Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Feb;96(2):283–290. doi: 10.1111/j.1476-5381.1989.tb11815.x

5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis.

T Sharp 1, S R Bramwell 1, D G Grahame-Smith 1
PMCID: PMC1854361  PMID: 2466516

Abstract

1. An intracerebral perfusion method, brain microdialysis, was used to assess changes of 5-hydroxytryptamine (5-HT) release in the ventral hippocampus of the chloral hydrate-anaesthetized rat in response to systemic administration of a variety of 5-HT1 receptor agonists. 2. A stable output of reliably detectable endogenous 5-HT was measured in dialysates collected from ventral hippocampus with the 5-HT reuptake inhibitor, citalopram, present in the perfusion medium. 3. Under these conditions the putative 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) caused a dose-dependent (5-250 micrograms kg-1, s.c.) reduction of 5-HT in hippocampal dialysates. 4. Similarly, the putative 5-HT1A agonists gepirone (5 mg kg-1, s.c.), ipsapirone (5 mg kg-1, s.c.) and buspirone (5 mg kg-1, s.c.) markedly reduced levels of 5-HT in hippocampal perfusates whereas their common metabolite 1-(2-pyrimidinyl) piperazine (5 mg kg-1, s.c.), which does not bind to central 5-HT1A recognition sites, had no effect. 5. 5-Methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-indole (RU 24969), a drug with reported high affinity for brain 5-HT1B binding sites, also produced a dose-dependent (0.25-5 mg kg-1, s.c.) decrease of hippocampal 5-HT output. 6. These data are direct biochemical evidence that systemically administered putative 5-HT1A and 5-HT1B agonists markedly inhibit 5-HT release in rat ventral hippocampus in vivo.

