/path.1711040103. [DOI] [PubMed] [Google Scholar]
  2. Girey G. J., Talamo R. C., Colman R. W. The kinetics of the release of bradykinin by kallikrein in normal human plasma. J Lab Clin Med. 1972 Oct;80(4):496–505. [PubMed] [Google Scholar]
  3. Hirasawa N., Ohuchi K., Sugio K., Tsurufuji S., Watanabe M., Yoshino S. Vascular permeability responses and the role of prostaglandin E2 in an experimental allergic inflammation of air pouch type in rats. Br J Pharmacol. 1986 Apr;87(4):751–756. doi: 10.1111/j.1476-5381.1986.tb14593.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Katori M., Ikeda K., Harada Y., Uchida Y., Tanaka K., Oh-Ishi S. A possible role of prostaglandins and bradykinin as a trigger of exudation in carrageenin-induced rat pleurisy. Agents Actions. 1978 Jan;8(1-2):108–112. doi: 10.1007/BF01972411. [DOI] [PubMed] [Google Scholar]
  5. Konno S., Tsurufuji S. Inhibitory effect of a novel anticomplementary agent, K-76COONa, on the release of histamine induced by zymosan and compound 48/80. Jpn J Pharmacol. 1985 May;38(1):116–119. doi: 10.1254/jjp.38.116. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Minami M., Togashi H., Sano M., Endoh T., Saito H., Hashimoto F., Fujita K., Yasuda H., Kuriyamoto Y., Nishino T. [Plasma bradykinin concentration in patients with cardiovascular diseases]. Nihon Yakurigaku Zasshi. 1983 Aug;82(2):159–169. [PubMed] [Google Scholar]
  8. Ohuchi K., Hirasawa N., Watanabe M., Tsurufuji S. Pharmacological analysis of the vascular permeability response in the anaphylactic phase of allergic inflammation in rats. Eur J Pharmacol. 1985 Nov 19;117(3):337–345. doi: 10.1016/0014-2999(85)90007-x. [DOI] [PubMed] [Google Scholar]
  9. Ondetti M. A., Rubin B., Cushman D. W. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science. 1977 Apr 22;196(4288):441–444. doi: 10.1126/science.191908. [DOI] [PubMed] [Google Scholar]
  10. Plummer T. H., Jr, Ryan T. J. A potent mercapto bi-product analogue inhibitor for human carboxypeptidase N. Biochem Biophys Res Commun. 1981 Jan 30;98(2):448–454. doi: 10.1016/0006-291x(81)90860-3. [DOI] [PubMed] [Google Scholar]
  11. SHORE P. A., BURKHALTER A., COHN V. H., Jr A method for the fluorometric assay of histamine in tissues. J Pharmacol Exp Ther. 1959 Nov;127:182–186. [PubMed] [Google Scholar]
  12. Tsurufuji S., Kurihara A., Kiso S., Suzuki Y., Ohuchi K. Dexamethasone inhibits generation in inflammatory sites of the chemotactic activity attributable to leukotriene B4. Biochem Biophys Res Commun. 1984 Mar 30;119(3):884–890. doi: 10.1016/0006-291x(84)90856-8. [DOI] [PubMed] [Google Scholar]
  13. Ueno A., Oh-ishi S., Kitagawa T., Katori M. Enzyme immunoassay of bradykinin using beta-D-galactosidase as a labeling enzyme. Biochem Pharmacol. 1981 Jun 15;30(12):1659–1664. doi: 10.1016/0006-2952(81)90394-4. [DOI] [PubMed] [Google Scholar]
  14. Watanabe K., Nakagawa H., Tsurufuji S. A new sensitive fluorometric method for measurement of vascular permeability. J Pharmacol Methods. 1984 Jun;11(3):167–176. doi: 10.1016/0160-5402(84)90035-4. [DOI] [PubMed] [Google Scholar]
  15. Williams T. J., Morley J. Prostaglandins as potentiators of increased vascular permeability in inflammation. Nature. 1973 Nov 23;246(5430):215–217. doi: 10.1038/246215a0. [DOI] [PubMed] [Google Scholar]
  16. Yang H. Y., Erdös E. G. Second kininase in human blood plasma. Nature. 1967 Sep 23;215(5108):1402–1403. doi: 10.1038/2151402a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES