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A central difficulty of brain modelling is to span the range of spatio-temporal scales from synapses to
the whole brain. This paper overviews results from a recent model of the generation of brain electrical
activity that incorporates both basic microscopic neurophysiology and large-scale brain anatomy to
predict brain electrical activity at scales from a few tenths of a millimetre to the whole brain. This
model incorporates synaptic and dendritic dynamics, nonlinearity of the firing response, axonal
propagation and corticocortical and corticothalamic pathways. Its relatively few parameters measure
quantities such as synaptic strengths, corticothalamic delays, synaptic and dendritic time constants,
and axonal ranges, and are all constrained by independent physiological measurements. It reproduces
quantitative forms of electroencephalograms seen in various states of arousal, evoked response
potentials, coherence functions, seizure dynamics and other phenomena. Fitting model predictions
to experimental data enables underlying physiological parameters to be inferred, giving a new
non-invasive window into brain function that complements slower, but finer-resolution, techniques
such as fMRI. Because the parameters measure physiological quantities relating to multiple scales,
and probe deep structures such as the thalamus, this will permit the testing of a range of hypotheses
about vigilance, cognition, drug action and brain function. In addition, referencing to a standardized
database of subjects adds strength and specificity to characterizations obtained.
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1. INTRODUCTION
Electroencephalograms (EEGs) result from cortical

electrical activity aggregated over scales much larger

than individual neurons. Hence, in one class of models,

averages are taken over microscopic neural structure to

obtain continuum descriptions on scales of millimetres

to the whole brain, incorporating representations of the

anatomy and physiology of separate excitatory and

inhibitory neural populations, nonlinear neural

responses, multiscale interconnections, synaptic,

dendritic, cell-body and axonal dynamics, and

corticothalamic feedback (Wilson & Cowan 1973;

Lopes da Silva et al. 1974; Nunez 1974, 1995; Freeman

1975; Steriade et al. 1990; Jirsa & Haken 1996;

Wright & Liley 1996; Robinson et al. 1997, 1998,

2001a,b, 2002, 2003a,b, 2004;Rennie et al. 1999, 2002;
Robinson 2003a, b; Rowe et al. 2004).

We have developed a physiologically based

continuum model of corticothalamic dynamics that

reproduces and unifies many features of EEGs,

including the spectral peaks seen in waking and

sleeping states (Robinson et al. 2001b, 2002, 2003a),
evoked response potentials (Rennie et al. 2002),

measures of coherence and spatio-temporal structure

(Robinson 2003a,b; O’Connor et al. 2002; O’Connor
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& Robinson 2003), and generalized epilepsies and low-
dimensional seizure dynamics (Robinson et al. 2002,
2003a). Our approach averages over microstructure to
yield mean-field equations in a way that complement
cellular-level and neural-network analyses. In the
following sections we outline our model and briefly
review some of its main results to date.
2. CORTICOTHALAMIC MODEL
The first feature incorporated is the neural response to
the cell-body potential. Mean firing rates Qmax of
neurons are nonlinearly related to mean potentials Va

by Qaðr; tÞZS½Vaðr; tÞ�, where aZe for excitatory
cortical neurons, aZi for inhibitory neurons, and S is
a sigmoidal function that increases from 0 toQmax as Va

increases from KN to N. We use

S½Vaðr; tÞ�Z
Qmax

1CexpfK½Vaðr; tÞKq�=s0g
; (2.1)

where q is the mean neural firing threshold, relative to
resting, and s0p=

ffiffiffi
3

p
is its standard deviation.

The potential Va results when synaptic inputs from
various types of afferent neurons are summed after
being filtered and smeared out in time as a result of
receptor dynamics and passage through the dendritic
tree. It approximately obeys a differential equation
q 2005 The Royal Society
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Figure 1. Schematic of corticothalamic interactions, showing
the locations ab at which nab and Gab act.

Table 1. Nominal parameters from Robinson et al. (2004) for
the alert, eyes-open state in normal adults.
(Parameters used in works from which some of the figures
were obtained were, in general, similar, but not identical.)

quantity nominal unit

Qmax 340 sK1

ve 10 m sK1

re 86 mm
q 13 mV

s 0 3.8 mV

ge 116 sK1

1/a 12 ms
1/b 1.3 ms
t0 85 ms
nee 1.6 mV s
Knei 1.9 mV s
nes 0.39 mV s
nse 0.6 mV s
Knsr 0.45 mV s
nsn 0.15 mV s
nre 0.15 mV s
nrs 0.03 mV s

fð0Þ
n 16 sK1
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(Robinson et al. 1997, 2001b, 2002, 2003a, 2004).

DaVaðr; tÞZ
X
b

Nabsabfbðr; tKtabÞ; (2.2)

Da Z
1

ab

d2

dt2
C

1

a
C

1

b

� �
d

dt
C1; (2.3)

where 1/b and 1/a are the rise and decay times of the
cell-body potential produced by an impulse at a
dendritic synapse, corresponding to an impulse
response proportional to eKatKeKbt, which is a widely
used form in the literature. The right of equation (2.2)
involves contributions fe,i from other cortical neurons,
and inputs fs from thalamic relay nuclei, delayed by a
time tabZt0/2 owing to anatomical separations
between cortex and thalamus, where t0 is the time
to traverse the loop from cortex to thalamus and
back (tabZ0 for intrathalamic and intracortical con-
nections). The quantity Nab is the mean number of
synapses from neurons of type bZe, i, s to type aZe,
i and sab is the time-integrated strength of the response
in neurons of type a to a unit signal from neurons of
type b, implicitly weighted by the neurotransmitter
release probability.

Each part of the corticothalamic system produces a
field fa of pulses, which travel at a velocity va through
axons with a characteristic range ra. These pulses
spread out and dissipate if not regenerated. To a
good approximation, this type of propagation obeys
a damped-wave equation (Robinson et al. 1997, 2001b)

1

g2
a

v2

vt2
C

2

ga

v

vt
C1K r2aV

2

� �
faðr; tÞZS½Vaðr; tÞ�;

(2.4)

where gaZva/ra and ra is the mean range of axons a.
If intracortical connectivities are proportional to the
numbers of synapses involved, ViZVe and QiZQe

(Wright & Liley 1996; Robinson et al. 1997), which
lets us concentrate on excitatory quantities. The
smallness of ri/vi also lets us set gizN (Robinson et
al. 1997). Equation (2.4) is easily generalized to
anisotropic propagation by modifying the Laplacian
to weight the second derivatives differently in different
directions.
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The model incorporates corticothalamic connectiv-
ities and thalamic nonlinearities. Figure 1 shows
the connectivities considered, including the thalamic
reticular nucleus, which inhibits relay nuclei and is
lumped here with the perigeniculate nucleus, which has
an analogous role (Steriade et al. 1997; Sherman &
Guillery 2001). Relay nuclei convey external stimuli fn

to the cortex, as well as passing on corticothalamic
feedback. Thalamic cell-body potentials then satisfy
equations (2.1) and (2.2) with aZr, s and bZe, r, s, n,
while the small size of the thalamic nuclei enables us to
assume raz0 and, hence, gazN for aZr, s.

Including only the connections shown in figure 1
and making the approximations mentioned above,
we find that our model has 16 parameters. Writing
nabZNabsab, these areQmax, q, s

0, a, b, ge, re, t0, nee, nei,
nes, nse, nsr, nsn, nre and nrs. These are sufficient in
number to allow adequate representation of the most
important anatomy and physiology, but few enough to
yield useful interpretations and to enable reliable
determination of values by fitting theoretical
predictions to data. The parameters are approximately
known from experimentation (Robinson et al. 2001b,
2002, 2004; Rowe et al. 2004), leading to the indicative
values in table 1. We use only values compatible with
physiology. Sensitivities of the model to parameter
variations have been explored by Robinson et al.
(2001b), and in connection with the variations between
sleep, wake, and other states (Robinson et al. 2002).
The effects of volume conduction on the subsequent
propagation of the potential to the scalp have also been
incorporated into our model, via normalization and
spatial filtering parameters (Robinson et al. 2001b,
2002, 2004; Rowe et al. 2004). These are included in
the bulk of the results reviewed here; space limitations
preclude a detailed discussion, but their effects on
spectral shape, for example, are slight at frequencies
below about 20 Hz, since these correspond to the
longest wavelengths. It should also be noted that scalp
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Figure 2. Example spectrum (solid) and model fit (dashed)
from a typical adult subject in the eyes-closed state.
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potentials are primarily generated by excitatory (mainly
pyramidal) neurons owing to their greater size
and degree of alignment compared with other types
(Nunez 1995; Rennie et al. 2002; O’Connor &
Robinson 2003). For any given geometry, in the linear
regime at least, the scalp potential is proportional to the
cortical potential, which is itself proportional to the
mean cellular membrane currents, which are in turn
proportional to fe. Hence, apart from a (dimensional)
constant of proportionality and the effects of volume
conduction, scalp EEG signals correspond to fe to a
good approximation in the linear domain. For now, we
will assume this proportionality to extend into the
relevant parts of the nonlinear domain, but the validity
of this assumption should be examined critically in
future work.

In the present work we concentrate mainly on
results for which the model parameters are assumed
to be spatially uniform, but where the activity is free
to be non-uniform down to scales of slightly less
than a millimetre, where the model ceases to be
valid as a consequence of averaging over submilli-
metre structures. The generalization to include
spatial non-uniformities is straightforward, and
Robinson et al. (2003b) present initial results of
such an analysis.
3. RESULTS
(a) Steady states and stability

Setting all derivatives to zero in equations (2.3) and
(2.4) yields steady states when the system is driven by a
constant, uniform mean stimulus level fð0Þ

n . The
equations are easily solved numerically, yielding a
single stable low-fe solution, which corresponds to a
normal state. Other steady states are either unstable or
have extremely high fe, and presumably correspond to
seizures (Robinson et al. 1997, 1998, 2002), which will
be discussed below.
(b) Transfer functions and linear waves

Small perturbations relative to steady states can be
treated using linear analysis. A stimulus fn(k,u) of
angular frequency u (Z2pf, where f is the usual
frequency in Hz) and wave vector k (Z2p/l in
magnitude, where l is the wavelength) has the transfer
function to fe(k,u)

feðk;uÞ

fnðk;uÞ
Z

GesL

1KGeiL

GsnLe
iut0=2

1KGsrsL
2

1

q2r2e Ck2r2e
; (3.1)

q2r2e Z ð1K iu=geÞ
2

K
L

1KGeiL
Gee C

ðGese CGesreLÞL

1KGsrsL
2

eiut0
� �

;

(3.2)

Gab Z
fð0Þ
a

s0
1K

fð0Þ
a

Qmax

� �
nab; (3.3)

where LZ ð1K iu=aÞK1ð1K iu=bÞK1 embodies the low-
pass filter characteristics of synaptodendritic
Phil. Trans. R. Soc. B (2005)
dynamics and fð0Þ
a is the steady-state value of fa.

The ratio (3.1) is the cortical excitatory response per
unit external stimulus, and encapsulates the relative
phase via its complex value (Robinson et al. 2001b,
2004 Rennie et al. 2002); it is key to linear
properties of the system. The gain Gab is the
differential output produced by neurons a per unit
change in input neurons b, and the static gains for
loops in figure 1 are GeseZGesGse for feedback via
relay nuclei only, GesreZGesGsrGre for the loop
through reticular and relay nuclei, and GsrsZGsrGrs

for the intrathalamic loop.
Waves obey the dispersion relation (Robinson et al.

1997)

q2ðuÞCk2 Z 0; (3.4)

which corresponds to singularity of the transfer function
(3.1). Solutions of this equation satisfy uZkveK ige

at high frequencies (Robinson et al. 1997). At lower
frequencies, their dispersion has been investigated in
detail previously (Robinson et al. 1997; Rennie et al.
1999).
(c) Spectra and coherence

The EEG frequency spectrum is obtained by squaring
the modulus of fe and integrating over k:

PðuÞZ
Ð
jfeðk;uÞj

2d2k: (3.5)

Figure 2 shows excellent agreement with an
observed spectrum over several decades if fn is
assumed to be white noise in space and time. The
features reproduced include the alpha and beta peaks at
frequencies fz1/t0, 2/t0, and the asymptotic low- and
high-frequency behaviours; key differences between
waking and sleep spectra can also be reproduced
(see below and Robinson et al. 2001b). The low-
frequency 1/f behaviour is a signature of marginally
stable dynamics, which allow complex behaviour
(Robinson et al. 1997,2001b). Corticothalamic loop
resonances account for the correlations between alpha
and beta peaks, the correlated changes in spectral peaks
between sleep and waking, and alpha splitting, for
example (Robinson et al. 2001a,b 2003b). Alternative
proposed mechanisms, including pacemakers and
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Figure 4. Coherence versus frequency (solid) for alert, eyes-
open conditions and a fixed electrode separation. (a) Model.
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purely cortical resonances, can account for some
features of the data, but have a number of short-
comings, which were discussed in detail by Robinson
et al. (2001a) and (for pacemakers in particular) by
Nunez (1995). Notably, the trend in mode frequency
predicted for purely cortical eigenmodes tends to be in
the opposite direction to that observed, although this is
not unequivocal, while the pacemaker hypothesis is
completely ad hoc, with a new pacemaker proposed for
every spectral peak.

A one-dimensional wave number spectrum results if
one integrates jfe(k,u)j

2 over frequency, then over one
component of k:

PðkxÞZ

ðð
jfeðkx; ky;uÞj

2du dky: (3.6)

Figure 3 shows that this spectrum is flat at small kx,
then decreases steeply in ranges separating knees that
correspond to the inverse of each characteristic axonal
range in the problem. In this case, knees are predicted at
kz1/re, 1/rm, 1/ri, where rmz2 mm is the
characteristic range of intermediate-length excitatory
neurons, known to exist in the cortex (incorporated in a
slight generalizationof the versionof themodel presented
here; O’Connor & Robinson 2003). The EEG and
electrocorticographic observations shown are consistent
with these predictions over nearly three decades in k.

The cross spectrum P(r, r 0,u) is the phase average of
fe(r,u)fe(r

0,u). The coherence function is then

g
2ðr; r 0;uÞZ

½Pðr; r 0;uÞ�2

Pðr; r;uÞPðr 0; r 0;uÞ
: (3.7)

Figure 4 shows that this gives good agreement with
observations of g2 as a function of frequency at fixed
separation for model parameters close to those used in
obtaining the other plots in this work (Srinivasan et al.
1998; Robinson et al. 2003a). Particular features of
figure 4 are that coherence peaks correspond to spectral
peaks, reflecting the fact that weakly damped waves can
reach high amplitudes (hence a spectral peak) and
propagate far before dissipating (hence high coherence).
The discrepancy at very low frequencies is owing
to high-pass filtering of the experimental signals,
which degrades low-frequency coherence; it does not
represent an actual inconsistency.
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(d) Time-series and evoked response potentials

Figure 5 shows model time-series for parameters

illustrating eyes-open (EO), eyes-closed (EC; but

awake), sleep-stage 2 and sleep-stage 4 states, holding

Qmax,ge, t0,b/a, nei and nsn constant and varyinga and the
other nab only moderately. As seen here, the features seen

strongly resemble those of the corresponding experimen-

tal data (Steriade et al. 1990;Nunez1995;Niedermeyer&

Lopes da Silva 1999; Steriade 2000, 2001).

