Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1988 Aug;94(4):1184–1188. doi: 10.1111/j.1476-5381.1988.tb11637.x

Methylflavonolamine hydrochloride inhibits contractions induced by noradrenaline, calcium and potassium in rabbit isolated aortic strips.

M S Zhang 1, E F Zhou 1
PMCID: PMC1854091  PMID: 3207980

Abstract

1. The effects of methylflavonolamine hydrochloride (4'-methyl-7-(2-hydroxy-3-isopropylamino-propoxy)-flavone hydrochloride, MFA) were investigated and compared with verapamil and papaverine on rabbit isolated aortic strips, which were contracted by noradrenaline, calcium and potassium. 2. Pre-incubation for 25 min with either MFA (0.03 to 0.2 mM) or papaverine (0.03 to 0.2 mM) induced non-parallel and concentration-dependent rightward displacements of the curves to noradrenaline (0.00001 to 0.1 mM) with the maximal response depressed. The calculated pD2' values (mean +/- s.d.) were 3.89 +/- 0.15 for MFA and 3.93 +/- 0.05 for papaverine, respectively. Verapamil (0.03 to 0.2 mM) inhibited the contraction induced by noradrenaline in a competitive manner with a pA2 value of 5.91 +/- 0.83. 3. In depolarized aortic strips of the rabbit, prior exposure to MFA (0.03 to 0.3 mM) and papaverine (0.03 to 0.2 mM) shifted the cumulative curves to Ca2+ (0.003 to 100 mM) parallel to the right with the maximal responses depressed, pD'2 values being 3.88 +/- 0.05 and 3.89 +/- 0.13, respectively. Verapamil produced comparable inhibition of the contraction at much lower concentrations (30 to 300 nM). 4. MFA (0.03 and 0.1 mM) inhibited the contraction elicited by graded depolarization at a constant Ca2+ concentration with a pD'2 value of 4.09 +/- 0.07. 5. The present results show that MFA has some actions consistent with a calcium antagonist. It resembles papaverine more closely than verapamil.

Full text

PDF
1184

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asano M., Suzuki Y., Hidaka H. Effects of various calmodulin antagonists on contraction of rabbit aortic strips. J Pharmacol Exp Ther. 1982 Jan;220(1):191–196. [PubMed] [Google Scholar]
  3. Demesy-Waeldele F., Stoclet J. C. Papaverine, cyclic AMP and the dependence of the rat aorta on extracellular calcium. Eur J Pharmacol. 1975 Apr;31(2):185–194. doi: 10.1016/0014-2999(75)90039-4. [DOI] [PubMed] [Google Scholar]
  4. Han B. J., Zhou E. F., Tang Y. Z., Wan B. S. [The effect of 4'-methyl-7-(2-hydroxy-3-isopropylamino-propoxy)-flavone hydrochloride (SIPI-549) on coronary blood flow and experimental myocardial infarction in rabbits]. Yao Xue Xue Bao. 1986 Oct;21(10):783–786. [PubMed] [Google Scholar]
  5. Han B. J., Zhou E. F., Wan B. S., Tang Y. Z., Yang J. M., Xie M. H. [Anti-arrhythmic effects of methylflavonolamine hydrochloride]. Zhongguo Yao Li Xue Bao. 1987 Jul;8(4):328–330. [PubMed] [Google Scholar]
  6. Hof R. P., Scholtysik G., Loutzenhiser R., Vuorela H. J., Neumann P. PN 200-110, a new calcium antagonist: electrophysiological, inotropic, and chronotropic effects on guinea pig myocardial tissue and effects on contraction and calcium uptake of rabbit aorta. J Cardiovasc Pharmacol. 1984 May-Jun;6(3):399–406. [PubMed] [Google Scholar]
  7. Koike K., Takayanagi I. Possible mechanisms of stimulatory action of papaverine on calcium-uptake by rat uterine microsomal fraction. Jpn J Pharmacol. 1981 Oct;31(5):757–762. doi: 10.1254/jjp.31.757. [DOI] [PubMed] [Google Scholar]
  8. Motulsky H. J., Snavely M. D., Hughes R. J., Insel P. A. Interaction of verapamil and other calcium channel blockers with alpha 1- and alpha 2-adrenergic receptors. Circ Res. 1983 Feb;52(2):226–231. doi: 10.1161/01.res.52.2.226. [DOI] [PubMed] [Google Scholar]
  9. Nyborg N. C., Mulvany M. J. Effect of felodipine, a new dihydropyridine vasodilator, on contractile responses to potassium, noradrenaline, and calcium in mesenteric resistance vessels of the rat. J Cardiovasc Pharmacol. 1984 May-Jun;6(3):499–505. doi: 10.1097/00005344-198405000-00019. [DOI] [PubMed] [Google Scholar]
  10. Thorens S., Haeusler G. Effects of some vasodilators on calcium translocation in intact and fractionated vascular smooth muscle. Eur J Pharmacol. 1979 Feb 15;54(1-2):79–91. doi: 10.1016/0014-2999(79)90410-2. [DOI] [PubMed] [Google Scholar]
  11. Wu Y. J., Zhou E. F., Hao Y. B., Tang Y. Z., Wan B. S. [Effects of 4'-methyl-7-(2-hydroxy-3-isopropylaminopropoxy)-flavone hydrochloride on experimental thrombus formation in rats and rabbits]. Yao Xue Xue Bao. 1986 Oct;21(10):744–747. [PubMed] [Google Scholar]
  12. Zhang M. S., Zhou E. F. [Slow channel blocker and calcium]. Sheng Li Ke Xue Jin Zhan. 1985 Jul;16(3):259–263. [PubMed] [Google Scholar]
  13. van Breemen C., Hwang O., Meisheri K. D. The mechanism of inhibitory action of diltiazem on vascular smooth muscle contractility. J Pharmacol Exp Ther. 1981 Aug;218(2):459–463. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES