Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Jun;97(2):533–541. doi: 10.1111/j.1476-5381.1989.tb11982.x

Effects of amiloride in guinea-pig and rat left atrial contraction as affected by frequency of stimulation and [Ca2+]0-[Na+]0 ratio: role of Na+/Ca2+ exchange.

G Cargnelli 1, S Bova 1, S Luciani 1
PMCID: PMC1854546  PMID: 2474348

Abstract

1. The effect of amiloride (0.5 mM) on guinea-pig and rat left atria driven at various rates of stimulation and different [Ca2+]0-[Na+]0 ratios has been studied. 2. Amiloride elicited a positive inotropic response in guinea-pig left atria driven at 0.1 Hz, 0.5 Hz and 1 Hz when [Ca2+]0 was 3.6 mM, 1.8 mM and 0.9 mM respectively but not when [Ca2+]0 was 2.7 mM at 0.1 Hz, 0.9 mM at 0.5 Hz and 0.45 mM at 1 Hz. 3. A positive inotropic response was obtained in guinea-pig left atria driven at 0.1 Hz and 1 Hz when [Ca2+]0-[Na+]0(2) was increased respectively from 8 x 10(-5) to 16 x 10(-5) and from 2 x 10(-5) to 8 x 10(-5). The positive inotropic effect was evident only when the ratio was increased by increasing [Ca2+]0 and not by decreasing [Na+]0. 4. In the presence of amiloride, the force of contraction of guinea-pig left atria decreased instead of increasing, when the rate of stimulation was lowered from 1 Hz to 0.01 Hz. Amiloride inhibited the post-rest potentiation. 5. In rat left atria amiloride was devoid of any effect in all the above-mentioned experimental conditions. 6. It is suggested that the pattern of cardiac actions of amiloride can be explained by the inhibition of the Na+/Ca2+ exchange system.

Full text

PDF
533

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. G., Eisner D. A., Lab M. J., Orchard C. H. The effects of low sodium solutions on intracellular calcium concentration and tension in ferret ventricular muscle. J Physiol. 1983 Dec;345:391–407. doi: 10.1113/jphysiol.1983.sp014984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen D. G., Eisner D. A., Orchard C. H. Characterization of oscillations of intracellular calcium concentration in ferret ventricular muscle. J Physiol. 1984 Jul;352:113–128. doi: 10.1113/jphysiol.1984.sp015281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen D. G., Jewell B. R., Wood E. H. Studies of the contractility of mammalian myocardium at low rates of stimulation. J Physiol. 1976 Jan;254(1):1–17. doi: 10.1113/jphysiol.1976.sp011217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Allen D. G., Kurihara S. Calcium transients in mammalian ventricular muscle. Eur Heart J. 1980;Suppl A:5–15. doi: 10.1093/eurheartj/1.suppl_1.5. [DOI] [PubMed] [Google Scholar]
  5. BLINKS J. R., KOCH-WESER J. Analysis of the effects of changes in rate and rhythm upon myocardial contractility. J Pharmacol Exp Ther. 1961 Dec;134:373–389. [PubMed] [Google Scholar]
  6. Barrett R. J., Kau S. T. Myocardial and vascular actions of amiloride in spontaneously hypertensive rats. J Pharmacol Exp Ther. 1986 Nov;239(2):365–374. [PubMed] [Google Scholar]
  7. Barry W. H., Smith T. W. Movement of Ca2+ across the sarcolemma: effects of abrupt exposure to zero external Na concentration. J Mol Cell Cardiol. 1984 Feb;16(2):155–164. doi: 10.1016/s0022-2828(84)80704-x. [DOI] [PubMed] [Google Scholar]
  8. Beeler G. W., Jr, Reuter H. The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres. J Physiol. 1970 Mar;207(1):211–229. doi: 10.1113/jphysiol.1970.sp009057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Benos D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol. 1982 Mar;242(3):C131–C145. doi: 10.1152/ajpcell.1982.242.3.C131. [DOI] [PubMed] [Google Scholar]
  10. Bers D. M. Early transient depletion of extracellular Ca during individual cardiac muscle contractions. Am J Physiol. 1983 Mar;244(3):H462–H468. doi: 10.1152/ajpheart.1983.244.3.H462. [DOI] [PubMed] [Google Scholar]
  11. Blaustein M. P., Santiago E. M. Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. Biophys J. 1977 Oct;20(1):79–111. doi: 10.1016/S0006-3495(77)85538-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Blaustein M. P. The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol. 1974;70:33–82. doi: 10.1007/BFb0034293. [DOI] [PubMed] [Google Scholar]
  13. Bova S., Cargnelli G., Luciani S. Na/Ca exchange and tension development in vascular smooth muscle: effect of amiloride. Br J Pharmacol. 1988 Mar;93(3):601–608. doi: 10.1111/j.1476-5381.1988.tb10316.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Brown A. M., Kunze D. L., Yatani A. The agonist effect of dihydropyridines on Ca channels. Nature. 1984 Oct 11;311(5986):570–572. doi: 10.1038/311570a0. [DOI] [PubMed] [Google Scholar]
  15. Caroni P., Carafoli E. The Ca2+-pumping ATPase of heart sarcolemma. Characterization, calmodulin dependence, and partial purification. J Biol Chem. 1981 Apr 10;256(7):3263–3270. [PubMed] [Google Scholar]
  16. Cuthbert A. W., Fanelli G. M. Effects of some pyrazinecarboxamides on sodium transport in frog skin. Br J Pharmacol. 1978 May;63(1):139–149. doi: 10.1111/j.1476-5381.1978.tb07783.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Debetto P., Floreani M., Carpenedo F., Luciani S. Inhibition of the Na+/Ca2+ exchange in cardiac sarcolemmal vesicles by amiloride. Life Sci. 1987 Apr 13;40(15):1523–1530. doi: 10.1016/0024-3205(87)90385-7. [DOI] [PubMed] [Google Scholar]
  18. DiPolo R., Beaugé L. The calcium pump and sodium-calcium exchange in squid axons. Annu Rev Physiol. 1983;45:313–324. doi: 10.1146/annurev.ph.45.030183.001525. [DOI] [PubMed] [Google Scholar]
  19. Eisner D. A., Lederer W. J. Na-Ca exchange: stoichiometry and electrogenicity. Am J Physiol. 1985 Mar;248(3 Pt 1):C189–C202. doi: 10.1152/ajpcell.1985.248.3.C189. [DOI] [PubMed] [Google Scholar]
  20. Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 1983 Jul;245(1):C1–14. doi: 10.1152/ajpcell.1983.245.1.C1. [DOI] [PubMed] [Google Scholar]
  21. Floreani M., Luciani S. Amiloride: relationship between cardiac effects and inhibition of Na+/Ca2+ exchange. Eur J Pharmacol. 1984 Oct 15;105(3-4):317–322. doi: 10.1016/0014-2999(84)90624-1. [DOI] [PubMed] [Google Scholar]
  22. Floreani M., Tessari M., Debetto P., Luciani S., Carpenedo F. Effects of N-chlorobenzyl analogues of amiloride on myocardial contractility, Na-Ca-exchange carrier and other cardiac enzymatic activities. Naunyn Schmiedebergs Arch Pharmacol. 1987 Dec;336(6):661–669. doi: 10.1007/BF00165758. [DOI] [PubMed] [Google Scholar]
  23. Frelin C., Vigne P., Lazdunski M. The role of the Na+/H+ exchange system in cardiac cells in relation to the control of the internal Na+ concentration. A molecular basis for the antagonistic effect of ouabain and amiloride on the heart. J Biol Chem. 1984 Jul 25;259(14):8880–8885. [PubMed] [Google Scholar]
  24. Gibbons W. R., Fozzard H. A. Slow inward current and contraction of sheep cardiac Purkinje fibers. J Gen Physiol. 1975 Mar;65(3):367–384. doi: 10.1085/jgp.65.3.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kennedy R. H., Akera T., Brody T. M. Suppression of positive inotropic and toxic effects of cardiac glycosides by amiloride. Eur J Pharmacol. 1985 Sep 24;115(2-3):199–210. doi: 10.1016/0014-2999(85)90692-2. [DOI] [PubMed] [Google Scholar]
  26. Kim D., Smith T. W. Effects of amiloride and ouabain on contractile state, Ca and Na fluxes, and Na content in cultured chick heart cells. Mol Pharmacol. 1986 Apr;29(4):363–371. [PubMed] [Google Scholar]
  27. Kimura J., Noma A., Irisawa H. Na-Ca exchange current in mammalian heart cells. Nature. 1986 Feb 13;319(6054):596–597. doi: 10.1038/319596a0. [DOI] [PubMed] [Google Scholar]
  28. Langer G. A. The 'sodium pump lag' revisited. J Mol Cell Cardiol. 1983 Oct;15(10):647–651. doi: 10.1016/0022-2828(83)90254-7. [DOI] [PubMed] [Google Scholar]
  29. Lee C. O., Abete P., Pecker M., Sonn J. K., Vassalle M. Strophanthidin inotropy: role of intracellular sodium ion activity and sodium-calcium exchange. J Mol Cell Cardiol. 1985 Nov;17(11):1043–1053. doi: 10.1016/s0022-2828(85)80120-6. [DOI] [PubMed] [Google Scholar]
  30. Lipsius S. L., Fozzard H. A., Gibbons W. R. Voltage and time dependence of restitution in heart. Am J Physiol. 1982 Jul;243(1):H68–H76. doi: 10.1152/ajpheart.1982.243.1.H68. [DOI] [PubMed] [Google Scholar]
  31. Marchese A. C., Hill J. A., Jr, Xie P. D., Strauss H. C. Electrophysiologic effects of amiloride in canine Purkinje fibers: evidence for a delayed effect on repolarization. J Pharmacol Exp Ther. 1985 Feb;232(2):485–491. [PubMed] [Google Scholar]
  32. Mechmann S., Pott L. Identification of Na-Ca exchange current in single cardiac myocytes. Nature. 1986 Feb 13;319(6054):597–599. doi: 10.1038/319597a0. [DOI] [PubMed] [Google Scholar]
  33. Mitchell M. R., Powell T., Terrar D. A., Twist V. W. The effects of ryanodine, EGTA and low-sodium on action potentials in rat and guinea-pig ventricular myocytes: evidence for two inward currents during the plateau. Br J Pharmacol. 1984 Mar;81(3):543–550. doi: 10.1111/j.1476-5381.1984.tb10107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mullins L. J. The generation of electric currents in cardiac fibers by Na/Ca exchange. Am J Physiol. 1979 Mar;236(3):C103–C110. doi: 10.1152/ajpcell.1979.236.3.C103. [DOI] [PubMed] [Google Scholar]
  35. New W., Trautwein W. The ionic nature of slow inward current and its relation to contraction. Pflugers Arch. 1972;334(1):24–38. doi: 10.1007/BF00585998. [DOI] [PubMed] [Google Scholar]
  36. Orchard C. H., Lakatta E. G. Intracellular calcium transients and developed tension in rat heart muscle. A mechanism for the negative interval-strength relationship. J Gen Physiol. 1985 Nov;86(5):637–651. doi: 10.1085/jgp.86.5.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Orkand R. K. Facilitation of heart muscle contraction and its dependence on external calcium and sodium. J Physiol. 1968 May;196(2):311–325. doi: 10.1113/jphysiol.1968.sp008509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Philipson K. D. Sodium-calcium exchange in plasma membrane vesicles. Annu Rev Physiol. 1985;47:561–571. doi: 10.1146/annurev.ph.47.030185.003021. [DOI] [PubMed] [Google Scholar]
  39. Pousti A., Khoyi M. A. Effect of amiloride on isolated guinea-pig atrium. Arch Int Pharmacodyn Ther. 1979 Dec;242(2):222–229. [PubMed] [Google Scholar]
  40. Reeves J. P., Hale C. C. The stoichiometry of the cardiac sodium-calcium exchange system. J Biol Chem. 1984 Jun 25;259(12):7733–7739. [PubMed] [Google Scholar]
  41. Satoh H., Hashimoto K. An electrophysiological study of amiloride on sino-atrial node cells and ventricular muscle of rabbit and dog. Naunyn Schmiedebergs Arch Pharmacol. 1986 May;333(1):83–90. doi: 10.1007/BF00569665. [DOI] [PubMed] [Google Scholar]
  42. Seller R. H., Banach S., Namey T., Neff M., Swartz C. Cardiac effect of diuretic drugs. Am Heart J. 1975 Apr;89(4):493–500. doi: 10.1016/0002-8703(75)90157-x. [DOI] [PubMed] [Google Scholar]
  43. Seller R. H., Greco J., Banach S., Seth R. Increasing the inotropic effect and toxic dose of digitalis by the administration of antikaliuretic drugs--further evidence for a cardiac effect of diuretic agents. Am Heart J. 1975 Jul;90(1):56–67. doi: 10.1016/0002-8703(75)90257-4. [DOI] [PubMed] [Google Scholar]
  44. Sheu S. S., Fozzard H. A. Transmembrane Na+ and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development. J Gen Physiol. 1982 Sep;80(3):325–351. doi: 10.1085/jgp.80.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Siegl P. K., Cragoe E. J., Jr, Trumble M. J., Kaczorowski G. J. Inhibition of Na+/Ca2+ exchange in membrane vesicle and papillary muscle preparations from guinea pig heart by analogs of amiloride. Proc Natl Acad Sci U S A. 1984 May;81(10):3238–3242. doi: 10.1073/pnas.81.10.3238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Stemmer P., Akera T. Concealed positive force-frequency relationships in rat and mouse cardiac muscle revealed by ryanodine. Am J Physiol. 1986 Dec;251(6 Pt 2):H1106–H1110. doi: 10.1152/ajpheart.1986.251.6.H1106. [DOI] [PubMed] [Google Scholar]
  47. Sutko J. L., Bers D. M., Reeves J. P. Postrest inotropy in rabbit ventricle: Na+-Ca2+ exchange determines sarcoplasmic reticulum Ca2+ content. Am J Physiol. 1986 Apr;250(4 Pt 2):H654–H661. doi: 10.1152/ajpheart.1986.250.4.H654. [DOI] [PubMed] [Google Scholar]
  48. Sutko J. L., Willerson J. T. Ryanodine alteration of the contractile state of rat ventricular myocardium. Comparison with dog, cat, and rabbit ventricular tissues. Circ Res. 1980 Mar;46(3):332–343. doi: 10.1161/01.res.46.3.332. [DOI] [PubMed] [Google Scholar]
  49. Tang C. M., Presser F., Morad M. Amiloride selectively blocks the low threshold (T) calcium channel. Science. 1988 Apr 8;240(4849):213–215. doi: 10.1126/science.2451291. [DOI] [PubMed] [Google Scholar]
  50. Trumble W. R., Sutko J. L., Reeves J. P. ATP-dependent calcium transport in cardiac sarcolemmal membrane vesicles. Life Sci. 1980 Jul 21;27(3):207–214. doi: 10.1016/0024-3205(80)90139-3. [DOI] [PubMed] [Google Scholar]
  51. Wakabayashi S., Goshima K. Comparison of kinetic characteristics of Na+-Ca2+ exchange in sarcolemma vesicles and cultured cells from chick heart. Biochim Biophys Acta. 1981 Jul 20;645(2):311–317. doi: 10.1016/0005-2736(81)90202-9. [DOI] [PubMed] [Google Scholar]
  52. Waldorff S., Hansen P. B., Kjaergård H., Buch J., Egeblad H., Steiness E. Amiloride-induced changes in digoxin dynamics and kinetics: abolition of digoxin-induced inotropism with amiloride. Clin Pharmacol Ther. 1981 Aug;30(2):172–176. doi: 10.1038/clpt.1981.144. [DOI] [PubMed] [Google Scholar]
  53. Willerson J. T., Wheelan S., Adcock R. C., Templeton G. H., Wildenthal K. Species differences in responses to hyperosmolality and D600 in cat and rat heart. Am J Physiol. 1978 Sep;235(3):H276–H280. doi: 10.1152/ajpheart.1978.235.3.H276. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES