Abstract
1. An intracerebral perfusion method, brain microdialysis, was used to assess changes of 5-hydroxytryptamine (5-HT) release in the ventral hippocampus of the chloral hydrate-anaesthetized rat in response to systemic administration of a variety of 5-HT1 receptor agonists. 2. A stable output of reliably detectable endogenous 5-HT was measured in dialysates collected from ventral hippocampus with the 5-HT reuptake inhibitor, citalopram, present in the perfusion medium. 3. Under these conditions the putative 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) caused a dose-dependent (5-250 micrograms kg-1, s.c.) reduction of 5-HT in hippocampal dialysates. 4. Similarly, the putative 5-HT1A agonists gepirone (5 mg kg-1, s.c.), ipsapirone (5 mg kg-1, s.c.) and buspirone (5 mg kg-1, s.c.) markedly reduced levels of 5-HT in hippocampal perfusates whereas their common metabolite 1-(2-pyrimidinyl) piperazine (5 mg kg-1, s.c.), which does not bind to central 5-HT1A recognition sites, had no effect. 5. 5-Methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-indole (RU 24969), a drug with reported high affinity for brain 5-HT1B binding sites, also produced a dose-dependent (0.25-5 mg kg-1, s.c.) decrease of hippocampal 5-HT output. 6. These data are direct biochemical evidence that systemically administered putative 5-HT1A and 5-HT1B agonists markedly inhibit 5-HT release in rat ventral hippocampus in vivo.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahlenius S., Larsson K., Svensson L., Hjorth S., Carlsson A., Lindberg P., Wikström H., Sanchez D., Arvidsson L. E., Hacksell U. Effects of a new type of 5-HT receptor agonist on male rat sexual behavior. Pharmacol Biochem Behav. 1981 Nov;15(5):785–792. doi: 10.1016/0091-3057(81)90023-x. [DOI] [PubMed] [Google Scholar]
- Andrade R., Nicoll R. A. Novel anxiolytics discriminate between postsynaptic serotonin receptors mediating different physiological responses on single neurons of the rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol. 1987 Jul;336(1):5–10. doi: 10.1007/BF00177743. [DOI] [PubMed] [Google Scholar]
- Blier P., de Montigny C. Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse. 1987;1(5):470–480. doi: 10.1002/syn.890010511. [DOI] [PubMed] [Google Scholar]
- Bockaert J., Dumuis A., Bouhelal R., Sebben M., Cory R. N. Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn Schmiedebergs Arch Pharmacol. 1987 May;335(5):588–592. doi: 10.1007/BF00169129. [DOI] [PubMed] [Google Scholar]
- Brazell M. P., Marsden C. A., Nisbet A. P., Routledge C. The 5-HT1 receptor agonist RU-24969 decreases 5-hydroxytryptamine (5-HT) release and metabolism in the rat frontal cortex in vitro and in vivo. Br J Pharmacol. 1985 Sep;86(1):209–216. doi: 10.1111/j.1476-5381.1985.tb09451.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Vivo M., Maayani S. Characterization of the 5-hydroxytryptamine1a receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther. 1986 Jul;238(1):248–253. [PubMed] [Google Scholar]
- Dourish C. T., Hutson P. H., Kennett G. A., Curzon G. 8-OH-DPAT-induced hyperphagia: its neural basis and possible therapeutic relevance. Appetite. 1986;7 (Suppl):127–140. doi: 10.1016/s0195-6663(86)80058-7. [DOI] [PubMed] [Google Scholar]
- Engel G., Göthert M., Hoyer D., Schlicker E., Hillenbrand K. Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn Schmiedebergs Arch Pharmacol. 1986 Jan;332(1):1–7. doi: 10.1007/BF00633189. [DOI] [PubMed] [Google Scholar]
- Goodwin G. M., De Souza R. J., Green A. R., Heal D. J. The pharmacology of the behavioural and hypothermic responses of rats to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Psychopharmacology (Berl) 1987;91(4):506–511. doi: 10.1007/BF00216019. [DOI] [PubMed] [Google Scholar]
- Goodwin G. M., Green A. R. A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors. Br J Pharmacol. 1985 Mar;84(3):743–753. doi: 10.1111/j.1476-5381.1985.tb16157.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grahame-Smith D. G. How important is the synthesis of brain 5-hydroxytryptamine in the physiological control of its central function? Adv Biochem Psychopharmacol. 1974;10:83–91. [PubMed] [Google Scholar]
- Hall M. D., el Mestikawy S., Emerit M. B., Pichat L., Hamon M., Gozlan H. [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to pre- and postsynaptic 5-hydroxytryptamine sites in various regions of the rat brain. J Neurochem. 1985 Jun;44(6):1685–1696. doi: 10.1111/j.1471-4159.1985.tb07155.x. [DOI] [PubMed] [Google Scholar]
- Heuring R. E., Peroutka S. J. Characterization of a novel 3H-5-hydroxytryptamine binding site subtype in bovine brain membranes. J Neurosci. 1987 Mar;7(3):894–903. doi: 10.1523/JNEUROSCI.07-03-00894.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hjorth S., Carlsson A. Buspirone: effects on central monoaminergic transmission--possible relevance to animal experimental and clinical findings. Eur J Pharmacol. 1982 Sep 24;83(3-4):299–303. doi: 10.1016/0014-2999(82)90265-5. [DOI] [PubMed] [Google Scholar]
- Hoyer D., Engel G., Kalkman H. O. Characterization of the 5-HT1B recognition site in rat brain: binding studies with (-)[125I]iodocyanopindolol. Eur J Pharmacol. 1985 Nov 26;118(1-2):1–12. doi: 10.1016/0014-2999(85)90657-0. [DOI] [PubMed] [Google Scholar]
- Hutson P. H., Donohoe T. P., Curzon G. Hypothermia induced by the putative 5-HT1A agonists LY165163 and 8-OH-DPAT is not prevented by 5-HT depletion. Eur J Pharmacol. 1987 Nov 10;143(2):221–228. doi: 10.1016/0014-2999(87)90536-x. [DOI] [PubMed] [Google Scholar]
- Kalén P., Strecker R. E., Rosengren E., Björklund A. Endogenous release of neuronal serotonin and 5-hydroxyindoleacetic acid in the caudate-putamen of the rat as revealed by intracerebral dialysis coupled to high-performance liquid chromatography with fluorimetric detection. J Neurochem. 1988 Nov;51(5):1422–1435. doi: 10.1111/j.1471-4159.1988.tb01107.x. [DOI] [PubMed] [Google Scholar]
- Kilpatrick G. J., Jones B. J., Tyers M. B. Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature. 1987 Dec 24;330(6150):746–748. doi: 10.1038/330746a0. [DOI] [PubMed] [Google Scholar]
- Leysen J. E., Niemegeers C. J., Tollenaere J. P., Laduron P. M. Serotonergic component of neuroleptic receptors. Nature. 1978 Mar 9;272(5649):168–171. doi: 10.1038/272168a0. [DOI] [PubMed] [Google Scholar]
- Marsden C. A., Martin K. F. Involvement of 5-HT1A- and alpha 2-receptors in the decreased 5-hydroxytryptamine release and metabolism in rat suprachiasmatic nucleus after intravenous 8-hydroxy-2-(n-dipropylamino) tetralin. Br J Pharmacol. 1986 Oct;89(2):277–286. doi: 10.1111/j.1476-5381.1986.tb10257.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMillen B. A., Scott S. M., Williams H. L., Sanghera M. K. Effects of gepirone, an aryl-piperazine anxiolytic drug, on aggressive behavior and brain monoaminergic neurotransmission. Naunyn Schmiedebergs Arch Pharmacol. 1987 Apr;335(4):454–464. doi: 10.1007/BF00165563. [DOI] [PubMed] [Google Scholar]
- Middlemiss D. N. 8-Hydroxy-2-(di-n-propylamino) tetralin is devoid of activity at the 5-hydroxytryptamine autoreceptor in rat brain. Implications for the proposed link between the autoreceptor and the [3H] 5-HT recognition site. Naunyn Schmiedebergs Arch Pharmacol. 1984 Aug;327(1):18–22. doi: 10.1007/BF00504986. [DOI] [PubMed] [Google Scholar]
- Middlemiss D. N., Fozard J. R. 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur J Pharmacol. 1983 May 20;90(1):151–153. doi: 10.1016/0014-2999(83)90230-3. [DOI] [PubMed] [Google Scholar]
- Middlemiss D. N. The putative 5-HT1 receptor agonist, RU 24969, inhibits the efflux of 5-hydroxytryptamine from rat frontal cortex slices by stimulation of the 5-HT autoreceptor. J Pharm Pharmacol. 1985 Jun;37(6):434–437. doi: 10.1111/j.2042-7158.1985.tb03032.x. [DOI] [PubMed] [Google Scholar]
- Pazos A., Hoyer D., Palacios J. M. The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur J Pharmacol. 1984 Nov 27;106(3):539–546. doi: 10.1016/0014-2999(84)90057-8. [DOI] [PubMed] [Google Scholar]
- Pedigo N. W., Yamamura H. I., Nelson D. L. Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem. 1981 Jan;36(1):220–226. doi: 10.1111/j.1471-4159.1981.tb02397.x. [DOI] [PubMed] [Google Scholar]
- Peroutka S. J. Pharmacological differentiation and characterization of 5-HT1A, 5-HT1B, and 5-HT1C binding sites in rat frontal cortex. J Neurochem. 1986 Aug;47(2):529–540. doi: 10.1111/j.1471-4159.1986.tb04532.x. [DOI] [PubMed] [Google Scholar]
- Peroutka S. J., Snyder S. H. Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol. 1979 Nov;16(3):687–699. [PubMed] [Google Scholar]
- Rimele T. J., Henry D. E., Lee D. K., Geiger G., Heaslip R. J., Grimes D. Tissue-dependent alpha adrenoceptor activity of buspirone and related compounds. J Pharmacol Exp Ther. 1987 Jun;241(3):771–778. [PubMed] [Google Scholar]
- Sharp T., Zetterström T., Series H. G., Carlsson A., Grahame-Smith D. G., Ungerstedt U. HPLC-EC analysis of catechols and indoles in rat brain dialysates. Life Sci. 1987 Aug 17;41(7):869–872. doi: 10.1016/0024-3205(87)90183-4. [DOI] [PubMed] [Google Scholar]
- Sharp T., Zetterström T., Ungerstedt U. An in vivo study of dopamine release and metabolism in rat brain regions using intracerebral dialysis. J Neurochem. 1986 Jul;47(1):113–122. doi: 10.1111/j.1471-4159.1986.tb02838.x. [DOI] [PubMed] [Google Scholar]
- Sills M. A., Wolfe B. B., Frazer A. Determination of selective and nonselective compounds for the 5-HT 1A and 5-HT 1B receptor subtypes in rat frontal cortex. J Pharmacol Exp Ther. 1984 Dec;231(3):480–487. [PubMed] [Google Scholar]
- Sprouse J. S., Aghajanian G. K. (-)-Propranolol blocks the inhibition of serotonergic dorsal raphe cell firing by 5-HT1A selective agonists. Eur J Pharmacol. 1986 Sep 9;128(3):295–298. doi: 10.1016/0014-2999(86)90782-x. [DOI] [PubMed] [Google Scholar]
- Sprouse J. S., Aghajanian G. K. Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse. 1987;1(1):3–9. doi: 10.1002/syn.890010103. [DOI] [PubMed] [Google Scholar]
- Tricklebank M. D., Neill J., Kidd E. J., Fozard J. R. Mediation of the discriminative stimulus properties of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) by the putative 5-HT1A receptor. Eur J Pharmacol. 1987 Jan 6;133(1):47–56. doi: 10.1016/0014-2999(87)90204-4. [DOI] [PubMed] [Google Scholar]
- VanderMaelen C. P., Matheson G. K., Wilderman R. C., Patterson L. A. Inhibition of serotonergic dorsal raphe neurons by systemic and iontophoretic administration of buspirone, a non-benzodiazepine anxiolytic drug. Eur J Pharmacol. 1986 Sep 23;129(1-2):123–130. doi: 10.1016/0014-2999(86)90343-2. [DOI] [PubMed] [Google Scholar]
- Verge D., Daval G., Patey A., Gozlan H., el Mestikawy S., Hamon M. Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol. 1985 Jul 31;113(3):463–464. doi: 10.1016/0014-2999(85)90099-8. [DOI] [PubMed] [Google Scholar]
- Zetterström T., Sharp T., Marsden C. A., Ungerstedt U. In vivo measurement of dopamine and its metabolites by intracerebral dialysis: changes after d-amphetamine. J Neurochem. 1983 Dec;41(6):1769–1773. doi: 10.1111/j.1471-4159.1983.tb00893.x. [DOI] [PubMed] [Google Scholar]
- de Montigny C., Blier P., Chaput Y. Electrophysiologically-identified serotonin receptors in the rat CNS. Effect of antidepressant treatment. Neuropharmacology. 1984 Dec;23(12B):1511–1520. doi: 10.1016/0028-3908(84)90095-9. [DOI] [PubMed] [Google Scholar]
