
Phil. Trans. R. Soc. B (2005) 360, 1075–1091

doi:10.1098/rstb.2005.1648
Stochastic models of neuronal dynamics

Published online 29 May 2005
L. M. Harrison*, O. David and K. J. Friston
One con
of brain

*Autho
The Wellcome Department of Imaging Neuroscience, Institute of Neurology, UCL, 12 Queen Square,
London WC1N 3BG, UK

Cortical activity is the product of interactions among neuronal populations. Macroscopic
electrophysiological phenomena are generated by these interactions. In principle, the mechanisms
of these interactions afford constraints on biologically plausible models of electrophysiological
responses. In other words, the macroscopic features of cortical activity can be modelled in terms of
the microscopic behaviour of neurons. An evoked response potential (ERP) is the mean electrical
potential measured from an electrode on the scalp, in response to some event. The purpose of this
paper is to outline a population density approach to modelling ERPs.

We propose a biologically plausible model of neuronal activity that enables the estimation of
physiologically meaningful parameters from electrophysiological data. The model encompasses four
basic characteristics of neuronal activity and organization: (i) neurons are dynamic units, (ii) driven
by stochastic forces, (iii) organized into populations with similar biophysical properties and response
characteristics and (iv) multiple populations interact to form functional networks. This leads to a
formulation of population dynamics in terms of the Fokker–Planck equation. The solution of this
equation is the temporal evolution of a probability density over state-space, representing the
distribution of an ensemble of trajectories. Each trajectory corresponds to the changing state of a
neuron. Measurements can be modelled by taking expectations over this density, e.g. mean
membrane potential, firing rate or energy consumption per neuron. The key motivation behind our
approach is that ERPs represent an average response over many neurons. This means it is sufficient to
model the probability density over neurons, because this implicitly models their average state.
Although the dynamics of each neuron can be highly stochastic, the dynamics of the density is not.
This means we can use Bayesian inference and estimation tools that have already been established for
deterministic systems. The potential importance of modelling density dynamics (as opposed to more
conventional neural mass models) is that they include interactions among the moments of neuronal
states (e.g. the mean depolarization may depend on the variance of synaptic currents through
nonlinear mechanisms).

Here, we formulate a population model, based on biologically informed model-neurons with spike-
rate adaptation and synaptic dynamics. Neuronal sub-populations are coupled to form an
observation model, with the aim of estimating and making inferences about coupling among
sub-populations using real data. We approximate the time-dependent solution of the system using
a bi-orthogonal set and first-order perturbation expansion. For didactic purposes, the model is
developed first in the context of deterministic input, and then extended to include stochastic effects.
The approach is demonstrated using synthetic data, where model parameters are identified using a
Bayesian estimation scheme we have described previously.

Keywords: evoked response potentials; population dynamics; Fokker–Planck equation;
generative models; synthetic data; system identification
1. INTRODUCTION
Neuronal responses are the product of coupling among

hierarchies of neuronal populations. Sensory infor-

mation is encoded and propagated through the

hierarchy depending on biophysical parameters that

control this coupling. Because coupling can be

modulated by experimental factors, estimates of

coupling parameters provide a systematic way to

parametrize experimentally induced responses, in

terms of their causal structure. This paper is about
tribution of 21 to a Theme Issue ‘Multimodal neuroimaging
connectivity’.
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estimating these parameters using a biologically

informed model.

Electroencephalography (EEG) is a non-invasive

technique for measuring electrical activity generated by

the brain. The electrical properties of nervous tissue

derive from the electrochemical activity of coupled

neurons that generate a distribution of current sources

within the cortex, which can be estimated from

multiple scalp electrode recordings (Mattout et al.
2003; Phillips et al. 2005). An interesting aspect of

these electrical traces is the expression of large-scale

coordinated patterns of electrical potential. There are

two commonly used methods to characterize event-

related changes in these signals: averaging over

many traces, to form event-related potentials (ERP)
q 2005 The Royal Society
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and calculating the spectral profile of ongoing oscil-
latory behaviour. The assumption implicit in the
averaging procedure is that the evoked signal has a
fixed temporal relationship to the stimulus, whereas the
latter procedure relaxes this assumption (Pfurtscheller
& Lopes da Silva 1999).

Particular characteristics of ERPs are associated
with cognitive states, e.g. the mismatch negativity in
auditory oddball paradigms (Winkler et al. 1998,
2001). The changes in ERP evoked by a cognitive
‘event’ are assumed to reflect event-dependent
changes in cortical activity. In a similar way, spectral
peaks of ongoing oscillations within EEG recordings
are generally thought to reflect the degree of
synchronization among oscillating neuronal popu-
lations, with specific changes in the spectral profile
being associated with various cognitive states
(Pfurtscheller & Lopes da Silva 1999). These
changes have been called event-related desynchroni-
zation (ERD) and event-related synchronization
(ERS). ERD is associated with an increase in
processing information, e.g. voluntary hand move-
ment (Pfurtscheller 2001), whereas ERS is associated
with reduced processing, e.g. during little or no
motor behaviour. These observations led to the
thesis that ERD represents increased cortical excit-
ability, and conversely, that ERS reflects de-acti-
vation (Pfurtscheller & Lopes da Silva 1999;
Pfurtscheller 2001).

The conventional approach to interpreting the EEG
in terms of computational processes (Churchland &
Sejnowski 1994) is to correlate task-dependent changes
in the ERP or time-frequency profiles of ongoing
activity with cognitive or pathological states.
A complementary strategy is to use a generative
model of how data are caused, and estimate the
model parameters that minimize the difference
between real and generated data. This approach goes
beyond associating particular activities with cognitive
states to model the self-organization of neural systems
during functional processing. Candidate models devel-
oped in theoretical neuroscience can be divided into
mathematical and computational (Dayan 1994).
Mathematical models entail the biophysical mechan-
isms behind neuronal activity, such as the Hodgkin–
Huxley model neuron of action potential generation
(Dayan & Abbott 2001). Computational models are
concerned with how a computational device could
implement a particular task, e.g. representing saliency
in a hazardous environment. Both levels of analysis
have produced compelling models, which speaks to the
use of biologically and computationally informed
forward or generative models in neuroimaging. We
focus here on mathematical models.

The two broad classes of generative models for EEG
are neural mass models (NMM) (Wilson & Cowan
1972; Nunez 1974; Lopes da Silva et al. 1976; Freeman
1978; Jansen & Rit 1995; Valdes et al. 1999; David &
Friston 2003) and population density models (Knight
1972a,b, 2000; Nykamp & Tranchina 2000, 2001;
Omurtag et al. 2000; Haskell et al. 2001; Gerstner
& Kistler 2002). NMMs were developed as parsimo-
nious models of the mean activity (firing rate or
membrane potential) of neuronal populations and
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have been used to generate a wide range of oscillatory
behaviours associated with the EEG ( Jansen & Rit
1995; Valdes et al. 1999; David & Friston 2003). The
model equations for a population are a set of nonlinear
differential equations forming a closed loop between
the influence neuronal firing has on mean membrane
potential and how this potential changes the conse-
quent firing rate of a population. Usually, two operators
are required: linking membrane responses to input
from afferent neurons (pulse-to-wave) and the depen-
dence of action potential density on membrane
potential (wave-to-pulse; see Jirsa 2004; for an excel-
lent review). They are divided into lumped models
(Lopes da Silva et al. 1976; David & Friston 2003)
where populations of neurons are modelled as discrete
nodes or regions that interact through cortico-cortical
connections or as continuous neural fields (Jirsa &
Haken 1996; Wright et al. 2001, 2003; Rennie et al.
2002; Robinson et al. 2003), where the cortical sheet is
modelled as a continuum, on which the cortical
dynamics unfold. Frank (2000) and Frank et al.
(2001) have extended the continuum model to include
stochastic effects with an application to MEG data.

David & Friston (2003) and David et al. (2004) have
recently extended a NMM proposed by Jansen & Rit
1995, and implemented it as a forward model to analyse
ERP data measured during a mismatch negativity task
(David et al. 2005). In doing this, they were able to infer
changes in effective connectivity, defined as the influence
one region exerts on another (Aertsen et al. 1989;
Friston et al. 1995, 1997; Buchel & Friston 1998; Buchel
et al. 1999; Friston 2001; Friston & Buchel 2000) that
mediated the NMM. Analyses of effective connectivity
in the neuroimaging community were first used with
positron emission tomography and later with functional
magnetic resonance imaging (fMRI) data (Friston et al.
1993; Harrison et al. 2003; Penny et al. 2004a,b). The
latter applications led to the development of dynamic
causal modelling (DCM) (Friston et al. 2003). DCM for
neuroimaging data embodies organizational principles
of cortical hierarchies and neurophysiological knowledge
(e.g. time constants of biophysical processes) to con-
strain a parametrized nonlinear dynamic model of
observed responses. A principled way of incorporating
these constraints is in the context of Bayesian estimation
(Friston et al. 2002). Furthermore, established Bayesian
model comparison and selection techniques can be used
to disambiguate different models and their implicit
assumptions. The development of this methodology by
David et al. for electrophysiological data was an obvious
extension and continues with this paper.

An alternative to NMM are population density
models (Knight 1972a,b, 2000; Frank 2000; Nykamp &
Tranchina 2000, 2001; Omurtag et al. 2000; Frank
et al. 2001; Haskell et al. 2001; Gerstner & Kistler
2002; Sirovich 2003). These models explicitly show the
effect of stochastic influences, e.g. variability of pre-
synaptic spike-time arrivals. This randomness is
described probabilistically in terms of a probability
density over trajectories through state space. The
ensuing densities can be used to generate measure-
ments, such as the mean firing rate or membrane
potential of an average neuron within a population. In
contrast, NMM models only account for the average
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neuronal state, and not for stochastic effects. Stochastic

effects are known to be important for many phenom-

ena, e.g. stochastic resonance (Wiesenfeld & Moss

1995). A key component of modelling population

densities is the Fokker–Planck equation (FPE) (Risken

1996). This equation has a long history in the physics of

transport processes and has been applied to a wide

range of physical phenomena, e.g. Brownian motion,

chemical oscillations, laser physics and biological self-

organization (Haken 1973, 1996; Kuramoto 1984;

Risken 1996). The beauty of the FPE is that, given

constraints on the smoothness of stochastic forces

(Risken 1996; Kloeden & Platen 1999), stochastic

effects are equivalent to a diffusive process. This can be

modelled by a deterministic equation in the form of a

parabolic partial differential equation (PDE). The

Fokker–Planck formalism uses notions from mean-

field theory, but is dynamic, and can model transitions

from non-equilibrium to equilibrium states.

ERPs represent the average response over millions

of neurons, which means it is sufficient to model their

population density to generate responses. This means

the FPE is a good candidate for a forward or

generative model of ERPs. Furthermore, the popu-

lation dynamics entailed by the FPE are deterministic.

This means Bayesian techniques that are already

established for deterministic dynamical systems can

be used to model electrophysiological responses.

However, the feasibility of using population density

methods, in the context of ERP/EEG data analysis,

has not been established. What NMMs lack in

distributional details, the FPE lacks in parsimony,

which brings with it a computational cost. This cost

could preclude a computationally efficient role in data

analysis. The purpose of this paper was to assess the

feasibility of using the FPE in a forward model of

average neuronal responses.
(a) Overview

In the first section, we review the theory of the

integrate-and-fire model neuron with synaptic

dynamics and its formulation into a FPE of interacting

populations mediated through mean-field quantities

(see the excellent texts of Risken 1996; Dayan &

Abbott 2001; Gerstner & Kistler 2002; for further

details). The model encompasses four basic character-

istics of neuronal activity and organization; neurons

are (i) dynamic units, (ii) driven by stochastic forces,

(iii) organized into populations with similar biophysical

properties and response characteristics and (iv) mul-

tiple populations interact to form functional networks.

