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Cellular electrophysiological effects of membrane lipid
peroxidation by t¢-butyl hydroperoxide (TBH) were
studied in the rabbit sinoatrial (SA) node. Superfusion
for 1-5min with 300 uM TBH caused an initial increase
and subsequent decrease in the spontaneous firing fre-
quency of the SA node. Voltage clamp experiments
revealed that TBH initially enhanced but later blocked
the Ca2* current. Thus, membrane lipid peroxidation
appears to accelerate and then suppress physiological
automaticity by causing biphasic changes in the Ca**
current.

Introduction Recent experimental evidence has
linked the production of free radicals and resultant
lipid peroxidation of the membrane to myocardial
reperfusion injury and cardiac arrhythmias (Hess &
Manson, 1984). Electrophysiological effects of free
radicals on ventricular cells include reductions in the
action potential amplitude and maximal rate of
depolarization, loss of excitability and generation of
abnormal automaticity. The action potential dura-
tion is shortened either with or without an initial
prolongation, depending on the species and free
radical generating systems (Nakaya et al., 1987; Bar-
rington et al., 1988). However, ionic mechanisms
underlying these action potential changes have not
been elucidated to date. Hence, we studied the
changes in the automaticity and ionic currents in the
rabbit sinoatrial (SA) node caused by t-butyl hydro-
peroxide (TBH), an agent known to cause lipid per-
oxidation of the cardiac membrane (Nakaya et al.,
1987).

Methods Rabbits weighing 1.5-2.0kg were anaes-
thetized by an intravenous injection of sodium
pentobarbitone (30mgkg™!). The heart was quickly
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removed and the SA nodal tissue was dissected
along the crista terminalis. A small strip of tissue,
3mm long and 0.2mm wide, was cut from the
central portion of the node with a razor blade and
ligated with fine silk sutures to obtain small nodal
preparations with a final dimension of
0.2 x 0.2 x 0.1 mm. The preparations were super-
fused in a tissue bath at a flow rate of Smimin~!
with a modified Tyrode solution having the follow-
ing composition in mM: NaCl 136.9, KCl 4.0, CaCl,
1.8, MgCl, 1.0, NaH,PO, 0.33 and glucose 5.5. The
pH of the superfusate was adjusted to 7.4 with
Na,HPO, and the temperature was maintained at
37 + 1°C. Partial oxygen pressure of the solution
was maintained between 500 and 550mmHg by
100% O, during the experiment. A 70% aqueous
solution of TBH (Sigma) was added to the Tyrode
solution at desired concentrations before individual
experiments.

The membrane potential was recorded by use of
conventional glass microelectrodes filled with 3m
KCl and having tip resistances of 20-50 MQ. Voltage
clamp experiments were conducted using double
microelectrode techniques. The small preparation
size allowed adequate spatial homogeneity. Values
were expressed as mean + s.d. Statistical analyses
were made with Student’s paired ¢ test, and P values
less than 0.05 were considered significant.

Results Effects of TBH on the spontaneous action
potential Effects of lipid peroxidation by TBH (10—
500 um) on automaticity and action potential charac-
teristics of the SA node were studied. TBH at 10 and
30 uM did not cause significant changes in the spon-
taneous action potential. The membrane action
became evident at 100 uM, causing an initial increase
with subsequent decrease in the spontaneous firing
frequency. At 300 uM, these changes were exagger-
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Figure 1 Effects of ¢t-butyl hydroperoxide (TBH) on the sinoatrial node: (a) Positive and negative chronotropic
actions of 300 um TBH in a spontaneously beating small preparation. AP = action potential; MRD = maximal rate
of depolarization; SFF = spontaneous firing frequency. In (b) is shown the effect of 300 um TBH on the Ca?*
current (I,) elicited on step depolarization from —40 to OmV. Note an initial increase and subsequent decrease in
the current amplitude. (c) Time course of current-voltage relationships for I, during 300uM TBH superfusion
(n = 4). I, became maximal at 4 + 1 min and then was progressively reduced. Omin indicates the control curve.

V., = membrane potential.

ated (Figure 1a). In four such experiments, 4 + 1 min
superfusion with TBH initially increased the sponta-
neous firing frequency from 242 + 25 to 261 + 26
beatsmin~' and the maximal rate of depolarization
from 10.1 +2.2 to 159 +46Vs~! (P < 0.05), but
reduced them to 181 + 23beatsmin~! and
81+ 13Vs™! (P <005 after 8+ 2min super-
fusion. The action potential amplitude also showed a
biphasic response with an initial, slight increase from
930+ 0.8 to 945+ 21mV (P>0.1) and a sub-
sequent decrease to 85.9 + 1.3mV (P < 0.05). These
inhibitory actions progressed with time. Finally, the
spontaneous activity ceased after 15 + 3min with a
resting potential of —46 + 3mV. At 500 um, TBH
caused similar changes although the time course was
somewhat accelerated. Conversely, the action poten-
tial duration remained unchanged throughout the
experiment. When the preparation was pretreated
with butylated hydroxytoluene, a lipid peroxidation
inhibitor, the effects of TBH on the spontaneous

action potential were slowed, requiring more than
30min to inhibit the automaticity completely. This
observation would support the notion that TBH
actions are mediated by membrane lipid peroxi-
dation.

Effects of TBH on the Ca** current The action
potential study suggested that the Ca?* current (I¢,)
was initially augmented and subsequently attenuated
by TBH-induced lipid peroxidation. Voltage clamp
experiments were conducted to verify this assump-
tion. Figure 1b shows representative I, traces
obtained on step depolarization to OmV from a
holding potential of —40mV. TBH transiently
increased I, at 5min, and then progressively sup-
pressed this current. The current-voltage relation-
ships in Figure 1c summarize four such experiments.
During control, the peak I, recorded at —10mV
measured 29.3 + 6.3nA. After the addition of TBH,
I, was increased to 33.6 + 6.0nA at 4 + 1 min



(P < 0.05), and then decreased to 11.0 + 1.1nA at
15 + 1 min (P < 0.01), when peak I, was recorded
at 0mV. The delayed rectifying K* current was also
decreased without an initial increase, whereas the
hyperpolarization-activated inward current was
increased throughout the experiment (not shown).

Discussion In the present study, membrane lipid
peroxidation by TBH caused biphasic changes in SA
node automaticity with initial acceleration and sub-
sequent suppression. Voltage clamp experiments
revealed that I, played a major role in such biphasic
changes because other pacemaker currents, the
delayed rectifying K* current and hyper-
polarization-activated inward current, were progres-
sively decreased and increased, respectively. These
results verify the contribution of I, to pacemaker
depolarization in the SA node as reported with the
positive chronotropic action of adrenaline (Noma et
al., 1980).

The biphasic effects of TBH on I, are consistent
with recent reports that membrane lipid peroxi-
dation initially increased and subsequently decreased
(1) the developed tension of the guinea-pig papillary
muscle (Nakaya et al., 1987) and (2) the action
potential duration in the canine ventricular muscle
(Barrington et al., 1988). The latter authors further
noted induction of abnormal automaticity due to
early and delayed afterdepolarizations when the
action potential duration (and probably I.) was
increased. We also observed similar triggered activ-
ities initiated by early afterdepolarization when
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