Full text

PDF
283

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlenius S., Larsson K., Svensson L., Hjorth S., Carlsson A., Lindberg P., Wikström H., Sanchez D., Arvidsson L. E., Hacksell U. Effects of a new type of 5-HT receptor agonist on male rat sexual behavior. Pharmacol Biochem Behav. 1981 Nov;15(5):785–792. doi: 10.1016/0091-3057(81)90023-x. [DOI] [PubMed] [Google Scholar]
  2. Andrade R., Nicoll R. A. Novel anxiolytics discriminate between postsynaptic serotonin receptors mediating different physiological responses on single neurons of the rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol. 1987 Jul;336(1):5–10. doi: 10.1007/BF00177743. [DOI] [PubMed] [Google Scholar]
  3. Blier P., de Montigny C. Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse. 1987;1(5):470–480. doi: 10.1002/syn.890010511. [DOI] [PubMed] [Google Scholar]
  4. Bockaert J., Dumuis A., Bouhelal R., Sebben M., Cory R. N. Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn Schmiedebergs Arch Pharmacol. 1987 May;335(5):588–592. doi: 10.1007/BF00169129. [DOI] [PubMed] [Google Scholar]
  5. Brazell M. P., Marsden C. A., Nisbet A. P., Routledge C. The 5-HT1 receptor agonist RU-24969 decreases 5-hydroxytryptamine (5-HT) release and metabolism in the rat frontal cortex in vitro and in vivo. Br J Pharmacol. 1985 Sep;86(1):209–216. doi: 10.1111/j.1476-5381.1985.tb09451.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Vivo M., Maayani S. Characterization of the 5-hydroxytryptamine1a receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther. 1986 Jul;238(1):248–253. [PubMed] [Google Scholar]
  7. Dourish C. T., Hutson P. H., Kennett G. A., Curzon G. 8-OH-DPAT-induced hyperphagia: its neural basis and possible therapeutic relevance. Appetite. 1986;7 (Suppl):127–140. doi: 10.1016/s0195-6663(86)80058-7. [DOI] [PubMed] [Google Scholar]
  8. Engel G., Göthert M., Hoyer D., Schlicker E., Hillenbrand K. Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn Schmiedebergs Arch Pharmacol. 1986 Jan;332(1):1–7. doi: 10.1007/BF00633189. [DOI] [PubMed] [Google Scholar]
  9. Goodwin G. M., De Souza R. J., Green A. R., Heal D. J. The pharmacology of the behavioural and hypothermic responses of rats to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Psychopharmacology (Berl) 1987;91(4):506–511. doi: 10.1007/BF00216019. [DOI] [PubMed] [Google Scholar]
  10. Goodwin G. M., Green A. R. A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors. Br J Pharmacol. 1985 Mar;84(3):743–753. doi: 10.1111/j.1476-5381.1985.tb16157.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grahame-Smith D. G. How important is the synthesis of brain 5-hydroxytryptamine in the physiological control of its central function? Adv Biochem Psychopharmacol. 1974;10:83–91. [PubMed] [Google Scholar]
  12. Hall M. D., el Mestikawy S., Emerit M. B., Pichat L., Hamon M., Gozlan H. [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to pre- and postsynaptic 5-hydroxytryptamine sites in various regions of the rat brain. J Neurochem. 1985 Jun;44(6):1685–1696. doi: 10.1111/j.1471-4159.1985.tb07155.x. [DOI] [PubMed] [Google Scholar]
  13. Heuring R. E., Peroutka S. J. Characterization of a novel 3H-5-hydroxytryptamine binding site subtype in bovine brain membranes. J Neurosci. 1987 Mar;7(3):894–903. doi: 10.1523/JNEUROSCI.07-03-00894.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hjorth S., Carlsson A. Buspirone: effects on central monoaminergic transmission--possible relevance to animal experimental and clinical findings. Eur J Pharmacol. 1982 Sep 24;83(3-4):299–303. doi: 10.1016/0014-2999(82)90265-5. [DOI] [PubMed] [Google Scholar]
  15. Hoyer D., Engel G., Kalkman H. O. Characterization of the 5-HT1B recognition site in rat brain: binding studies with (-)[125I]iodocyanopindolol. Eur J Pharmacol. 1985 Nov 26;118(1-2):1–12. doi: 10.1016/0014-2999(85)90657-0. [DOI] [PubMed] [Google Scholar]
  16. Hutson P. H., Donohoe T. P., Curzon G. Hypothermia induced by the putative 5-HT1A agonists LY165163 and 8-OH-DPAT is not prevented by 5-HT depletion. Eur J Pharmacol. 1987 Nov 10;143(2):221–228. doi: 10.1016/0014-2999(87)90536-x. [DOI] [PubMed] [Google Scholar]
  17. Kalén P., Strecker R. E., Rosengren E., Björklund A. Endogenous release of neuronal serotonin and 5-hydroxyindoleacetic acid in the caudate-putamen of the rat as revealed by intracerebral dialysis coupled to high-performance liquid chromatography with fluorimetric detection. J Neurochem. 1988 Nov;51(5):1422–1435. doi: 10.1111/j.1471-4159.1988.tb01107.x. [DOI] [PubMed] [Google Scholar]
  18. Kilpatrick G. J., Jones B. J., Tyers M. B. Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature. 1987 Dec 24;330(6150):746–748. doi: 10.1038/330746a0. [DOI] [PubMed] [Google Scholar]
  19. Leysen J. E., Niemegeers C. J., Tollenaere J. P., Laduron P. M. Serotonergic component of neuroleptic receptors. Nature. 1978 Mar 9;272(5649):168–171. doi: 10.1038/272168a0. [DOI] [PubMed] [Google Scholar]
  20. Marsden C. A., Martin K. F. Involvement of 5-HT1A- and alpha 2-receptors in the decreased 5-hydroxytryptamine release and metabolism in rat suprachiasmatic nucleus after intravenous 8-hydroxy-2-(n-dipropylamino) tetralin. Br J Pharmacol. 1986 Oct;89(2):277–286. doi: 10.1111/j.1476-5381.1986.tb10257.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McMillen B. A., Scott S. M., Williams H. L., Sanghera M. K. Effects of gepirone, an aryl-piperazine anxiolytic drug, on aggressive behavior and brain monoaminergic neurotransmission. Naunyn Schmiedebergs Arch Pharmacol. 1987 Apr;335(4):454–464. doi: 10.1007/BF00165563. [DOI] [PubMed] [Google Scholar]
  22. Middlemiss D. N. 8-Hydroxy-2-(di-n-propylamino) tetralin is devoid of activity at the 5-hydroxytryptamine autoreceptor in rat brain. Implications for the proposed link between the autoreceptor and the [3H] 5-HT recognition site. Naunyn Schmiedebergs Arch Pharmacol. 1984 Aug;327(1):18–22. doi: 10.1007/BF00504986. [DOI] [PubMed] [Google Scholar]
  23. Middlemiss D. N., Fozard J. R. 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur J Pharmacol. 1983 May 20;90(1):151–153. doi: 10.1016/0014-2999(83)90230-3. [DOI] [PubMed] [Google Scholar]
  24. Middlemiss D. N. The putative 5-HT1 receptor agonist, RU 24969, inhibits the efflux of 5-hydroxytryptamine from rat frontal cortex slices by stimulation of the 5-HT autoreceptor. J Pharm Pharmacol. 1985 Jun;37(6):434–437. doi: 10.1111/j.2042-7158.1985.tb03032.x. [DOI] [PubMed] [Google Scholar]
  25. Pazos A., Hoyer D., Palacios J. M. The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur J Pharmacol. 1984 Nov 27;106(3):539–546. doi: 10.1016/0014-2999(84)90057-8. [DOI] [PubMed] [Google Scholar]
  26. Pedigo N. W., Yamamura H. I., Nelson D. L. Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem. 1981 Jan;36(1):220–226. doi: 10.1111/j.1471-4159.1981.tb02397.x. [DOI] [PubMed] [Google Scholar]
  27. Peroutka S. J. Pharmacological differentiation and characterization of 5-HT1A, 5-HT1B, and 5-HT1C binding sites in rat frontal cortex. J Neurochem. 1986 Aug;47(2):529–540. doi: 10.1111/j.1471-4159.1986.tb04532.x. [DOI] [PubMed] [Google Scholar]
  28. Peroutka S. J., Snyder S. H. Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol. 1979 Nov;16(3):687–699. [PubMed] [Google Scholar]
  29. Rimele T. J., Henry D. E., Lee D. K., Geiger G., Heaslip R. J., Grimes D. Tissue-dependent alpha adrenoceptor activity of buspirone and related compounds. J Pharmacol Exp Ther. 1987 Jun;241(3):771–778. [PubMed] [Google Scholar]
  30. Sharp T., Zetterström T., Series H. G., Carlsson A., Grahame-Smith D. G., Ungerstedt U. HPLC-EC analysis of catechols and indoles in rat brain dialysates. Life Sci. 1987 Aug 17;41(7):869–872. doi: 10.1016/0024-3205(87)90183-4. [DOI] [PubMed] [Google Scholar]
  31. Sharp T., Zetterström T., Ungerstedt U. An in vivo study of dopamine release and metabolism in rat brain regions using intracerebral dialysis. J Neurochem. 1986 Jul;47(1):113–122. doi: 10.1111/j.1471-4159.1986.tb02838.x. [DOI] [PubMed] [Google Scholar]
  32. Sills M. A., Wolfe B. B., Frazer A. Determination of selective and nonselective compounds for the 5-HT 1A and 5-HT 1B receptor subtypes in rat frontal cortex. J Pharmacol Exp Ther. 1984 Dec;231(3):480–487. [PubMed] [Google Scholar]
  33. Sprouse J. S., Aghajanian G. K. (-)-Propranolol blocks the inhibition of serotonergic dorsal raphe cell firing by 5-HT1A selective agonists. Eur J Pharmacol. 1986 Sep 9;128(3):295–298. doi: 10.1016/0014-2999(86)90782-x. [DOI] [PubMed] [Google Scholar]
  34. Sprouse J. S., Aghajanian G. K. Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse. 1987;1(1):3–9. doi: 10.1002/syn.890010103. [DOI] [PubMed] [Google Scholar]
  35. Tricklebank M. D., Neill J., Kidd E. J., Fozard J. R. Mediation of the discriminative stimulus properties of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) by the putative 5-HT1A receptor. Eur J Pharmacol. 1987 Jan 6;133(1):47–56. doi: 10.1016/0014-2999(87)90204-4. [DOI] [PubMed] [Google Scholar]
  36. VanderMaelen C. P., Matheson G. K., Wilderman R. C., Patterson L. A. Inhibition of serotonergic dorsal raphe neurons by systemic and iontophoretic administration of buspirone, a non-benzodiazepine anxiolytic drug. Eur J Pharmacol. 1986 Sep 23;129(1-2):123–130. doi: 10.1016/0014-2999(86)90343-2. [DOI] [PubMed] [Google Scholar]
  37. Verge D., Daval G., Patey A., Gozlan H., el Mestikawy S., Hamon M. Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol. 1985 Jul 31;113(3):463–464. doi: 10.1016/0014-2999(85)90099-8. [DOI] [PubMed] [Google Scholar]
  38. Zetterström T., Sharp T., Marsden C. A., Ungerstedt U. In vivo measurement of dopamine and its metabolites by intracerebral dialysis: changes after d-amphetamine. J Neurochem. 1983 Dec;41(6):1769–1773. doi: 10.1111/j.1471-4159.1983.tb00893.x. [DOI] [PubMed] [Google Scholar]
  39. de Montigny C., Blier P., Chaput Y. Electrophysiologically-identified serotonin receptors in the rat CNS. Effect of antidepressant treatment. Neuropharmacology. 1984 Dec;23(12B):1511–1520. doi: 10.1016/0028-3908(84)90095-9. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES