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Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting
neuroscientific data, and studies evaluating interregional functional and effective connectivity have
become staples of the neuroimaging literature. The neurobiological substrates of functional and
effective connectivity are, however, uncertain. We have constructed neurobiologically realistic models
for visual and auditory object processing with multiple interconnected brain regions that perform
delayed match-to-sample (DMS) tasks. We used these models to investigate how neurobiological
parameters affect the interregional functional connectivity between functional magnetic resonance
imaging (fMRI) time-series. Variability is included in the models as subject-to-subject differences in
the strengths of anatomical connections, scan-to-scan changes in the level of attention, and trial-
to-trial interactions with non-specific neurons processing noise stimuli. We find that time-series
correlations between integrated synaptic activities between the anterior temporal and the prefrontal
cortex were larger during the DMS task than during a control task. These results were less clear when
the integrated synaptic activity was haemodynamically convolved to generate simulated fMRI
activity. As the strength of the model anatomical connectivity between temporal and frontal cortex
was weakened, so too was the strength of the corresponding functional connectivity. These results
provide a partial validation for using fMRI functional connectivity to assess brain interregional
relations.
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1. INTRODUCTION
In the past few years, as the use of functional brain

imaging techniques, such as functional magnetic

resonance imaging (fMRI), positron emission tomogra-

phy (PET), and electro- and magnetoencephalography

(EEG and MEG), have come more and more to

dominate investigations of the neural substrates of

human cognition, the conceptual importance of viewing

cognitive functions as mediated by networks of inter-

acting brain regions has started to play a central role in

the interpretation of neuroscientific data (Mesulam

1990; Horwitz et al. 1992; Friston 1994; Fuster 2000;

McIntosh 2000). Unlike investigations of brain lesions

or of neuronal electrophysiological recordings, many

functional brain imaging techniques provide data

simultaneously from most cortical areas and thus are

ideal for investigating how different brain regions

interact during behavioural tasks (Horwitz et al. 1999).
It is no surprise, therefore, that there have been a large
r for correspondence (horwitz@helix.nih.gov).

tribution of 21 to a Theme Issue ‘Multimodal neuroimaging
connectivity’.

1093
number of studies of interregional neural interactions

utilizing fMRI, PET or EEG/MEG data (e.g. Gevins

et al. 1989; Horwitz et al. 1992a; Bullmore et al. 1996),
and determinations of functional and effective connec-

tivity (Friston 1994; Horwitz 1994; McIntosh &

Gonzalez-Lima 1994) have become staples of the

neuroimaging literature. Moreover, these connectivity

notions also are utilized by neuroscientists who work at

the neuronal and ensemble levels of analysis (e.g. Ts’o

et al. 1986; Aertsen et al. 1989; Wilson &McNaughton

1994; Nicolelis et al. 1995). How all these notions of

connectivity are related to each other and to anatomical

connectivity, is far from obvious (Horwitz 2003).

In a series of articles, we will attempt to clarify how

some aspects of the concepts of functional and effective

connectivity, as applied to functional brain imaging

data, are to be understood in terms of neuroanatomy

and neurophysiology. In this first paper, we will focus

primarily on one of the haemodynamic methods

(fMRI; however, because many of the issues discussed

here apply as well to PET, we will also include some

discussion applicable to this technique); subsequent

papers will address other aspects of functional/effective

connectivity, as well as other methods for assessing
q 2005 The Royal Society
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neural interactions. As is well known, the limited spatial
and temporal resolution of the haemodynamic func-
tional imaging techniques results in a significant loss of
information as one goes from the microscopic level of
dynamic neuronal activity to the macroscopic level
changes in regional cerebral blood flow (rCBF),
metabolism and blood oxygenation (BOLD) measured
by PET/fMRI (a brief overview of PET and fMRI
methodology can be found in Horwitz et al. (2000); for
more information about fMRI, see Bandettini (2003)).
Of the factors that result in this loss of information, the
following are particularly important: (i) multiple
neuronal populations are present in any resolvable
PET or fMRI region of interest (including a single
voxel), and local and afferent neuronal activities are
combined into a single signal; (ii) the disparity between
the temporal dimension appropriate for neurons (on
the order of milliseconds) and that available from
haemodynamic data (about a minute for PET, at best a
few seconds for fMRI owing to the haemodynamic
delay) is such that transient components of activity
are undetectable by the haemodynamic methods;
(iii) electrophysiological studies at the neuronal level
generally record the spiking activity of neurons,
whereas the evidence is now fairly substantial that the
haemodynamic methods are indicative of synaptic and
postsynaptic activity (e.g. Jueptner & Weiller 1995;
Lauritzen 2001; Logothetis et al. 2001); one conse-
quence of this is that increases in excitatory and
inhibitory synaptic activity can lead to increased
metabolic activity (Logothetis 2003).

The presence of these factors means that it is very
difficult, if not impossible, experimentally to measure
all the neuronal activities, both spiking and synaptic, at
multiple locations, and at the same time measure the
corresponding haemodynamic activities, from which
functional connectivities can be computed at multiple
levels and related across levels and modalities. An
alternative approach, which we employ, is to use
computational neural modelling (for a review of the
use of computational modelling and functional neuro-
imaging, see Horwitz et al. (2000)). In a computational
model, one can keep track of all the neuronal activities,
all the synaptic activities, and the associated haemo-
dynamic changes, and thus can relate the macroscopic
to the microscopic. In essence, unlike the actual brain,
in a model we know the ‘answer’—the full pattern of
time-varying changes in interregional relationships.

Therefore, we employ a large-scale, neurobiologi-
cally plausible computational model that can generate
both simulated neuronal activities, and simulated PET
and fMRI data (Tagamets & Horwitz 1998; Horwitz &
Tagamets 1999; Husain et al. 2002, 2004). The model
performs a delayed matched-to-sample (DMS) task.
Two forms of this model exist—one for visual object
processing (Tagamets & Horwitz 1998), the second for
auditory object processing (Husain et al. 2004).
Furthermore, the visual model was extended so that
combined transcranial magnetic stimulation (TMS)
and PET studies could be simulated (Husain et al.
2002). TMS has been used in conjunction with PET
as a tool for investigating functional connectivity
(Fox et al. 1997; Paus et al. 1998; Mottaghy et al.
2000). Recently, studies combining TMS and fMRI
Phil. Trans. R. Soc. B (2005)
have been reported (Bohning et al. 2000; Siebner et al.
2003; Li et al. 2004). The model, whose construction
was based on experimental neuroanatomical and
neurophysiological measurements, generates simulated
neuronal data that agree with experimental data
obtained from mammalian studies, and also generates
simulated PET/fMRI data that are in accord with
experimental findings from human studies. Unlike
some simulations that have been employed to examine
the ‘neural’ substrate of a functional neuroimaging
result (e.g. Anderson et al. 2003; Gitelman et al. 2003),
our model has the advantage that it is neurally
plausible, complex, contains both excitatory and
inhibitory neurons, has feed-forward and feedback
connections and includes a diversity of regions contain-
ing neurons that possess different response properties
(e.g. some regions have neurons that fire only when
external stimuli are present; others have neurons that
are active when no external stimuli are present). This
type of model provides a useful testing ground for
investigating both experimental paradigms and data
analysis methods (Horwitz 2004).

A useful way to think about the issues involved in
relating neural activity to neuroimaging functional
connectivity data is the following. We have a system
(the neural network under study) whose constituent
interrelationships we want to assess; these relationships
can be a function of the intrinsic dynamics of the
network (for example, in our case the neurons
comprising the auditory network have better responses
to more transient stimuli than the neurons that are part
of the visual network). The dynamics of the network
interrelationships can also be influenced by the
experimental paradigm: if the stimuli presented are
appropriate for the network, there should be greater
processing than if the stimuli are not appropriate.
Other characteristics of the experimental parameters
such as the duration of stimuli and the rate of stimuli
presentation can also affect the strength of the network
interrelationships. The fMRI results that one obtains to
evaluate the functional interrelationships using a
particular experimental design will also depend on
the particular choices made for the scanning
parameters, and on the intrinsic haemodynamic
response properties of the brain. Finally, the specific
feature of the BOLD signal one chooses to employ to
evaluate the functional connectivity can potentially
affect the measured value of the functional connectivity
(see §2 for examples). All these issues can be
individually explored and controlled using our compu-
tational modelling approach.

In this paper we will use the large-scale compu-
tational model outlined above to examine the relation-
ship between the macroscopic measures of functional
and effective connectivity (as obtained from functional
neuroimaging data) and their neural substrates. We will
begin with a concise overview of the concepts of
functional and effective connectivity, as applied by
various neuroscientific methods of investigation. We
shall then briefly review the large-scale network model.
This will be followed by a discussion of the sources of
variability that are used in functional (and effective)
connectivity analysis, and a description of how these
variability sources will be simulated in our model. Our



Neural basis for connectivity B. Horwitz and others 1095
main results will ensue, followed by some comments
about how these concepts can be interpreted. Our
focus in this paper will be on functional connectivity as
used in fMRI and PET (and also deoxyglucose
autoradiographic studies). In subsequent papers, we
will address some of the relatively newer notions related
to effective connectivity (e.g. structural equation
modelling (McIntosh et al. 1994); Granger causality
(Goebel et al. 2003; Roebroeck et al. 2005); dynamic
causal modelling (Friston et al. 2003)) that have
recently emerged, as well as examining measures of
functional connectivity used with EEG/MEG data.
2. FUNCTIONAL AND EFFECTIVE CONNECTIVITY
For decades investigators have attempted to use
neurophysiological data obtained simultaneously from
two or more neural elements to compute a measure of
the functional interaction between these elements. The
neural elements could be neurons, small ensembles of
neurons, or entire brain regions, and the data could be
obtained using electrical, magnetic or haemodynamic
techniques. In all cases, the central idea is that activities
that covary together suggest that the neurons generat-
ing the activities may be interacting. Two aspects of
functional interactivity need to be distinguished; they
are called functional and effective connectivity (Friston
1994). Two neural entities are said to be functionally
connected if their activities are correlated; effective
connectivity refers to the direct influence of one neural
entity on a second. Thus, functional connectivity does
not necessarily imply a causal link, whereas effective
connectivity does. As pointed out by Friston (see Lee
et al. 2003), effective connectivity is model dependent,
whereas functional connectivity is not (at least not
explicitly; note, however, that in the evaluation of
functional connectivity as a simple correlation coeffi-
cient, it is implicitly assumed that the interactions are
linear and instantaneous; see Lahaye et al. (2003) and
Roebroeck et al. (2005) for approaches that avoid these
assumptions). It should be noted that different inves-
tigators have, over the years, used different terms to
represent these two notions, but the functional
neuroimaging community seems to have settled on
these general designations (Horwitz 2003).

A variety of measures and algorithms are used to
compute quantities that embody the concept of
functional connectivity (and likewise for effective
connectivity). However, there are conceptual difficul-
ties associated with these efforts, as has been
discussed recently (see Horwitz (2003) for an over-
view; the reader is also referred to a report on a
recently held workshop on functional connectivity
(Lee et al. 2003), in which there was extensive
discussion of many of the themes and current
controversies in the field). Specifically, multiple
measures of what constitutes functional connectivity
have been employed, each relatively specific for the
particular type of data under study. Although
much effort has gone into making these measures
statistically and computationally sound, very little
effort has been spent making them neurobiologically
meaningful. Moreover, very little work has been
undertaken to establish how (or if) these variously
Phil. Trans. R. Soc. B (2005)
defined notions of functional connectivity are related
to one another. Adding to this complexity is the fact
that one can extend the notion of interregional
functional connectivity from being a relationship
between just two regions to one involving large
numbers of brain regions by utilizing methods such
as principal components analysis (Friston et al. 1993),
partial least-squares (McIntosh, Bookstein et al. 1996)
and other such multivariate methods.

To illustrate this diversity, a set of measures for
PET/fMRI functional connectivity, taken from the
published literature, is provided. It should be noted
that the measures (and importantly, the associated
computational algorithms) below are by no means
complete (especially for fMRI, where new measures
seem to appear daily), but are only a representative
sample of what is currently being used.

(a) Positron emission tomography

and autoradiography

For rCBF PET activation data, some investigators
calculate functional connectivity by correlating rCBF
data within a task condition and across subjects (e.g.
Horwitz et al. 1992a, 1998; McIntosh et al. 1994;
Jennings et al. 1998), whereas others perform corre-
lations across tasks (e.g. Friston et al. 1993). The first
approach was also used in studies that looked at
interregional correlations (mostly obtained from sub-
jects at rest), using PET tomeasure glucosemetabolism
(e.g. Horwitz et al. 1984, 1986; Bartlett et al. 1987), and
in non-human mammals (often rats; e.g. McIntosh &
Gonzalez-Lima 1991) using autoradiographic data
(usually 14C-deoxyglucose). The reasoning behind the
first method starts with the fact that subjects perform
tasks with different abilities, as shown by differences in
accuracy, reaction time and other measures of perform-
ance. This subject-to-subject variability suggests that
the activity of the brain network mediating a task also
varies from subject to subject. So, for example, if one
subject, for whatever reason, uses one of the brain
regions comprising the network less than a second
subject to perform the task of interest, a second region of
the network, functionally linked to the first, will also be
used less in the first, relative to the second individual.
The result is a large covariance (i.e. functional
connectivity) in the activities between the two regions
across subjects. This method of evaluating functional
connectivity depends on the assumption that there is
sufficient spontaneous variability across subjects to yield
neurobiologically meaningful interregional covariation.
It may fail if the task of interest is (i) too variable, so that
multiple strategies are possible (presumably each being
mediated by a different neural network; a good example
is found inGlabus et al. (2003)); or (ii) so automatic that
the subject-to-subject variability is swamped by non-
neurobiologcal variability from the scanning system.

The other approach to calculating functional con-
nectivity mentioned above attempts to measure the
interregional covariance from an experimentally
imposed task variability. The idea here is that there
are multiple scans of each subject, and the scans
correspond to a task that varies in some way from scan
to scan. For example, in Friston et al. (1993), there
were 12 PET scans in which the subject heard a letter



Table 1. Values of anatomical connection weights for the visual model for each ‘subject’ simulated.
(The values are the percentages of the connection weights used in the Tagamets–Horwitz model (Tagamets & Horwitz 1998).
Shown in the bottom row is the percentage of correct responses of each subject for the DMS task; a correct response for a match
was increased activity in five or more units in the FR module. Abbreviations: ev1v (h), excitatory V1/V2 vertically (horizontally)
selective; ev4v(h,c), excitatory V4 vertically (horizontally, corner) selective; eit, excitatory IT; efd1(2), excitatory frontal D1(2);
efs(r), excitatory FS(R) modules. Any connections (such as feedback connections) not listed were not modified.)

connection subj1 subj2 subj3 subj4 subj5 subj6 subj7 subj8 subj9 subj10

ev1v/ev4c 81 95 65 79 88 77 87 78 83 77
ev1v/ev4v 83 94 83 75 92 88 71 74 76 70
ev1h/ev4c 84 93 84 77 72 84 84 88 85 93
ev1h/ev4h 81 91 85 78 81 93 95 80 82 94
ev4c/eit 82 94 70 76 72 73 84 86 71 91
ev4v/eit 84 95 84 74 91 81 76 94 89 95
ev4h/eit 80 92 90 76 90 83 80 83 92 98
efd1/efd2 85 95 85 75 80 70 94 79 90 71
efd1/efr 85 92 85 77 75 79 73 76 82 89
efd2/efd1 94 93 94 92 91 95 95 97 91 95
eit/efs 83 91 83 77 70 85 82 75 82 97
efs/efd2 81 93 81 79 74 90 79 91 73 98
efs/efr 82 95 82 78 74 72 90 77 76 95
% correct 78 72 89 44 61 72 72 67 61 67
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(once every 2 s). In six of the scans, the subject
repeated the letter heard, and in the other six which
alternated with the first six, the subject was required to
generate a word beginning with the letter heard (each
scan lasted about 2 min). In other cases, one might
have some parametric modulation in the conditions
during each scan (e.g. the amount of time a visual
stimulus needed to be held in short-term memory;
McIntosh et al. (1996b)), or over the entire course
of the PET session, there may be a learning effect, or
else attention may wane, so that scans performed
later in the scanning session are different from those
performed earlier. The critical assumption here is
that the functional network mediating the task is
the same for all the conditions; that is, the changing
conditions do not lead to the use of a different
functional network.
(b) Functional magnetic resonance imaging

The advent of fMRI has resulted in a dramatic increase
in the number of ways in which interregional functional
connectivity has been computed. Because of the higher
temporal resolution (compared with PET), there are
numerous features of the fMRI signal that can be used as
the data that enter into the evaluation of the covariance
or correlation matrix, as we have discussed previously
(Horwitz 2003). Among the distinctions that have led to
different ways to evaluate fMRI-based interregional
functional connectivity are the following: (i) linear (e.g.
Bokde et al. 2001) versus nonlinear (e.g. Buechel &
Friston 1997); (ii) instantaneous (e.g. Hampson et al.
2002) versus time-shifted (e.g. Lahaye et al. 2003);
(iii) resting state (e.g. Biswal et al. 1995) versus an active
experimental condition (e.g. Toni et al. 2002);
(iv) within-condition (e.g. Hampson et al. 2002) versus
across-conditions (e.g. Bullmore et al. 2000); (v)within-
subject (e.g. Goncalves et al. 2001) versus data averaged
across subjects (e.g. Bokde et al. 2001); (vi) correlating
time courses (e.g. Buechel & Friston 1997; Bullmore
et al. 2000) versus correlating a measure of block or
Phil. Trans. R. Soc. B (2005)
subject activity (e.g. Pugh et al. 2000). Note that several
of the studies cited appear more than once, demonstrat-
ing that there are many choices that an investigator
needs to make in deciding how to compute fMRI-based
functional connectivity. Some of these distinctions
apply to PET data as well as to fMRI, but because the
use of fMRI has become so prevalent in the last few
years, the number and diversity in fMRI-based func-
tional connectivity analyses dominate the literature.

This brief overview of some of the diverse measures
of PETand fMRI functional connectivity reinforces the
points made earlier: (i) there are multiple measures in
use, and there is no guarantee that the conclusions
drawn using one measure will be the same as using
another; (ii) very little work has been done to relate the
various measures to each other; and (iii) the neural
substrates of each measure are unknown.
3. LARGE-SCALE NEURAL NETWORK MODEL
This section provides a brief overview of our large-scale
neural network model (Tagamets & Horwitz 1998;
Husain et al. 2004). The two versions of the model
perform either a visual or an auditory DMS task for
shape (two-dimensional object shape for the visual
task, tonal pattern shape for the auditory task). The
DMS task involves the presentation of a shape, a delay,
and the presentation of a second shape; the model
determines if the second stimulus is the same as the
first. Multiple trials (e.g. 10) are used to simulate a
PETor fMRI study.

Each model incorporates four major brain regions
representing the ventral object processing stream
(Ungerleider & Mishkin 1982) for the visual task, and
an analogous stream for the auditory task (Rauschecker
&Tian 2000): (i) primary sensory cortex (V1/V2 for the
visual model; primary auditory cortex for the auditory
model); (ii) secondary sensory cortex (V4 for vision,
belt and parabelt areas for audition); (iii) a perceptual
integration region (inferior temporal (IT) cortex for
vision, superior temporal gyrus/sulcus (STG/STS,
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Figure 1. Network diagram of the visual object processing model (Tagamets &Horwitz 1998). The regions of the model (V1/V2,
V4, IT, PFC) form a complex network of feed-forward and feedback connections; these interregional connections can be either
excitatory (excitatory-to-excitatory elements, shown as solid lines) or inhibitory (excitatory-to-inhibitory elements, shown as
dashed lines). In the PFC region, FS contains stimulus-sensitive units, D1 and D2 contain units active during the delay part of a
delayed match-to-sample task, and FR contains units whose activity increases if there is a match between the first and second
stimuli of a trial. See text for details.
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Figure 2. Diagram of the delayed match-to-sample task. The top of the diagram shows examples of the shape stimuli presented
to the specific neurons in the model that are engaged in the task; the bottom shows the degraded shape stimuli presented
(asynchronously, relative to the shape stimuli) to the non-specific neurons. Each shape is presented for 1 s, the delay period is
1.5 s, the response period (which includes the intertrial interval) is 1 s.
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henceforth called ST) for audition); and (iv) prefrontal

cortex (PFC) which incorporates short-term working

memory. Every region is composed of multiple basic

units, each of which represents a simplified cortical

column; the basic unit comprises an interacting pair of

excitatory–inhibitory neurons (modified Wilson–

Cowan units; Wilson & Cowan 1972). Regions are

linked by both feed-forward and feedback connections.

There are different scales of spatial integration in the

visual model in the first three stages, with the primary

sensory region having the smallest receptive field, and

IT the largest. Likewise, in the auditory model, there

are different scales of spectrotemporal integration in the

first three stages, with the smallest spectrotemporal

window of integration occurring in the first stage

(A1/A2), and the largest in ST.

Each region (except IT and ST) in our models

contains subpopulations whose excitatory neuronal units

possess different response properties. For example, for
Phil. Trans. R. Soc. B (2005)
the visual model in V1/V2 and V4, neuronal units have

different orientation selectivities; in the auditory model,

the analogous regions are selective for the direction of

frequency change. The PFC for both the auditory and

visual versions of the model has four different types of

neuronal units whose response properties are based on

the findings of Funahashi et al. (1993): units that respond

when a stimulus is present, two kinds of units that show

activity during the delay interval and units whose

activities increase when a match between the second

and first stimuli occurs. Feed-forward and feedback

connections between regions were based on primate

neuroanatomical data. Parameters were chosen so that

the excitatory elements have simulated neuronal activi-

ties resembling those found in electrophysiological

recordings from monkeys performing similar tasks

(e.g. Funahashi et al. 1993; Bodner et al. 1996;

Kikuchi-Yorioka & Sawaguchi 2000). For the visual

model, tables detailing the values of the parameters used,
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Figure 3. Simulated neuronal activity in all the neurons in all the brain regions of figure 1 for one block of the DMS condition
and one block of the control condition. Each panel shows the neural activity for six trials. The first three trials correspond to the
DMS task, with the first and third trials constituting ‘match’ conditions (where the second stimulus is the same as the first) and
the second trial constituting a non-match condition. The next three trials are for the control task, where degraded shapes were
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and a thorough discussion of all the assumptions

employed, are given in Tagamets & Horwitz (1998);

analogous details concerning the auditory model are

presented in Husain et al. (2004).

An important feature of the model concerns how the

‘task instructions’ are handled so that the model knows
Phil. Trans. R. Soc. B (2005)
which task (DMS or a control task in which noise

patterns are presented) has to be performed. This was

accomplished by means of a continuous biasing (e.g.

attention) variable that modulates a subset of prefrontal

units by diffuse synaptic inputs, the functional strength

of which controls whether the stimuli are to be retained
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Figure 4. Graphs of the integrated synaptic activity in the V1/V2 (blue), IT (green) and D1(red) modules. As seen in the V1/V2
graph, there were three DMS trials and three control trials for each of six levels of attention (lowest on the left, highest on the
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in working memory (for the DMS task) or not (during
the control task). Activity in each brain area, therefore,
is a combination of feed-forward activity determined in
part by the presence of an input stimulus, feedback
activity determined in part by the strength of the
modulatory biasing signal and local activity within each
region.

An fMRI or PET study is simulated by presenting
stimuli to an area of the model that represents either the
lateral geniculate nucleus (LGN) or the medial
geniculate nucleus (MGN). The fMRI/PET response
is simulated by temporally and spatially integrating the
absolute value of the synaptic activity in each region
over an appropriate time course and for simulating
fMRI, convolving these values with a function repre-
senting haemodynamic delay (Horwitz & Tagamets
1999).
4. SIMULATING FUNCTIONAL CONNECTIVITY—
TYPES OF VARIABILITY
There are multiple sources of the variability found in
functional neuroimaging data. Some of these originate
from the scanning technique, some are non-neural (e.g.
changes in the vasculature may lead to changes in the
fMRI haemodynamic response function; changes in
brain CO2 concentration can alter cerebral blood flow),
and some are neural, but are not related to the
experimental condition under study (e.g. intrinsic
neural noise; inputs from neurons not participating in
the task). However, some of the variability observed in
Phil. Trans. R. Soc. B (2005)
the functional neuroimaging signal can be utilized to

provide the covariance needed to evaluate functional

connectivity (see Horwitz et al. (1992b) for an early

discussion of this; although aimed towards covariation

of PET data, many of the points are applicable to fMRI

data). The main idea is that variability in the activity in

one node of the neural network mediating the task

under study is propagated to other nodes, resulting in a

larger covariance between the nodes than would be the

case if the nodes were not interacting with one another.

The various methods of evaluating functional connec-

tivity attempt to tap one or more of these neurally based

sources of covariation.

For fMRI, there are three main sources of variation

that can be utilized to assess functional connectivity.

I will call them (i) subject-to-subject, (ii) block-to-

block and (iii) item-to-item (or MR volume-to-

volume); the first two can be used as well for PET.

The idea behind using subject-to-subject variability to

evaluate interregional functional connectivity was

discussed above in the section on PET. Likewise, the

equivalent of block-to-block variability was also men-

tioned in the PET section, where it was pointed out

that the variability can be either experimentally

induced (e.g. parametrically varying some aspect of

the task) or uncontrolled (e.g. a subject is more

attentive during one experimental block than during

another). Finally, the central notion for all methods

that examine the interregional correlation between

fMRI time-series is that there is a kind of trial-to-trial
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variability within the neural network used to perform a
task that presents as volume-to-volume variability (e.g.
one item is harder than another; neural noise gets
propagated to some other nodes in the network
mediating the task; different volumes may correspond
to different tasks or conditions, which would be the case
for event-related designs). The key to using our
simulation model to examine interregional functional
connectivity rests on developing reasonably realistic
ways to generate the three different types of variability
that the various measures of functional connectivity
attempt to access.

The original formulation of our model conceived of
the model as representing a single subject. Several
sources of variability were included in the original
model (for details, see Husain et al. (2004) and
Tagamets & Horwitz (1998)), although the amount of
variability they generated was fairly small: the electrical
activity of each neural element contains a noise term;
the weights between the regions comprising the model,
which represent the strengths of the anatomical
linkages, possess some variability that changed every
time a new network was generated. To produce the
kinds of variability that lend themselves to functional
connectivity analysis in a somewhat non-arbitrary and
realistic way, the model has been extended in three
ways.1

(a) Variable anatomical connectivity

To simulate subject-to-subject variability, we altered
the strengths of the anatomical connections between
regions in a pseudo-random fashion. Thus, the
strengths of the interregional connections in the ideal
network were multiplied by some percentage (range,
65–98%) that is different for each individual network
(in our simulations, we use 10 individual networks
representing 10 subjects). This range of alterations
enabled each network to still perform the DMS task,
although with more variable accuracy2 (see table 1 for
the percentages used for each of the 10 networks, and
for the simulated behavioural response expressed as
percentage of correct trials). This method of simulating
subject-to-subject variability can be thought of as
representing the kind of variability that could arise in
real subjects owing to neural developmental
differences.

(b) Variable top-down bias effects (e.g. attention)

To simulate the block-to-block variability in an
individual subject, we used different values of
the biasing parameter that controls how well the
model maintains prefrontal activity during the delay
component of each task. In the original versions of the
model (Tagamets & Horwitz 1998; Husain et al. 2004),
this parameter had a value of 0.3 during the DMS task
and 0.05 during the control task. Here, we varied the
bias parameter from 0.20 to 0.30 in steps of 0.02, thus
resulting in six blocks for the DMS task. One can think
of this approach as representing a waxing or waning, or
fluctuation of attention during a scanning session.

(c) Inclusion of non-specific neurons

To simulate what we have called the trial-to-trial
variability within an experimental condition, we
Phil. Trans. R. Soc. B (2005)
doubled the number of units in each module, with
the added units representing non-specific neurons that
are not part of the network mediating the task (cf. Deco
et al. 2004). The non-specific elements of each module
are connected to each other in the same way as are the
task-specific neurons. However, the non-specific
modules are connected in a random way to the task-
specific regions, and this pattern of connections
changes on each trial. Moreover, the input to the
non-specific neurons consists of random noise patterns
that are presented asynchronously and randomly
relative to the presentation times of the stimuli to the
task-specific elements. The net effect of this arrange-
ment is that the task-specific neurons in each module
receive random neural activity from the non-specific
neurons that varies for each trial. The result is that this
adds trial-to-trial variability to the responses of each
task-specific neuron, allowing us to model the inter-
actions between the network mediating the task of
interest and brain regions not specifically involved in
the task that are likely to occur in real subjects (e.g.
seeing a particular visual stimulus may lead an
individual subject to recall some object from her past).
5. SIMULATION RESULTS
To use our simulations as a way to help understand the
neural bases of functional connectivity, we first have to
demonstrate that our simulation model possesses a
sufficient degree of realism to be useful for exploring
some of the definitional complexities associated with
the concepts of functional and effective connectivity. To
do this, we must show that, with appropriate parameter
choices, evaluation of the simulated functional con-
nectivity reflects the neuronal interrelationships that
are actually present. To this end, we performed two
simulation studies. The first addressed the following
question: are the functional connectivities between
elements of the model neural network larger when the
network is engaged in task performance than when it is
not? A positive answer would indicate that fMRI-
measured functional connectivity can, in principle, be
used as an indicator of functional interrelationships in
the brain. The second study addressed the following
question: if two regions are anatomically connected,
and if the network within which these regions are
embedded is active, is the value of the functional
connectivity a function of the strength of the anatom-
ical connectivity between these two elements of
the network? A positive answer would suggest that
fMRI-measured functional connectivity can depend on
the interregional anatomical connectivity.3 Obtaining
positive answers to both questions would also
imply that our simulation model can be useful for
exploring the neural bases of functional and effective
connectivity.

(a) Neural activity

To be able to assess the functional connectivity results,
we first need to present the neuronal results. Figure 1
shows a diagram of the visual network model, focusing
on the anatomical relationships between the modules
comprising the network. In figure 2, we present a
diagram of a single trial of the DMS task that is used for
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the visual model (the task parameters are given in the
legend to figure 2). A visual shape is presented, there is
a delay period, and then a second shape is presented;
the model must determine if the second object is the
same as the first. The attention parameter is set at a
high level so that these neurons can perform the DMS
task. At the same time, ‘scrambled’ shapes are being
presented (asynchronously relative to the task objects)
to the non-specific neurons (for these neurons, the
biasing signal is set at a low value so that only ‘passive
viewing’ is engaged). There is also a control task where
scrambled shapes are presented to the task-specific
neurons, and the biasing signal is set at a low value so
that only passive viewing is performed by the network.

Figure 3 shows the neural activity (i.e. the
equivalent of the neuronal spiking activity) of all the
neurons in all the modules of the model for three
trials of the DMS task and for three trials of the
control task in a ‘typical’ subject (subject 1). The first
and third trials were ‘match’ trials where the second
stimulus was identical to the first; the second trial was
a ‘non-match’ case. The neural activities of the task-
specific neurons are shown in red, those of the non-
specific neurons are shown in blue. Several important
points are demonstrated in figure 3. First, in the
primary visual cortex there is little difference in the
amount of neural activity between the task-specific
and the non-specific neurons, and between task and
control trials. Second, such differences increase as
one goes along the ventral visual processing stream
from occipital to temporal to frontal cortex; the task-
specific (‘red’) neurons show greater neural activity
than the ‘blue’ (non-specific) neurons, and there is
more activity during the task trials than during
the control trials. The FR module, whose neurons
increase their activity if there is a match between first
and second stimuli, show these behaviours most
clearly, and demonstrate that our model can perform
the DMS task.

Perhaps the best module on which to focus our
attention is IT because it receives feed-forward inputs
from the visual processing area V4 (and from V1/V2 via
V4), and in turn, projects to the FS module in the
frontal lobe (it also receives a diffuse feedback
anatomical connection from the FD1 and FD2
modules). If one thinks about the relationship between
this module’s activity and that in other modules, one
could propose that based on the neural data, IT’s
functional connectivity with more posterior modules
should be relatively unchanged whether the network is
engaged in the DMS task or in the control task.
Conversely, IT’s functional connectivity with the
frontal modules should appear stronger during the
DMS task condition than during the control condition.

(b) fMRI functional connectivity

(i) Simulating an fMRI time-series
As mentioned in §1, strong evidence has accumulated
suggesting that it is the input activity to neurons that
best correlates with the BOLD signal (i.e. the local
field potentials (LFPs); see Logothetis et al. (2001)
and Logothetis (2003)). Our method for transforming
simulated neuronal activity into simulated fMRI (or
PET) data explicitly assumes that this is the case
Phil. Trans. R. Soc. B (2005)
(Horwitz & Tagamets 1999). Specifically, we take the
absolute value of the synaptic activity, integrated over a
relevant time-period and over all the neural elements in
a module (which means that we combine the data from
each module’s subpopulations, since at the spatial
resolution of fMRI, the neurons from all the subpopu-
lations would be in the same brain location), as the
quantity that will be transformed into the simulated
fMRI or PET signal. For PET, the time-period
corresponds to approximately 30–60 s, because that is
the time needed to acquire a volume of PET regional
cerebral blood flow data. For fMRI, the transformation
process is somewhat more complicated. First, for a
typical MR scanner, one can acquire a slice of data in
about 50 ms. So, we integrate the absolute value of the
synaptic activity in a module over the slice acquisition
time (in our simulations we use 50 ms). The resulting
time-series for each region can be thought of as the
‘gold standard’—what a noiseless, fast MRI scanner
would show if there were no haemodynamic delay or
other possible confounds, such as nonlinearities,
affecting the relationship between neural activity and
the blood oxygenation dependent signal. Each regional
time-series is then convolved with a haemodynamic
response function to produce a temporally smoothed
time-series. For simplicity, we use a Poisson function,
which is characterized by a single parameter l (its mean
and standard deviation; units are in s). More compli-
cated functions representing the haemodynamic
response could, of course, be employed (e.g. Buxton
et al. 1998; Friston et al. 2000). This smoothed time-
series is sampled every Tr second (Tr is the repetition
time—the time needed to acquire an entire volume’s
worth of data; in most fMRI studies, data from each
slice are collected sequentially, either directly or in an
interleaved fashion). The resulting function is the
simulated fMRI time-series. It is these simulated
time-series that we use to compute the interregional
functional connectivity.

In our previous papers, we have spatially integrated
the activity over all the submodules of the PFC when
simulating PET or fMRI data. For connectivity
analysis, because the anatomical connections between
the PFC submodules are complex, we will treat the
PFC submodules as if they are spatially separated from
each other, thus allowing us to investigate their
individual functional connections.

(ii) Computing functional connectivity
To see if the functional connectivity obtained using our
model reflects the underlying pattern of neural
relationships, we shall use one of the simplest defi-
nitions of the fMRI functional connectivity, namely, the
correlation between the within-task time-series (e.g.
Hampson et al. 2002). For our simulation, we had three
trials of the DMS task, and three trials of the control
task. Figure 4 shows the time course of the integrated
synaptic activity (ISA) in three of the regions of the
visual model (V1/V2, IT and D1), and figure 5 shows
the corresponding simulated fMRI signal in subject 1
(our typical subject). Each visual stimulus had a 1 s
duration, the delay period was 1.5 s in length and the
inter-trial interval was 1 s. We assumed a slice acquisi-
tion time of 50 ms and a Tr of 2 s; the haemodynamic
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response function was characterized by a delay
parameter of length 6 s.

Figure 6 shows bar graphs of the within-task
functional connectivity (expressed as a correlation
coefficient) between IT and all the other modules in
the model in subject 1. The plots on the left
correspond to the functional connectivity of the
time-series derived from the ISA, whereas those on
the right were obtained using the fMRI time-series.4

Several features of these graphs are notable: (i) in
terms of the ISA time-series, IT has strong
functional connectivity with posterior areas during
both the DMS and control tasks; (ii) for the ISA
time-series, there is also strong functional connec-
tivity with frontal areas D2 and FR during the DMS
task, but not during the control task; (iii) the fMRI
time-series show somewhat similar results, although
the IT-D2 functional connectivities are not as
distinctly different as they were using the ISA.

Table 2 presents functional connectivity values
between IT and all other brain regions for all 10
simulated subjects, and the mean and standard
deviation of the individual subject correlation coeffi-
cients.5 Also shown in the table are the values of the
differences between the correlation coefficients during
the DMS and control tasks. These latter values
demonstrate that the results discussed for subject 1
are present in most of the other subjects (and in the
mean correlation coefficient). Note that except for the
IT-v1 correlations, the functional connectivity values
obtained using the ISA are always larger for the DMS
task than they are for the control task. The correlations
based on the fMRI time-series show a similar behaviour,
but with several exceptions.

Several studies have averaged the fMRI time-series
from the different subjects (or some such procedure) to
Phil. Trans. R. Soc. B (2005)
produce a ‘mean subject’ (e.g. Bullmore et al. 2000;
Bokde et al. 2001) upon which to perform functional or
effective connectivity analysis. We took our 10 subjects
and averaged together the ISA for the DMS task and
separately for the control task. The resulting time-
series were then convolved with the haemodynamic
response function and sampled at the Tr value used for
the previous analysis. The correlations between the IT
time-series and that in the other brain regions are
shown in figure 7 (which also shows the corresponding
functional connectivity values for the mean correlation
coefficients of the 10 subjects from table 2). For ISA-
based functional connectivity, it is seen that the values



Table 2. Values of the simulated functional connectivity (expressed as a correlation coefficient) between ITand the other brain
regions for each subject for the DMS task and for the control task.
(Also shown are the means (and s.d.) across the 10 subjects. r(task) are the functional connectivity values obtained from time-
series of the integrated synaptic activity during the DMS task; r(ctrl) is the same quantity for the control task; r(taskfmri) is the
same quantity evaluated using the time-series of the simulated fMRI activity during the DMS task and r(ctrlfmri) is the fMRI
functional connectivity during the control task;Dr(taskKctrl) is the difference between r(task) and r(ctrl); Dr(taskfmriKctrlfmri)
is the difference between r(taskfmri) and r(ctrlfmri).)

correlations between IT and all other brain regions

subj1 subj2 subj3 subj4 subj5 subj6 subj7 subj8 subj9 subj10 mean s.d.

r(task)
v1 0.6945 0.3091 0.6875 0.6807 0.7171 0.6832 0.7376 0.6935 0.7053 0.5894 0.6498 0.1258
v4 0.9335 0.9493 0.9296 0.9151 0.9323 0.937 0.9371 0.9368 0.9279 0.9161 0.9315 0.0102
fs 0.9576 0.9854 0.9571 0.9554 0.9496 0.9651 0.9570 0.9556 0.9554 0.9727 0.9611 0.0106
d1 0.5431 0.9289 0.5452 0.6915 0.6293 0.6659 0.4351 0.4401 0.5931 0.8416 0.6314 0.1596
d2 0.7991 0.9635 0.7947 0.8264 0.7691 0.8467 0.7512 0.7411 0.7800 0.9111 0.8183 0.0714
fr 0.8415 0.9176 0.8204 0.7927 0.7923 0.8481 0.8200 0.7702 0.7958 0.8661 0.8265 0.0435

r(ctrl)
v1 0.6993 0.6108 0.7113 0.7283 0.7350 0.6730 0.7140 0.6635 0.7202 0.6065 0.6862 0.0467
v4 0.8940 0.9014 0.8941 0.8772 0.9052 0.8922 0.9009 0.9025 0.8974 0.8932 0.8958 0.0079
fs 0.8971 0.9605 0.891 0.8605 0.8627 0.9243 0.9003 0.8934 0.8844 0.9480 0.9022 0.0330
d1 0.3028 0.7651 0.2736 0.1889 0.2384 0.5223 0.3147 0.3588 0.2202 0.6570 0.3842 0.1970
d2 0.4337 0.7944 0.4093 0.3198 0.3247 0.5966 0.4066 0.5001 0.3011 0.7390 0.4825 0.1746
fr 0.4191 0.8292 0.3805 0.2631 0.3518 0.5222 0.4723 0.4122 0.3388 0.7149 0.4704 0.1763

r(taskfmri)
v1 0.4538 0.3446 0.4333 0.5369 0.5309 0.6661 0.6226 0.6741 0.3432 0.4000 0.5005 0.1250
v4 0.9257 0.9932 0.8488 0.9162 0.9271 0.9805 0.9590 0.9740 0.8083 0.9830 0.9316 0.0612
fs 0.9557 0.9982 0.9857 0.9876 0.9559 0.9910 0.9592 0.9849 0.9625 0.9975 0.9778 0.0175
d1 0.5111 0.9506 0.7910 0.8146 0.6509 0.8129 0.4397 0.6250 0.5939 0.9371 0.7127 0.1746
d2 0.5213 0.9884 0.8011 0.8427 0.6522 0.8614 0.5266 0.7598 0.5631 0.9700 0.7487 0.1750
fr 0.5770 0.9889 0.8070 0.8879 0.6055 0.9180 0.7465 0.7610 0.5773 0.9723 0.7841 0.1585

r(ctrlfmri)
v1 0.2050 0.7026 0.2802 0.3829 0.4144 0.3383 0.4850 0.1008 0.5264 0.5422 0.3978 0.1767
v4 0.6729 0.9509 0.6669 0.6433 0.8473 0.7617 0.8966 0.8059 0.8570 0.9496 0.8052 0.1153
fs 0.8219 0.9891 0.7908 0.6335 0.7256 0.9303 0.8074 0.9272 0.8571 0.9908 0.8474 0.1155
d1 0.6654 0.8608 0.3891 0.3213 0.3955 0.7175 0.4429 0.6395 0.2327 0.9139 0.5579 0.2338
d2 0.4178 0.7541 0.1868 0.0056 K0.0338 0.3519 0.1708 0.5276 0.0404 0.7769 0.3198 0.2969
fr K0.1344 0.8949 0.6396 K0.1975 0.6355 0.5541 0.4646 0.6459 0.5301 0.9096 0.4943 0.3766

Dr(taskKctrl)
v1 K0.0048 K0.3017 K0.0238 K0.0476 K0.0179 0.0102 0.0236 0.0300 K0.0149 K0.0171 K0.0364 0.0960
v4 0.0395 0.0479 0.0355 0.0379 0.0271 0.0448 0.0362 0.0343 0.0305 0.0229 0.0357 0.0076
fs 0.0605 0.0249 0.0661 0.0949 0.0869 0.0408 0.0567 0.0622 0.0710 0.0247 0.0589 0.0235
d1 0.2403 0.1638 0.2716 0.5026 0.3909 0.1436 0.1204 0.0813 0.3729 0.1846 0.2472 0.1364
d2 0.3654 0.1691 0.3854 0.5066 0.4444 0.2501 0.3446 0.2410 0.4789 0.1721 0.3358 0.1228
fr 0.4224 0.0884 0.4399 0.5296 0.4405 0.3259 0.3477 0.3580 0.4570 0.1512 0.3561 0.1338

Dr(taskfmriKctrlfmri)
v1 0.2488 K0.3580 0.1531 0.1540 0.1165 0.3278 0.1376 0.5733 K0.1832 K0.1422 0.1028 0.2696
v4 0.2528 0.0423 0.1819 0.2729 0.0798 0.2188 0.0624 0.1681 K0.0487 0.0334 0.1264 0.1072
fs 0.1338 0.0091 0.1949 0.3541 0.2303 0.0607 0.1518 0.0577 0.1054 0.0067 0.1304 0.1082
d1 K0.1543 0.0898 0.4019 0.4933 0.2554 0.0954 K0.0032 K0.0145 0.3612 0.0232 0.1548 0.2115
d2 0.1035 0.2343 0.6143 0.8371 0.6860 0.5095 0.3558 0.2322 0.5227 0.1931 0.4289 0.2417
fr 0.7114 0.0940 0.1674 1.0854 K0.0300 0.3639 0.2819 0.1151 0.0472 0.0627 0.2899 0.3516
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for the mean-subject and for the mean across subjects

are quite similar to one another and demonstrate

the findings reported above. The fMRI-based func-

tional connectivity shows more divergence between the

mean across subjects and the mean-subject, especially

during the control task (see figure 7).

In our next simulation, we investigated how the

interregional functional connectivity depends on

the underlying anatomical connectivity. We used the

auditory model (task and scanning parameters are

specified in the caption to figure 8), and reduced the

value of the anatomical connection weight from ST to
Phil. Trans. R. Soc. B (2005)
FS to 80, 60, 40, 20 and 0% of the original value

(note that the connection weights from frontal areas to

ST were not modified). This situation is of some

interest for its relevance to functional connectivity

analyses of neurodegenerative diseases, such as Alzhei-

mer’s disease (Horwitz et al. 1995). Figure 8 shows the

values of the correlations between ST and FS (top

panel) and between ST and FR (which is not directly

connected to ST). The ST–FS functional connectivity

shows a nonlinear reduction that is similar for the time-

series obtained from the ISA and from the fMRI

activity, and additionally, does not depend on the task
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being performed. The latter result is not surprising

since these two regions are connected. The ST–FR

functional connectivity evaluated from the ISA shows a

somewhat similar behaviour, as does that obtained
Phil. Trans. R. Soc. B (2005)
using the fMRI time-series. These results demonstrate

that brain regions not directly linked anatomically can

be functionally connected if they are part of the

network mediating the task of interest, but that the
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strength of the functional connectivity can depend on
the integrity of network anatomy.
6. DISCUSSION
In this paper, we have used biologically realistic large-
scale neural models of the visual and auditory object-
processing cortical pathways to simulate DMS tasks.
Examining the neuronal activities of the different
regions in the models suggested that one of the
regions (IT/ST) should possess strong functional
interactions with posterior areas during both the
DMS task and control task (where random noise
stimuli are presented). However, the functional
interactions with frontal areas should be stronger for
the DMS task than for the control task. Our
simulated functional connectivity results were in
agreement with these expectations. We found that
the IT/ST functional connectivity with PFC areas,
evaluated using the within-task time-series of the
integrated synaptic activities, was generally smaller
during the control condition than during the DMS
task, whereas the functional connectivity values with
posterior areas were similar for the two conditions. As
the strength of the feed-forward anatomic connection
from IT/ST to PFC was weakened, so too were the
strengths of the evaluated functional connectivity
between IT/ST and PFC areas, although in a non-
linear manner. We also found somewhat similar
results for the functional connectivity evaluated
using the fMRI time-series (given the choices of the
scanning and task parameters we used), although
these results were perhaps not as clear as those for the
functional connectivity based on the ISA time-series.
Some differences in the values of the calculated
functional connectivity occurred, depending on how
it was calculated. In particular, the mean-subject
fMRI correlations during the control task differed
from those obtained evaluating the mean over the 10
subjects. Taken together, these simulated results
indicate that our large-scale neural model can provide
a useful and powerful means to investigate the neural
basis of functional and effective connectivity.

As mentioned earlier, this is the first in a series of
studies that will use these biologically realistic models
to explore the neural substrates of many of the different
types of functional and effective connectivity that have
been proposed and used by functional brain imagers. In
the current paper, which focuses on fMRI, we provided
an overview of the issues involved and a brief history of
some of the different definitions that have been
employed. Our simulated results emphasized one of
the simplest definitions of functional connectivity in the
fMRI literature: the within-subject, within-condition,
correlation between two region-of-interest time-series
(e.g. Hampson et al. 2002). There were two sources of
variability that our calculation of functional connec-
tivity depended on: block-to-block and trial-to-trial.
For the cases we presented, it is likely that the block-to-
block variability had a greater effect on the value of the
functional connectivity than did the trial-to-trial
variability. In our simulations, the major source of
the block-to-block variability was the strength of
‘attention’ parameter. Our simulated results thus
Phil. Trans. R. Soc. B (2005)
speak to the importance of top-down effects such as
attention as a modulator of functional connectivity and,
consequently, of network performance (Horwitz et al.
1992b; Buechel and Friston 1997; McIntosh et al.
1999; Grady et al. 2001; Rowe et al. 2005).

The results of our simulations demonstrate that
within-task analyses of functional and effective connec-
tivity, as have been used with PET (e.g. McIntosh et al.
1999; Glabus et al. 2003) and fMRI (e.g. Bokde et al.
2001; Hampson et al. 2002) can, in principle, reflect
some aspects of the underlying neuronal interactions.
As illustrated in figure 8, when these interactions are
being mediated along a direct anatomical link between
two regions, the strength of the fMRI functional
connectivity can be related to the strength of the
anatomical link. A similar result was shown for PET
data in a prior publication (Horwitz 2004). The
simulations whose results were presented in figure 8
also indicate that PET or fMRI-measured functional
and effective connectivity can be useful for investigating
neurodegenerative diseases (e.g. Grafton et al. 1994;
Horwitz et al. 1995;Grady et al. 2001; Rowe et al. 2002).

Table 2 presents the functional connectivity values
between IT and the other brain regions in all 10
simulated subjects. As can be seen, the values differed
across the subjects. As indicated in table 1, these
subjects had different anatomical connection weights.
For example, subject 1 represented a ‘typical’ subject
and subject 2 had stronger anatomical weights between
most brain areas than did subject 1. The differences in
IT-ISA functional connectivity between the DMS and
control tasks in subject 2 are relatively small (owing to
the fact that the within-condition correlations are quite
large for both conditions); a similar conclusion applies
to the fMRI-derived functional connectivity values. In
spite of the differences between subjects, the mean
values of the correlation coefficients representing the
functional connectivity between ITand the other brain
regions showed the relevant pattern, as did the values
for the typical subject (subject 1; a reduction in value
for the IT-frontal functional connections between the
DMS and control tasks), particularly for the ISA
functional connections, but also for those based on
fMRI data. A similar result was found using the mean-
subject data. Both Goncalves et al. (2001), using fMRI,
and Glabus et al. (2003), using PET, have reported
large between-subject differences in effective connec-
tivities. However, in both studies, the overall pattern of
effective connections for the group model provided a
reasonable representation of the tasks under study. Our
simulated results, and these experimental findings, thus
suggest that in normal subjects, there can be substantial
subject-to-subject differences in the values of the
interregional functional or effective connectivity for a
task (more if the task permits multiple strategies to be
employed; see Glabus et al. (2003) for a compelling
example), and lead us to recommend that within-
subject connectivity analysis be carried out. However,
group results can still provide useful information as to
how tasks are being mediated in normal individuals.

There are many other questions that our simulations
could address, but space limitations prevent us from
pursuing them here. Several of these questions are
worth mentioning, however, to give a feeling for how
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computational neural modelling can add insight to

functional neuroimaging. First, comparing and con-

trasting how the various sources of variability affect the

calculated functional connectivity is a topic that our

modelling formalism can investigate, especially when

done in conjunction with appropriately designed

experiments in which the different sources of variance

can be estimated. Another important issue that will be

explored concerns the role of neural inhibition in

affecting functional connectivity values. We have

previously published a study based on the visual

model that suggests that the influence of synaptic

inhibition on fMRI/PET activations is likely to be

determined by both task context and local circuitry

(Tagamets & Horwitz 2001). Another question con-

cerns the contribution of feedback connections in

determining the strength of the functional connectivity.

These types of issues will be particularly critical as

powerful new methods (e.g. Granger causality (Goebel

et al. 2003); dynamic causal modelling (Friston et al.
2003); ‘dynamic’ connectivity (Breakspear 2004))

become widely used. Most importantly, being able to

simulate functional (or effective) connectivity with a

particular model, and comparing the simulated values

against experimentally calculated ones, will be another

test of the ability of the model to account for observed

data. If successful, this will add support to the validity

of the hypothesized neural mechanisms in the model

that are attempting to account for the cognitive

phenomena under study.

We wish to thank Lucy Lee, Hung Thai-Van and Christopher
McKinney for reading a preliminary version of the manu-
script and for several useful discussions.
ENDNOTES
1
In a previous paper (Horwitz 2004), we presented some preliminary

results on simulating PET functional connectivity. The way subject-

to-subject variability was simulated differs from the method used in

the current paper, which we consider to be an improvement over the

earlier effort.
2Subject 1 is considered to be a ‘normal’ subject, similar to that used

in the original model (Tagamets & Horwitz 1998); the reason the

connectivity values are lower than those given in the original model is

because the addition of non-specific neurons requires a reduction in

the value of the original synaptic weights to achieve optimal network

behaviour. Note also that the accuracy scores shown in table 1 appear

low because they incorporate performance at suboptimal levels of

attention. These two issues are discussed next.
3It is important to remember that a significant functional connectivity

between two brain regions does not require that there be a direct

anatomical link between the two regions. For example, a third region

may project to the two regions, or the two regions could be linked via

other regions.
4We first separated and concatenated the time-series (shown in

figure 4) of the integrated synaptic activity of the three trials for each

task, then haemodynamically convolved and sampled the resulting

time-series.
5Note that the mean value is inappropriate from a statistical point of

view, since correlation coefficients are not normally distributed.

However, we are using the mean and standard deviation as purely

descriptive devices for characterizing the values in the subjects.
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