The inverse Fourier transform of fe(k,u), obtained

from equation (3.1) for an appropriate form of fn

(e.g. a delta function or narrow Gaussian), gives

the evoked response potential (ERP) that results from

an impulse stimulus. Initial work shows that the result

agrees well with experiment, as was discussed in detail

by Rennie et al. (2002), as illustrated by the example of

a background (as opposed to target, in an oddball

paradigm) ERP in figure 6. Significantly, the model

parameters used are almost identical to those that

reproduce the same subject’s pre-stimulus EEG

spectrum.
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Figure 5. Left column: model time-series representative of (a) alert, eyes-open, (b) relaxed, eyes-closed, (c) sleep-stage 2 and
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Figure 6. Experimental (solid) and model (dashed) ERPs in
response to a background stimulus in an auditory oddball
paradigm.
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This model of ERPs relies on modulation of the
resonance characteristics of the corticothalimic circuit,
whereas other models generally rely on reciprocal
connections between excitatory and inhibitory neurons
within the cortex as the foundation for ERP-like effects.
Additional points of difference between available ERPs
models are (i) whether spatial effects are included,
(ii) the assumed connectivity between neural
populations and (iii) the independent justification for
parameter values. The advantage of our approach is
that variations in the spatial and temporal character of
ERPs can be achieved through thalamic modulations,
drawing on theories from psychology about the role of
the thalamus in attention. Parameters inferred must
also be consistent with those of EEGs in the same
subject, apart from attentional changes, thereby over-
coming the historical tendency to treat the two types of
phenomena separately.

The steady-state potential evoked by a sinusoidal
stimulus can be obtained analogously to ERPs by
inverse transforming fe(k,u), given by equation (3.1)
for monochromatic fn with appropriate spatial
structure for the stimulus in question.
(e) Stability zone, instabilities and seizures

Waves obey the dispersion relation (3.4), with instabil-
ity boundaries where this equation is satisfied for real u
(Robinson et al. 1997, 2001b). In most circumstances,
waves with kZ0 (i.e. spatially uniform) are the most
unstable (Robinson et al. 1997), and it is found that
only the first few (i.e. lowest frequency) spectral
resonances can become unstable. Analysis for realistic
parameter ranges finds just four kZ0 instabilities,
leading to global nonlinear dynamics (Robinson et al.
2002, 2003a): (i) Slow-wave instability (fz0) that
Phil. Trans. R. Soc. B (2005)
leads to a low frequency spike-wave limit cycle. (ii)

Theta instability, which saturates in a nonlinear limit

cycle near 3 Hz, with a spike-wave form unless its

parameters are close to the instability boundary.

(iii) Spindle instability at uz(ab)1/2, leading to a

limit cycle at 10–15 Hz. (iv) Alpha instability, giving a

limit cycle near 10 Hz. The boundaries defined by

these four instabilities have been interpreted as

corresponding to onsets of generalized seizures

(Robinson et al. 2002, 2003a), although in some

cases, the limit cycles that set in there may not lead to

seizure symptoms, at least until their amplitudes

become large.

The occurrence of only a few instabilities, at low

frequencies, enables the state and physical stability of

the brain to be represented in a three-dimensional
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space with axes

xZGee=ð1KGeiÞ; (3.8)

yZ ðGese CGesreÞ=½ð1KGsrsÞð1KGeiÞ�; (3.9)

zZKGsrsab=ðaCbÞ2; (3.10)

which parametrize cortical, corticothalamic and
thalamic stability, respectively (Robinson et al. 2002).
In terms of these quantities, the brain occupies a
stability zone illustrated in figure 7. The back is at xZ0
and the base at zZ0. A pure spindle instability occurs
at zZ1, which couples to the alpha instability on the
upper boundaries, with spindle dominating at top
and left, and alpha at right. At small z, the left surface is
defined by a theta instability (Robinson et al. 2002,
2003a). The front right surface corresponds to slow-
wave instability and follows the plane xCyZ1.

Non-seizure states lie within the stability zone in
figure 7. Detailed arguments regarding the sign of
feedback via the thalamus, proximity between neigh-
bouring behavioural states, and the results of explicit
fitting to data place the arousal sequence from alert EO
to deep sleep, including relaxed EC and sleep-stages
1–4 (S1–S4), as shown in figure 7 (Robinson et al.
2002). In future, it is expected that known differences
between EEG spectra for subjects with differing
disorders will also enable classification of these con-
ditions into different parts of the stability zone.

One common generalized epilepsy is petit mal, or
absence epilepsy. Seizures last 5–20 s, cause loss of
consciousness, and show a spike-wave cycle which
starts and stops abruptly across the whole scalp
(Steriade et al. 1990; Niedermeyer & Lopes da Silva
1999). Figure 8 shows results from our model under
conditions for a theta instability. An approximately
3 Hz spike-wave cycle is seen, which closely
resembles observed petit mal time-series (Feucht
et al. 1998; Robinson et al. 2002, 2003b).
Phil. Trans. R. Soc. B (2005)
4. INVERSION AND PARAMETER
DETERMINATION
To test our model and estimate some of its para-
meters, we fitted the parameters of its linear spectrum
to 101 normal adults’ EC and EO spectra from
previous studies using a nonlinear least-squares
algorithm (Robinson et al. 2002, 2004; Rowe et al.
2004). This yielded mean parameters consistent with
those in table 1. Fits to a further 3000 subjects in the
Brain Resource International Database are currently
underway.

The parameter values obtained using spectral fits and
other model-based constraints prove to be both
consistent with independent measures, and comp-
lementary to them, often yielding improved constraints
on theparameters involved.This is illustrated infigure9,
where we show constraints on the corticocortical axonal
range re and signal velocity ve. Independent constraints
obtained by standard physiological means (direct
measurement of axonal lengths and velocities), shown
dashed, define a rectangle consistent with all such
constraints (Robinson et al. 2004). Model-based con-
straints, obtained from consistency with spectra, coher-
ence functions and spatial structure in EEGs are shown
dotted. These severely restrict the consistent parameter
combinations to a small trapezoid (Robinson et al.
2004). Among these constraints is one on ge deriving
from fits to observed EEG spectra, which yields the
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narrow diagonal band shown. Further details of the
constraints are discussed by Robinson et al. (2004).

Figure 10 shows constraints on the synaptodendritic
rate parameters a and b. Here, independent
physiological studies of the dynamics of the main
neurotransmitters, and of dendrite cable properties,
define a large, irregular pentagon of mutual parameter
consistency, while model-based constraints arising
from consistency with EEG spectra define a boomer-
ang-shaped zone that intersects this pentagon to yield a
narrow sliver of mutually consistent parameter space.
Again, the results are consistent (the zone of intersec-
tion is non-null) and complementary (the constraints
are roughly orthogonal to pre-existing ones); the details
are discussed by Robinson et al. (2004).
5. DISCUSSION
We have presented a brief review of our model and
some of its major predictions to date. This model
Phil. Trans. R. Soc. B (2005)
incorporates the main features of corticothalamic
physiology and anatomy using only 16 parameters. Its
predictions provide a unified quantitative description of
a wide range of phenomena, giving excellent agreement
with observed EEG spectra, EEG time-series, evoked
response potentials, coherence and correlation func-
tions, and seizure dynamics. A key feature of our
approach is thus that we extract a broad range of
behaviour from modest changes in the parameters of a
single mode, without postulating extra mechanisms.

Of key importance is the xyz parameter space in
which the stability zone of the brain is easily visualized,
and in which disorders, states of arousal, and so on, can
be classified. Zone boundaries are identified with
onsets of generalized seizures, consistent with known
features of their time-series and patterns of occurrence.

Fitting the model’s predictions to data provides a
non-invasive probe of large-scale physiology that yields
parameter values consistent with, and complementary
to, independent measures. This has the potential to
facilitate testing of a range of hypotheses about
vigilance, cognition, drug action and brain function,
on a range of spatial and temporal scales, particularly
when coupled with the statistics of large numbers of
subjects in our standardized database.

We thank P. L. Nunez for permission to reproduce the
material in figure 4b and the right column of figure 5. This
work was supported by the Australian Research Council and
the University of Sydney’s Sesqui Grant Scheme.
REFERENCES
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