Abstract
1. The effect of amiloride (0.5 mM) on guinea-pig and rat left atria driven at various rates of stimulation and different [Ca2+]0-[Na+]0 ratios has been studied. 2. Amiloride elicited a positive inotropic response in guinea-pig left atria driven at 0.1 Hz, 0.5 Hz and 1 Hz when [Ca2+]0 was 3.6 mM, 1.8 mM and 0.9 mM respectively but not when [Ca2+]0 was 2.7 mM at 0.1 Hz, 0.9 mM at 0.5 Hz and 0.45 mM at 1 Hz. 3. A positive inotropic response was obtained in guinea-pig left atria driven at 0.1 Hz and 1 Hz when [Ca2+]0-[Na+]0(2) was increased respectively from 8 x 10(-5) to 16 x 10(-5) and from 2 x 10(-5) to 8 x 10(-5). The positive inotropic effect was evident only when the ratio was increased by increasing [Ca2+]0 and not by decreasing [Na+]0. 4. In the presence of amiloride, the force of contraction of guinea-pig left atria decreased instead of increasing, when the rate of stimulation was lowered from 1 Hz to 0.01 Hz. Amiloride inhibited the post-rest potentiation. 5. In rat left atria amiloride was devoid of any effect in all the above-mentioned experimental conditions. 6. It is suggested that the pattern of cardiac actions of amiloride can be explained by the inhibition of the Na+/Ca2+ exchange system.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen D. G., Eisner D. A., Lab M. J., Orchard C. H. The effects of low sodium solutions on intracellular calcium concentration and tension in ferret ventricular muscle. J Physiol. 1983 Dec;345:391–407. doi: 10.1113/jphysiol.1983.sp014984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen D. G., Eisner D. A., Orchard C. H. Characterization of oscillations of intracellular calcium concentration in ferret ventricular muscle. J Physiol. 1984 Jul;352:113–128. doi: 10.1113/jphysiol.1984.sp015281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen D. G., Jewell B. R., Wood E. H. Studies of the contractility of mammalian myocardium at low rates of stimulation. J Physiol. 1976 Jan;254(1):1–17. doi: 10.1113/jphysiol.1976.sp011217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen D. G., Kurihara S. Calcium transients in mammalian ventricular muscle. Eur Heart J. 1980;Suppl A:5–15. doi: 10.1093/eurheartj/1.suppl_1.5. [DOI] [PubMed] [Google Scholar]
- BLINKS J. R., KOCH-WESER J. Analysis of the effects of changes in rate and rhythm upon myocardial contractility. J Pharmacol Exp Ther. 1961 Dec;134:373–389. [PubMed] [Google Scholar]
- Barrett R. J., Kau S. T. Myocardial and vascular actions of amiloride in spontaneously hypertensive rats. J Pharmacol Exp Ther. 1986 Nov;239(2):365–374. [PubMed] [Google Scholar]
- Barry W. H., Smith T. W. Movement of Ca2+ across the sarcolemma: effects of abrupt exposure to zero external Na concentration. J Mol Cell Cardiol. 1984 Feb;16(2):155–164. doi: 10.1016/s0022-2828(84)80704-x. [DOI] [PubMed] [Google Scholar]
- Beeler G. W., Jr, Reuter H. The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres. J Physiol. 1970 Mar;207(1):211–229. doi: 10.1113/jphysiol.1970.sp009057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benos D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol. 1982 Mar;242(3):C131–C145. doi: 10.1152/ajpcell.1982.242.3.C131. [DOI] [PubMed] [Google Scholar]
- Bers D. M. Early transient depletion of extracellular Ca during individual cardiac muscle contractions. Am J Physiol. 1983 Mar;244(3):H462–H468. doi: 10.1152/ajpheart.1983.244.3.H462. [DOI] [PubMed] [Google Scholar]
- Blaustein M. P., Santiago E. M. Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. Biophys J. 1977 Oct;20(1):79–111. doi: 10.1016/S0006-3495(77)85538-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaustein M. P. The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol. 1974;70:33–82. doi: 10.1007/BFb0034293. [DOI] [PubMed] [Google Scholar]
- Bova S., Cargnelli G., Luciani S. Na/Ca exchange and tension development in vascular smooth muscle: effect of amiloride. Br J Pharmacol. 1988 Mar;93(3):601–608. doi: 10.1111/j.1476-5381.1988.tb10316.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown A. M., Kunze D. L., Yatani A. The agonist effect of dihydropyridines on Ca channels. Nature. 1984 Oct 11;311(5986):570–572. doi: 10.1038/311570a0. [DOI] [PubMed] [Google Scholar]
- Caroni P., Carafoli E. The Ca2+-pumping ATPase of heart sarcolemma. Characterization, calmodulin dependence, and partial purification. J Biol Chem. 1981 Apr 10;256(7):3263–3270. [PubMed] [Google Scholar]
- Cuthbert A. W., Fanelli G. M. Effects of some pyrazinecarboxamides on sodium transport in frog skin. Br J Pharmacol. 1978 May;63(1):139–149. doi: 10.1111/j.1476-5381.1978.tb07783.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Debetto P., Floreani M., Carpenedo F., Luciani S. Inhibition of the Na+/Ca2+ exchange in cardiac sarcolemmal vesicles by amiloride. Life Sci. 1987 Apr 13;40(15):1523–1530. doi: 10.1016/0024-3205(87)90385-7. [DOI] [PubMed] [Google Scholar]
- DiPolo R., Beaugé L. The calcium pump and sodium-calcium exchange in squid axons. Annu Rev Physiol. 1983;45:313–324. doi: 10.1146/annurev.ph.45.030183.001525. [DOI] [PubMed] [Google Scholar]
- Eisner D. A., Lederer W. J. Na-Ca exchange: stoichiometry and electrogenicity. Am J Physiol. 1985 Mar;248(3 Pt 1):C189–C202. doi: 10.1152/ajpcell.1985.248.3.C189. [DOI] [PubMed] [Google Scholar]
- Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 1983 Jul;245(1):C1–14. doi: 10.1152/ajpcell.1983.245.1.C1. [DOI] [PubMed] [Google Scholar]
- Floreani M., Luciani S. Amiloride: relationship between cardiac effects and inhibition of Na+/Ca2+ exchange. Eur J Pharmacol. 1984 Oct 15;105(3-4):317–322. doi: 10.1016/0014-2999(84)90624-1. [DOI] [PubMed] [Google Scholar]
- Floreani M., Tessari M., Debetto P., Luciani S., Carpenedo F. Effects of N-chlorobenzyl analogues of amiloride on myocardial contractility, Na-Ca-exchange carrier and other cardiac enzymatic activities. Naunyn Schmiedebergs Arch Pharmacol. 1987 Dec;336(6):661–669. doi: 10.1007/BF00165758. [DOI] [PubMed] [Google Scholar]
- Frelin C., Vigne P., Lazdunski M. The role of the Na+/H+ exchange system in cardiac cells in relation to the control of the internal Na+ concentration. A molecular basis for the antagonistic effect of ouabain and amiloride on the heart. J Biol Chem. 1984 Jul 25;259(14):8880–8885. [PubMed] [Google Scholar]
- Gibbons W. R., Fozzard H. A. Slow inward current and contraction of sheep cardiac Purkinje fibers. J Gen Physiol. 1975 Mar;65(3):367–384. doi: 10.1085/jgp.65.3.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennedy R. H., Akera T., Brody T. M. Suppression of positive inotropic and toxic effects of cardiac glycosides by amiloride. Eur J Pharmacol. 1985 Sep 24;115(2-3):199–210. doi: 10.1016/0014-2999(85)90692-2. [DOI] [PubMed] [Google Scholar]
- Kim D., Smith T. W. Effects of amiloride and ouabain on contractile state, Ca and Na fluxes, and Na content in cultured chick heart cells. Mol Pharmacol. 1986 Apr;29(4):363–371. [PubMed] [Google Scholar]
- Kimura J., Noma A., Irisawa H. Na-Ca exchange current in mammalian heart cells. Nature. 1986 Feb 13;319(6054):596–597. doi: 10.1038/319596a0. [DOI] [PubMed] [Google Scholar]
- Langer G. A. The 'sodium pump lag' revisited. J Mol Cell Cardiol. 1983 Oct;15(10):647–651. doi: 10.1016/0022-2828(83)90254-7. [DOI] [PubMed] [Google Scholar]
- Lee C. O., Abete P., Pecker M., Sonn J. K., Vassalle M. Strophanthidin inotropy: role of intracellular sodium ion activity and sodium-calcium exchange. J Mol Cell Cardiol. 1985 Nov;17(11):1043–1053. doi: 10.1016/s0022-2828(85)80120-6. [DOI] [PubMed] [Google Scholar]
- Lipsius S. L., Fozzard H. A., Gibbons W. R. Voltage and time dependence of restitution in heart. Am J Physiol. 1982 Jul;243(1):H68–H76. doi: 10.1152/ajpheart.1982.243.1.H68. [DOI] [PubMed] [Google Scholar]
- Marchese A. C., Hill J. A., Jr, Xie P. D., Strauss H. C. Electrophysiologic effects of amiloride in canine Purkinje fibers: evidence for a delayed effect on repolarization. J Pharmacol Exp Ther. 1985 Feb;232(2):485–491. [PubMed] [Google Scholar]
- Mechmann S., Pott L. Identification of Na-Ca exchange current in single cardiac myocytes. Nature. 1986 Feb 13;319(6054):597–599. doi: 10.1038/319597a0. [DOI] [PubMed] [Google Scholar]
- Mitchell M. R., Powell T., Terrar D. A., Twist V. W. The effects of ryanodine, EGTA and low-sodium on action potentials in rat and guinea-pig ventricular myocytes: evidence for two inward currents during the plateau. Br J Pharmacol. 1984 Mar;81(3):543–550. doi: 10.1111/j.1476-5381.1984.tb10107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mullins L. J. The generation of electric currents in cardiac fibers by Na/Ca exchange. Am J Physiol. 1979 Mar;236(3):C103–C110. doi: 10.1152/ajpcell.1979.236.3.C103. [DOI] [PubMed] [Google Scholar]
- New W., Trautwein W. The ionic nature of slow inward current and its relation to contraction. Pflugers Arch. 1972;334(1):24–38. doi: 10.1007/BF00585998. [DOI] [PubMed] [Google Scholar]
- Orchard C. H., Lakatta E. G. Intracellular calcium transients and developed tension in rat heart muscle. A mechanism for the negative interval-strength relationship. J Gen Physiol. 1985 Nov;86(5):637–651. doi: 10.1085/jgp.86.5.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orkand R. K. Facilitation of heart muscle contraction and its dependence on external calcium and sodium. J Physiol. 1968 May;196(2):311–325. doi: 10.1113/jphysiol.1968.sp008509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Philipson K. D. Sodium-calcium exchange in plasma membrane vesicles. Annu Rev Physiol. 1985;47:561–571. doi: 10.1146/annurev.ph.47.030185.003021. [DOI] [PubMed] [Google Scholar]
- Pousti A., Khoyi M. A. Effect of amiloride on isolated guinea-pig atrium. Arch Int Pharmacodyn Ther. 1979 Dec;242(2):222–229. [PubMed] [Google Scholar]
- Reeves J. P., Hale C. C. The stoichiometry of the cardiac sodium-calcium exchange system. J Biol Chem. 1984 Jun 25;259(12):7733–7739. [PubMed] [Google Scholar]
- Satoh H., Hashimoto K. An electrophysiological study of amiloride on sino-atrial node cells and ventricular muscle of rabbit and dog. Naunyn Schmiedebergs Arch Pharmacol. 1986 May;333(1):83–90. doi: 10.1007/BF00569665. [DOI] [PubMed] [Google Scholar]
- Seller R. H., Banach S., Namey T., Neff M., Swartz C. Cardiac effect of diuretic drugs. Am Heart J. 1975 Apr;89(4):493–500. doi: 10.1016/0002-8703(75)90157-x. [DOI] [PubMed] [Google Scholar]
- Seller R. H., Greco J., Banach S., Seth R. Increasing the inotropic effect and toxic dose of digitalis by the administration of antikaliuretic drugs--further evidence for a cardiac effect of diuretic agents. Am Heart J. 1975 Jul;90(1):56–67. doi: 10.1016/0002-8703(75)90257-4. [DOI] [PubMed] [Google Scholar]
- Sheu S. S., Fozzard H. A. Transmembrane Na+ and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development. J Gen Physiol. 1982 Sep;80(3):325–351. doi: 10.1085/jgp.80.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siegl P. K., Cragoe E. J., Jr, Trumble M. J., Kaczorowski G. J. Inhibition of Na+/Ca2+ exchange in membrane vesicle and papillary muscle preparations from guinea pig heart by analogs of amiloride. Proc Natl Acad Sci U S A. 1984 May;81(10):3238–3242. doi: 10.1073/pnas.81.10.3238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stemmer P., Akera T. Concealed positive force-frequency relationships in rat and mouse cardiac muscle revealed by ryanodine. Am J Physiol. 1986 Dec;251(6 Pt 2):H1106–H1110. doi: 10.1152/ajpheart.1986.251.6.H1106. [DOI] [PubMed] [Google Scholar]
- Sutko J. L., Bers D. M., Reeves J. P. Postrest inotropy in rabbit ventricle: Na+-Ca2+ exchange determines sarcoplasmic reticulum Ca2+ content. Am J Physiol. 1986 Apr;250(4 Pt 2):H654–H661. doi: 10.1152/ajpheart.1986.250.4.H654. [DOI] [PubMed] [Google Scholar]
- Sutko J. L., Willerson J. T. Ryanodine alteration of the contractile state of rat ventricular myocardium. Comparison with dog, cat, and rabbit ventricular tissues. Circ Res. 1980 Mar;46(3):332–343. doi: 10.1161/01.res.46.3.332. [DOI] [PubMed] [Google Scholar]
- Tang C. M., Presser F., Morad M. Amiloride selectively blocks the low threshold (T) calcium channel. Science. 1988 Apr 8;240(4849):213–215. doi: 10.1126/science.2451291. [DOI] [PubMed] [Google Scholar]
- Trumble W. R., Sutko J. L., Reeves J. P. ATP-dependent calcium transport in cardiac sarcolemmal membrane vesicles. Life Sci. 1980 Jul 21;27(3):207–214. doi: 10.1016/0024-3205(80)90139-3. [DOI] [PubMed] [Google Scholar]
- Wakabayashi S., Goshima K. Comparison of kinetic characteristics of Na+-Ca2+ exchange in sarcolemma vesicles and cultured cells from chick heart. Biochim Biophys Acta. 1981 Jul 20;645(2):311–317. doi: 10.1016/0005-2736(81)90202-9. [DOI] [PubMed] [Google Scholar]
- Waldorff S., Hansen P. B., Kjaergård H., Buch J., Egeblad H., Steiness E. Amiloride-induced changes in digoxin dynamics and kinetics: abolition of digoxin-induced inotropism with amiloride. Clin Pharmacol Ther. 1981 Aug;30(2):172–176. doi: 10.1038/clpt.1981.144. [DOI] [PubMed] [Google Scholar]
- Willerson J. T., Wheelan S., Adcock R. C., Templeton G. H., Wildenthal K. Species differences in responses to hyperosmolality and D600 in cat and rat heart. Am J Physiol. 1978 Sep;235(3):H276–H280. doi: 10.1152/ajpheart.1978.235.3.H276. [DOI] [PubMed] [Google Scholar]
