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Abstract

Cytoskeleton disorganization is an early step in the ac-

tivation process of matrix metalloproteinase 2 (MMP-2)

by membrane type 1 MMP (MT1-MMP) but is also as-

sociated with endoplasmic reticulum (ER) dysfunction

and subsequent cell death. Given evidence that the

ER-embedded glucose-6-phosphate transporter (G6PT)

regulates glioblastoma cell survival and that MT1-

MMP is a key enzyme in the cancer cell invasive pheno-

type, we explored the molecular link between G6PT

and MT1-MMP. Cytoskeleton-disrupting agents such as

concanavalin A (ConA) and cytochalasin D triggered

proMMP-2 activation and cell death in U87 glioma cells.

ConA decreased G6PT gene expression, an event that

was also observed in cells overexpressing the full-

length recombinant MT1-MMP protein. Overexpression

of a membrane-bound catalytically active but cytoplas-

mic domain–deleted MT1-MMP was unable to down-

regulate G6PT gene expression or to trigger necrosis.

Gene silencing of MT1-MMP with small interfering RNA

prevented proMMP-2 activation and induced G6PT

gene expression. ConA inhibited Akt phosphorylation,

whereas overexpression of recombinant G6PT rescued

the cells from ConA-induced proMMP-2 activation and

increased Akt phosphorylation. Altogether, new func-

tions of MT1-MMP in cell death signaling may be linked

to those of G6PT. Our study indicates a molecular sig-

naling axis regulating the invasive phenotype of brain

tumor cells and highlights a new ‘‘bioswitch’’ function

for G6PT in cell survival.
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Introduction

The endoplasmic reticulum (ER) is a membrane-bound

organelle present in all eukaryotic cells. Recently, ER stress

signaling has been linked to disease states involving insulin

resistance, disordered lipid metabolism, and hypoxia toler-

ance in tumor progression [1,2]. In addition, the ER is a

multifunctional metabolic compartment that controls entry and

release of calcium, sterol biosynthesis, apoptosis, and the

release of arachidonic acid [3,4]. Despite its complex organi-

zation, the ER is a continuous membrane compartment whose

architecture depends on microtubule dynamics [5]. The ER is

primarily known as the site of synthesis and folding of secreted,

membrane-bound, and some organelle-targeted proteins. Re-

cent evidence suggests that the microtubulin cytoskeleton and

the centrosomes (the microtubulin cytoskeleton–organizing

centers) are essential for the trafficking and internalization

of ‘the membrane-bound matrix metalloproteinase MT1-

MMP [6], involved in brain tumor cell invasion, extracellular

matrix (ECM) degradation and cell–ECM interaction [7]. Inter-

estingly, altered expression, maturation and trafficking of MT1-

MMP to the plasma membrane were observed in diabetic

states [8,9], a condition known to upregulate the expression

of an ER-embedded protein, the glucose-6-phosphate trans-

porter (G6PT) [10]. G6PT expression was shown to be down-

regulated by MT1-MMP in bone marrow–derived stromal

cells, where it was suggested to provide a molecular link

between proMMP-2 activation and chemotaxis processes in

cell mobilization [11].

Several factors are required for optimum protein folding,

including ATP, Ca2+, and an oxidizing environment that will allow

disulfide-bond formation [12]. Because of this specialized envi-

ronment requirement, the stresses that perturb cellular energy

levels, redox state, or Ca2+ concentration can often result in the

intracellular accumulation of unfolded protein, which is called

ER stress response. Recently, we have provided evidence that
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G6PT regulated U87 glioma cell chemotaxis [13] and sur-

vival [14]. Tumor cells often show evidence of constitutive

ER stress, possibly due to hypoxia and glucose depletion [15].

In fact, the ATP-depleting agents and ER stress inducers

2-deoxyglucose and 5-thioglucose have been shown to in-

hibit MMP-2 secretion from U87 glioma cells [13], a process

known to contribute to tumor development [16]. G6PT is

thought to have a role in sequestering intracellular Ca2+ within

the ER through an ATP-mediated process [17]. Because

manipulating the ER stress response of tumor cells is a prom-

ising therapeutic strategy [15] and because various anti-

cancer drugs have been shown to induce ER stress and to

affect the invasive or metabolic control of cancer cells [18,19],

we explored the potential molecular link between MT1-MMP

and G6PT functions within the ER that could potentially

regulate the brain tumor cell invasive phenotype.

Results

Differential Induction of Cell Necrosis and Cell Apoptosis

by Cytoskeleton-Disrupting Agents

Concanavalin A (ConA) and cytochalasin D (CytoD) have

been shown to disrupt the cytoskeleton architecture [20].

After cell staining with annexin V/propidium iodide (PI),

flow cytometry was used to assess the extent of cell death

induced by both agents. From the side scatter (SSC)/forward

scatter (FSC) plots, the changes in cell ‘‘morphology’’ fea-

tures that each agent induced are clearly visible (Figure 1A).

When annexin V/PI cell staining was performed, ConA treat-

ment resulted in a marked increase in necrosis (Figure 1A,

bottom, upper left quadrant), whereas CytoD triggered late

apoptosis (Figure 1A, bottom, upper right quadrant). Cell

viability and total cell death were quantified (Figure 1B).

Furthermore, cell necrosis and cell apoptosis (early and late)

(Figure 1C) were also separately quantified to show the

differential induction of necrosis by ConA and induction of

apoptosis by CytoD.

Recombinant MT1-MMP and Cytoskeleton-Disrupting

Agents Induce proMMP-2 Activation

Latent proMMP-2 activation into its active MMP-2 form

has been correlated with cell death [21,22]. Accordingly,

we have previously shown that the cytoskeleton-disrupting

agents ConA and CytoD triggered proMMP-2 activation in

U87 glioma cells [23]. Using fluorescent microscopy, we vali-

dated overexpression of full-length wild-type (wt) recombinant

MT1-MMP or the membrane-bound cytoplasmic-deleted

Figure 1. Differential induction of cell necrosis and cell apoptosis by cytoskeleton-disrupting agents. U87 glioblastoma cells were cultured as described in the

Materials and Methods section until they reached f75% to 90% confluence. They were then serum-starved for 24 hours before the addition of 10 �g/ml ConA or

1 �mol/l CytoD (CD). Incubation was continued for another 24 hours. (A) Flow cytometry was then used to either assess light-scattering properties associated with

changes in cell morphology (top panels) or cell death from annexin V/PI-stained cells (bottom panels). (B) Cell viability (white columns) was assessed as the

percentage of total cells present in the lower left quadrants. Cell death (black columns) represents the combined cells present in necrosis, early/late apoptosis

(black columns). (C) The respective cell death proportions attributable to either necrosis or apoptosis (early and late) are shown. Data are the averages ± SEM of

four independent experiments. Statistical significance is represented by (*).
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recombinant MT1-MMP both fused to green fluorescent pro-

tein (GFP) (Figure 2A) and consequent proMMP-2 activation

demonstrated by gelatin zymography (Figure 2B). Transfec-

tions of cells with cDNA encoding GFP alone did not affect

the ability of ConA or CytoD to induce proMMP-2 activation

(data not shown). These results suggest that, similar to

cytoskeleton-disrupting agents ConA and CytoD, MT1-

MMP–mediated proMMP-2 activation is also potentially

linked to the control of cell survival in U87 glioma cells.

ConA-Mediated Activation of proMMP-2

Requires MT1-MMP

To assess the involvement of MT1-MMP in the proMMP-2

activation process and the necrotic effects of ConA, we spe-

cifically downregulated MT1-MMP gene expression using a

specific MT1-MMP gene silencing strategy [24]. Cells were

transfected with mismatched (Mock) or MT1-MMP–targeted

small interfering RNA (siRNA) duplexes, as described in the

Materials and Methods section, and then treated with in-

creasing concentrations of ConA. Total RNA was isolated

and reverse transcription–polymerase chain reaction (RT-

PCR) confirmed that MT1-MMP gene downregulation was

successfully achieved (Figure 3A). Conditioned media from

these conditions were also isolated to assess the MT1-MMP–

mediated proMMP-2 activation by ConA. Gelatin zymography

clearly showed significantly decreased proMMP-2 activation

in the cells in which MT1-MMP gene expression had been

knocked down (Figure 3B). This was quantified by scanning

densitometry, showing close to 90% inhibition (data not

shown). This clearly suggests that the ConA-mediated events

that we previously observed involve MT1-MMP in proMMP-2

activation and are likely involved in cell death.

MT1-MMP Cytoplasmic Domain Is Responsible for Cell

Death Signaling

Although extracellular catalytic inhibition of MT1-MMP

only partially reversed its ability to trigger cell death [11],

the implication of MT1-MMP in signaling intracellular cell

death processes was thus evaluated. Transient transfection

using cDNA plasmids encoding either the full-length or the

membrane-bound cytoplasmic-deleted recombinant forms of

MT1-MMP was performed in U87 glioma cells. Annexin V/PI

staining was then performed and cell death (necrosis and

apoptosis) was assessed by flow cytometry (Figure 4A).

Overexpression of native MT1-MMP significantly triggered

cell necrosis by more than 10 times, whereas cell apoptosis

was also induced approximately twofold (Figure 4B, gray

bars). Although still catalytically active at the cell surface

(Figure 2B), the deletion of the MT1-MMP cytoplasmic

domain significantly abrogated the induction of both cell

Figure 2. Recombinant MT1-MMP and cytoskeleton-disrupting agents induce proMMP-2 activation. U87 glioblastoma cells were treated as described in the legend

to Figure 1. Transfections of cDNA plasmids encoding full-length Wt-MT1-MMP and cytoplasmic domain– truncated MT1-MMP both fused to GFP were carried out

as described in the Materials and Methods section. (A) Changes in cell morphology are shown through phase-contrast microphotography (visible light), whereas

transfection efficiency was validated by fluorescence microscopy. (B) Gelatin zymography was carried out to assess the extent of proMMP-2 activation levels, as

described in the Materials and Methods section, using conditioned media isolated from each of the serum-starved cell conditions.

Figure 3. ConA-mediated activation is an MT1-MMP–mediated event.

Because proMMP-2 activation is thought to proceed through an MT1-MMP–

mediated event, U87 glioblastoma cells were transfected with siRNA against

MT1-MMP or mismatched siRNA (Mock) for 48 hours, as described in the

Materials and Methods section, before treatment with increasing concen-

trations of ConA. (A) Total RNA was isolated and MT1-MMP gene expression

was assessed by RT-PCR as described in the Materials and Methods

section. The gene expression level of GAPDH was used as the internal

control. (B) Gelatin zymography was performed to assess the extent of

proMMP-2 activation in the conditioned media of serum-starved Mock and

siMT1-MMP cells treated with increasing concentrations of ConA.
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necrosis and apoptosis (Figure 4B, black bars). These

observations suggest that active MMP-2 is not responsible

for cell death and that some MT1-MMP–mediated intracel-

lular signaling is a prerequisite for the control of cell survival.

MT1-MMP Overexpression and ConA Treatment

Downregulate G6PT Gene Expression

To investigate the intracellular events involved in MT1-

MMP– and ConA-mediated cell death, we examined the

prosurvival microsomal glucose-6-phosphate translocase

(G6PT) as a potential link. Cytoskeleton disruption is often

linked to ER stress [25,26], and silencing of G6PT, a micro-

somal resident protein, has recently been shown to in-

duce cell death in U87 glioma cells [14]. We thus isolated

total RNA from ConA-treated cells and from MT1-MMP–

transfected cells because cell necrosis was a common

event in both conditions. RT-PCR was performed as de-

scribed in the Materials and Methods section and we found

that G6PT gene expression was significantly reduced in

ConA-treated and in the MT1-MMP–transfected cells (Fig-

ure 5A). Interestingly, in agreement with its inability to trigger

cell death, deletion of MT1-MMP’s cytoplasmic domain

was also ineffective in reducing G6PT gene expression.

Gene expression of glucose-6-phosphatase (G6Pase)-b,
the only other component of the G6Pase system that was

expressed in U87 cells [13] and of GAPDH remained unaf-

fected and can be considered as unaffected internal controls

(Figure 5A). ConA treatment and MT1-MMP overexpression

resulted, as expected, in an increase in MT1-MMP transcript

levels. Altogether, this demonstrates that necrosis-inducing

Figure 4. MT1-MMP overexpression triggers cell death and is signaled through its intracellular cytoplasmic domain. U87 glioblastoma cells were transfected

with cDNA encoding full-length Wt-MT1-MMP or its cytoplasmic domain– truncated form as described in the Materials and Methods section. (A) Flow cytometry

was used to assess the extent of cell death in annexin V/PI-stained cells. (B) Quantification of cell death caused by either combined early and late apoptosis (upper

and lower right quadrants) or necrosis (upper left quadrants) was performed for cells transfected with cytoplasmic domain– truncated MT1-MMP (D-cyto) or

full-length Wt-MT1-MMP.

Figure 5. Both MT1-MMP overexpression and ConA treatment downregu-

late G6PT gene and protein expression. (A) Total RNA was isolated from

untreated (Mock), ConA-treated, or U87 glioblastoma cells transfected with

either the cytoplasmic domain– truncated MT1-MMP (D-cyto) or full-length Wt-

MT1-MMP cDNA. RT-PCR was performed to assess the changes in G6PT,

G6Pase-�, GAPDH, or MT1-MMP gene expression in each condition. (B) MT1-

MMP gene expression was specifically downregulated in U87 glioblastoma

cells transfected with siMT1-MMP but not in mismatched siRNA-transfected

cells (Mock) as described in the Materials and Methods section. Total RNA and

RT-PCR were performed as in (A). (C) Cell lysates were isolated from U87

cells transfected with cDNA encoding G6PT, Wt-MT1-MMP, or D-cyto MT1-

MMP, or treated with ConA. Western blotting and immunodetection was per-

formed with anti-G6PT and anti-GAPDH antibodies.
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conditions, such as those triggered by ConA or overexpres-

sion of recombinant MT1-MMP, are molecularly linked to

the prosurvival functions of G6PT. Interestingly, when MT1-

MMP gene expression was silenced, the expression of G6PT

increased significantly in comparison to the mismatched

siRNA-transfected cells (Mock), suggesting that MT1-MMP

exerted a repressive effect on G6PT gene regulation (Fig-

ure 5B). Modulation of G6PT gene expression was further

confirmed at the protein level. We showed that ConA treat-

ment or Wt-MT1-MMP overexpression downregulated G6PT

protein expression (Figure 5C). Thus, our results show that

G6PT gene regulation is signaled by the intracellular MT1-

MMP cytoplasmic domain.

G6PT Overexpression Antagonizes the ConA-Mediated

Lethal Effect

To characterize the molecular mechanism linking MT1-

MMP to G6PT, we next assessed whether constitutively ex-

pressed recombinant G6PTcould overcome the lethal effect

of ConA. MT1-MMP synthesis by a mechanism that involves

phosphatidylinositol-3 kinase (PI3K)/Akt/mTOR was recently

highlighted [27] and, thus, Akt phosphorylation state was

explored. U87 cells were transiently transfected with cDNA

encoding G6PT and then treated with the cell death inducer

ConA. Immunodetection of total and phosphorylated Akt

was performed on Mock and G6PT-transfected cell lysates.

We observed that ConA decreased the basal levels of

phosphorylated Akt by up to 50%, although not of total Akt

protein expression, in Mock-transfected cells (Figure 6A).

Transient overexpression of recombinant G6PT completely

reversed the effects of ConA on Akt phosphorylation (Fig-

ure 6B). Despite being more associative than mechanistic,

these observations confirm the G6PT prosurvival activity

[14] and show that targeting PI3K/Akt signaling by ConA

induces apoptosis [28]. Finally, we showed by zymography

that G6PT overexpression significantly antagonized ConA-

mediated proMMP-2 activation (Figure 6C), an effect that

may involve inhibiting MT1-MMP functions.

Discussion

Gliomas remain a great challenge in oncology today as they

account for more than 50% of all brain tumors and are by far

the most common primary brain tumors in adults [29]. More

importantly, the mechanisms involved in the resistance of

migrating glioblastoma cells to chemotherapy or to radiation-

induced cell death have long been recognized [30] and still

receive much attention in order to optimize future cellular

targets for the treatment of glioblastomas [31]. A relationship

between cell migration and apoptosis was highlighted by the

observations that resistance to apoptosis is closely linked to

tumorigenesis, but that paradoxically migrating tumor cells

can also still be induced to die by nonapoptotic mechanisms

such as necrosis [32]. In fact, tissue necrosis is a character-

istic feature of malignant gliomas, in particular glioblastoma,

and is most likely the consequence of rapidly increasing tumor

mass that is inadequately oxygenated by the preexisting

vasculature [33]. Because tumor cells respond to hypoxic

stress by upregulating a variety of genes involved in glucose

uptake, glycolysis, and angiogenesis, all essential to main-

taining nutrient availability and intracellular ATP levels [34],

the intracellular metabolic compartments regulating cell sur-

vival and invasiveness are of particular interest. Besides

mitochondria and lysosomes, the ER is very important in this

respect, as it is now recognized as an important sensor of

cellular stress and plays a key role in the release and acti-

vation of death factors such as cathepsins, calpains, and other

proteases through intracellular calcium flux [35]. For instance,

migrating glioblastoma cells have recently been shown to

overexpress death-associated protein-3 [36]. Therefore, new

routes should be investigated as possible issues to combat

apoptotic-resistant migrating glioblastoma cells.

Given the ER localization of G6PTand the crucial role that

the ER plays as a metabolic compartment, we suggest that

G6PT is a key mediator in the regulation of cancer cell sur-

vival and ECM degradation signaling. In fact, regulation of

G6PT expression may function as a ‘‘bioswitch’’ (Figure 7A)

enabling cells to promote either migration or cell death pro-

cesses. Switching from one state to another may occur in

response to external stimuli, such as hypoxia, or as a result

of intracellular metabolic changes [37]. Intracellular regula-

tion of Ca2+ flux and cytosolic ATP and G6P levels are

among the parameters that G6PTmay modulate in the trans-

formed proliferating cells. As such, metabolic profiling of cell

growth and death in cancer is already used to identify the

changes in glucose utilization for macromolecule synthesis

in cancer [38,39]. Among the several brain tumor–derived

cell lines tested, G6PT expression was found the highest in

the highly infiltrating and angiogenic U87 glioma cells [13].

This potentially suggests that metabolic adaptive capacity, in

part through G6PT, may regulate the invasive phenotype of

aggressive cancer cells. Documenting the pleiotropic roles

Figure 6. G6PT overexpression antagonizes the ConA-mediated lethal effect.

(A) Mock or G6PT-transfected U87 cells were treated with increasing ConA

concentrations and cell lysates were used to immunodetect the levels of total

or phosphorylated Akt (p-Akt). (B) Scanning densitometry was used to quantify

the Akt immunoreactive bands, and results were expressed as the ratio of

p-Akt over Akt. (C) Conditioned media isolated from serum-starved Mock,

siMT1-MMP (siMT1), or G6PT-transfected U87 cells were used to perform

gelatin zymography.
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of G6PT in cancer cells will thus help optimize or design new

antitumor therapies.

We previously showed that inhibiting G6PT function by

chlorogenic acid or by ATP-depleting agents such as 2-

deoxyglucose in brain tumor–derived cells did not directly

affect MT1-MMP catalytic function but still resulted in de-

creased invasiveness [13]. Moreover, cancer cells frequently

display high rates of aerobic glycolysis compared with their

nontransformed counterparts, and the possible applications

of 2-deoxyglucose in anticancer therapies further support the

theory that inhibiting G6PT function in cancer cells could

decrease tumor progression. Some evidence also suggests

that ER stress-inducing agents are useful as cancer agents

and that excessive ER stress leads to apoptosis. These

agents include glycosylation inhibitors (e.g., tunicamycin

and 2-deoxyglucose), agents that deplete ER Ca2+ (e.g.,

the sarcoendoplasmic reticulum Ca2+-ATPase inhibitor thap-

sigargin and various ionophores) and agents that induce

reductive stress (dithiotreitol and b-mercaptoethanol) [40].

We also found that cytoskeleton remodeling is among the

first events in a cascade of activation that leads to MT1-

MMP–mediated downregulation of brain cancer cell survival,

in part through PI3K/Akt-mediated plasma membrane to

nucleus signaling. Interestingly, part of the switch between

cell migration and cell death comes under the control of the

PTEN/Akt/PI3K/mTOR pathway [30]. Survival through PI3K/

Akt signaling is complex [41] and the activity of the PI3K/Akt

pathway is, in fact, often upregulated in brain tumors as a

result of excessive stimulation by growth factor receptors

and Ras [42]. Moreover, glioblastomas frequently carry

mutations in the PTEN tumor suppressor gene, whose tumor

suppressor properties are closely related to its inhibitory

effect on the PI3K-dependent activation of Akt signaling

[43]. The activation of the PI3K pathway is significantly

associated with increasing tumor grade, lower levels of

apoptosis, and an adverse clinical outcome in the case of

human gliomas [44]. All these factors indicate that aberrant

PI3K/Akt signaling means that both cell proliferation in

glioma cells and cell migration have become abnormal. A

number of publications have already reported that an aber-

rantly activated PI3K/Akt pathway renders tumor cells resis-

tant to cytotoxic insults, including those related to anticancer

drugs [45,46]. In light of these results and because G6PT

was able to reverse the cytotoxic effects of ConA, it is

tempting to suggest that functional targeting of G6PT such

as by the use of chlorogenic acid or by its analogs, the most

potent G6PT inhibitors, could augment the effectiveness of

chemotherapy on glioma cells.

Maintenance of cytoarchitecture is required for cell sur-

vival because its perturbation by CytoD- or ConA-mediated

MT1-MMP mechanisms diminished cell survival and were

correlated to proMMP-2 activation [21,22] (this study). In fact,

silencing of the MT1-MMP gene prevented ConA from acti-

vating proMMP-2. Moreover, we showed that the intracellular

domain of MT1-MMP is an absolute requirement for trans-

ducing the intracellular signaling that leads to cell death.

Although the exact identity of the amino acid residues from

the MT1-MMP intracellular domain remains to be addressed,

speculations about the Tyr573, Cys574, and Val582 have

been put forward as important for MT1-MMP signaling

[47,48]. Similarly, a caspase-dependent mechanism has re-

cently been associated with MT1-MMP function in endothelial

cell morphogenic differentiation [49]. This suggests that

MT1-MMP acts as a potential cell death sensor/effector

that signals ECM degradation processes to be activated. In-

terestingly, hypoxia increased levels of MT1-MMP and the

MT1-MMP transcription factor regulator Egr-1 in bone

marrow–derived stromal cells [50], a condition that led to

cell death [51]. Moreover, ConA was found ineffective in ac-

tivating proMMP-2 or inhibiting G6PT gene expression in

bone marrow stromal cells isolated from Egr-1�/� mouse [11].

The fact that G6PT overexpression inhibited ConA-

induced proMMP-2 activation, but not cell death, further

suggests that complex differential regulation takes place

and highlights the pleiotropic intracellular functions of

G6PT. Moreover, this observation also provides insight into

the cellular event chronology, confirming that MT1-MMP–

mediated activity and signaling are among the first steps that

inhibit G6PT expression, ultimately leading to cell death.

Figure 7. G6PT as a bioswitch intermediate in the regulation of proMMP-2

activation and cell death signaling. (A) Summarized scheme of the events

that lead to MT1-MMP–mediated signaling in proMMP-2 activation and in cell

death. ConA upregulates MT1-MMP gene and protein expression, which

in turn downregulates G6PT expression (1). Low levels of G6PT release

the inhibitory effect on MT1-MMP–mediated proMMP-2 activation (2), which

altogether leads to ECM degradation and cell invasion. When a specific

balance is reached between MT1-MMP and G6PT expression (i.e., high

MT1-MMP expression, low G6PT expression), cell death signaling is then

activated (3). (B) Our data show that MT1-MMP expression leads to both

proMMP-2 activation (solid line) and to concomitant downregulation of G6PT

expression (dashed line). Conceptually, we suggest that a balance between

the early invasive processes that are initiated by the increased MT1-MMP

expression correlate with proMMP-2 activation to hydrolyze the ECM and

promote cell migration (left, shaded area). Concurrently, G6PT expression

decreases until it reaches a threshold where its inhibitory effect on proMMP-2

activation is released, which then leads to cell death (right area). The inter-

section between the G6PT expression curve and that of the proMMP-2

activation is the bioswitch that reflects the balance between cell invasion and

cell death signaling.
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Interestingly, our data are consistent with some of the

abnormal polymorphonuclear neutrophil phenotypes ob-

served in glycogen storage disease type 1b, a clinical

condition where the G6PT gene and/or protein activity is

defective [52,53]. In fact, it has been hypothesized that G6PT

might function as a G6P receptor/sensor [53] or that it could

favor calcium sequestration in the ER lumen [17]. Finally,

although no effects in response to MT1-MMP or cytoskeleton

disruption were observed on the ER-embedded G6Pase-b,
recent evidence regarding G6Pase-b involvement in cell

survival was demonstrated in neutrophils, as disruption of

the G6Pase-b gene expression also led to cell death, an

event suggestive of a vital interaction between G6PT and

G6Pase-b [54].

In summary, we highlight new functions of MT1-MMP in

cell death signaling that may potentially be linked to those of

the ER-embedded functions of G6PT. In fact, we believe that

this signaling axis may not be exclusive to one cell line, but

rather may regulate cell mobilization processes through

metabolic and/or cell survival control such as similarly dem-

onstrated for bone marrow–derived stromal cells [11]. Our

study further shows a molecular axis linking the invasive

phenotype of brain tumor cells to their potential metabolic

control by G6PT and supports the notion of an MT1-MMP/

G6PT bioswitch (Figure 7B) that could regulate glucose

homeostasis and thus restrain cancer cell proliferation, in-

hibit ECM degradation, or induce cell death. By revealing

tumor-specific metabolic shifts in tumor cells, metabolic

profiling studies will further enable drug developers to identify

the metabolic steps that control cell proliferation, thus aiding

the identification of new anticancer targets and screening of

lead compounds for antiproliferative metabolic effects.

Materials and Methods

Materials

SDS and BSA were purchased from Sigma (Oakville, ON,

Canada). Cell culture medium was obtained from Life Tech-

nologies (Burlington, ON, Canada). Electrophoresis reagents

were purchased from Bio-Rad (Mississauga, ON, Canada).

The enhanced chemiluminescence (ECL) reagents were from

Amersham Pharmacia Biotech (Baie d’Urfé, QC, Canada).

The polyclonal antibodies against Akt and phospho-Akt were

purchased from Cell Signaling (Danvers, MA). All other

reagents were from Sigma-Aldrich Canada.

Cell Culture and Transfection Method

The U87 glioblastoma cell line was purchased from

American Type Culture Collection (Manassas, VA) and cul-

tured in Eagle’s minimum essential medium (MEM) con-

taining 10% (vol/vol) FBS (HyClone Laboratories, Logan,

UT) and 2 mmol/l glutamine at 37jC under a humidified

atmosphere containing 5% carbon dioxide. U87 glioblastoma

cells were transiently transfected with the cDNA constructs

encoding either the membrane-bound cytoplasmic domain–

truncated MT1-MMP (D-cyto) where the last 20 amino acid

residues were deleted, or the full-length Wt-MT1-MMP fused

to GFP [55], or with 20 nmol/l siRNA (see below) using Lipo-

fectamine 2000 (Invitrogen, Burlington, ON, Canada). The

occurrence of MT1-MMP–specific gene knockdown was

evaluated by semiquantitative RT-PCR and validated by as-

sessing MT1-MMP–mediated proMMP-2 activation. Mock

transfections of U87 cultures with pcDNA (3.1+) or cDNA en-

coding GFP expression vectors alone were used as controls.

RNA Interference

RNA interference experiments were performed using Lipo-

fectamine 2000. An siRNA against MT1-MMP (siMT1-MMP)

and mismatch siRNA were synthesized by EZBiolab Inc.

(Westfield, IN) and annealed to form duplexes. The sequence

of the siMT1-MMP used in this study is as follows: 5V-CCA-

-CCAGAAGCUGAAGGUAGAAdTdT-3V (sense) and 5V-

UUCUACCUUCAGCUUCUGGdTdT-3V (antisense) [24]. The

diminution of MT1-MMP expression, as assessed by RT-

PCR, ranged routinely from 75% to 90% (not shown).

Total RNA Isolation and RT-PCR Analysis

Total RNA was extracted from cultured U87 cells using

TRIzol reagent (Invitrogen). One microgram of total RNA

was used for first-strand cDNA synthesis followed by specific

gene product amplification with the One-Step RT-PCR Kit

(Invitrogen). Primers for G6PT, G6Pase-b, MT1-MMP, and

GAPDH were all derived from human sequences and vali-

dated [13]. PCR conditions were optimized so that the gene

products were examined at the exponential phase of their

amplification and the products were resolved on 1.8% aga-

rose gels containing 1 mg/ml ethidium bromide.

Gelatin Zymography

Gelatin zymography was used to assess the extent

of proMMP-2 activation in conditioned media. Briefly, a

20-ml aliquot of the culture medium was subjected to SDS-

PAGE in a gel containing 0.1 mg/ml gelatin. The gels were

then incubated in 2.5% Triton X-100 and rinsed in nanopure

distilled water. Gels were further incubated at 37jC for

20 hours in 20 mmol/l NaCl, 5 mmol/l CaCl2, 0.02% Brij-35,

50 mmol/l Tris–HCl buffer (pH 7.6), then stained with 0.1%

Coomassie Brilliant Blue R-250 and destained in 10% acetic

acid, 30% methanol in water. Gelatinolytic activity was de-

tected as unstained bands on a blue background.

Immunoblotting Procedures

Proteins from control and treated cells were separated

by SDS-PAGE. After electrophoresis, proteins were electro-

transferred to polyvinylidene difluoride membranes, which

were then blocked for 1 hour at room temperature with 5%

nonfat dry milk in Tris-buffered saline (150 mmol/l NaCl,

20 mmol/l Tris–HCl, pH 7.5) containing 0.3% Tween 20

(TBST). Membranes were further washed in TBST and

incubated with the primary antibodies (1:1000 dilution) in

TBST containing 3% BSA and 0.02% NaN3, followed by a

1-hour incubation with horseradish peroxidase–conjugated

anti– rabbit IgG (1:2500 dilution) in TBST containing 5%

nonfat dry milk. Immunoreactive material was visualized by
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enhanced chemiluminescence (Amersham Biosciences,

Baie d’Urfée, QC, Canada).

Analysis of Cell Death by Flow Cytometry

Cell death was assessed by flow cytometry as de-

scribed previously [14]. Adherent and floating cells were

harvested by trypsin digestion and gathered to produce a

single cell suspension. The cells were pelleted by centrifuga-

tion and washed with PBS. Then, 105 cells were pelleted

and suspended in 200 ml of buffer solution and stained with

annexin V–fluorescein isothiocyanate and PI according to the

manufacturer’s protocol (BD Biosciences, Mississauga, ON,

Canada). The cells were diluted by adding 300 ml of buffer
solution and processed for data acquisition and analysis on

a (Becton Dickinson, San Jose, CA) FACS Calibur flow

cytometer using CellQuest Pro software. The x- and y-axes

indicate the fluorescence of annexin V and PI, respectively. It

was possible to detect and quantitatively compare the per-

centages of gated populations in all of the four regions delin-

eated. In the early stages of apoptosis, phosphatidylserine is

well known to translocate to the outer surface of the plasma

membrane, which still remains physically intact. As annexin

V binds to phosphatidylserine but not to PI, and the dye is

incapable of passing the plasma membrane, it is excluded

in early apoptosis (annexin V positive/PI negative). Cells in

late apoptosis are stained with annexin V and PI (annexin V

positive/PI positive). Necrotic cells have lost the integrity of

their plasma membrane and are predominantly stained with

PI (annexin V negative/PI positive).

Statistical Data Analysis

Data are representative of three or more independent

experiments. Statistical significance was assessed by Stu-

dent’s unpaired t test and probability values less than .05

were considered significant; an asterisk (*) identifies such

significance in each figure.
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