In the second section, we briefly review the Bayesian

estimation scheme used in current DCMs (Friston

et al. 2002, 2003; David et al. submitted). In the third,

we discuss features of the model and demonstrate the

face-validity of the approach using simulated data. This

involves inverting a population density model

to estimate model parameters given synthetic data.

The discussion focuses on outstanding issues with

this approach in the context of generative models for

ERP/EEG data.
Phil. Trans. R. Soc. B (2005)
2. THEORY
(a) A deterministic model neuron

The response of a model neuron to input, s(t), has a
generic form, which can be represented by the
differential equation.

_x Z f ðxðtÞ; sðtÞ; qÞ; (2.1)

where _xZvx=vt. The state vector, x (e.g. including
variables representing membrane potential and pro-
portion of open ionic channels), defines a space within
which its dynamics unfold. The number of elements in
x defines the dimension of this space and specific values
identify a coordinate within it. The temporal derivative
of x quantifies the motion of a point in state space,
and the solution of the differential equation is its
trajectory. The right-hand term is a function of the
states, x(t), and input, s(t), where input can be
exogenous or internal, i.e. mediated by coupling with
other neurons. The model parameters, characteristic
time-constants of the system, are represented by q.
As states are generally not observed directly, an
observation equation is needed to link them to
measurements, y

y Z gðx; qÞC3; (2.2)

where 3 is observation noise (usually modelled as a
Gaussian random variable). An example of an obser-
vation equation is an operator that returns the mean
firing rate or membrane potential of a neuron. These
equations form the basis of a forward or generative
model to estimate the conditional density pðqjyÞ given
real data, as developed in §2b.

Neurons are electrical units. A simple expression for
the rate of change of membrane potential, V, in terms of
membrane currents, Ii (ith source), and capacitance is

C _V Z
X

i

IiðtÞ: (2.3)

Figure 1 shows a schematic of a model neuron and
its resistance-capacitance (RC) circuit equivalent.
Models of action potential generation, e.g. the
Hodgkin–Huxley neuron, are based on quantifying the
components of the right-hand of equation (2.3).
Typically, currents are categorized as voltage, calcium
or neurotransmitter-dependent. The dynamic repertoire
of a specific model depends on the nature of the different
source currents. This repertoire can include fixed-point
attractors, limit cycles and chaotic dynamics.

A caricature of a spiking neuron is the simple
integrate-and-fire (SIF) model. It is one-dimensional
as all voltage and synaptic channels are ignored.
Instead, current is modelled as a constant passive leak
of charge, thereby reducing the right-hand side of
equation (2.3) to ‘leakage’ and input currents.

C _V Z gLðEL KV ÞC sðtÞ; (2.4)

where gL and EL are the conductance and equilibrium
potential of the leaky channel, respectively (see tables 1
and 2 for a list of all variables used in this paper). This
model does not incorporate the biophysics needed to
generate action potentials. Instead, spiking is modelled
as a threshold process, i.e. once membrane potential
exceeds a threshold value, VT, a spike is assumed and
membrane potential is reset to VR, where VR%EL!
VT. No spike is actually emitted; only sub-threshold
dynamics are modelled.
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Figure 1. Schematic of a single-compartment model neuron including synaptic dynamics and its RC circuit analogue. Synaptic
channels and voltage-dependent ion channels are shown as a circle containing S or V respectively. There may be several species
of channels, indicated by the dots. Equilibrium potentials, conductance and current owing to neurotransmitter (synaptic),
voltage-dependent and passive (leaky) channels are ES, EV, EL, gS, gV, gL, IS, IV and IL, respectively. Depolarization occurs when
membrane potential exceeds threshold, VT. Input increases the opening rate of synaptic channels. Note that if synaptic channels
are dropped from a model (e.g. as in a SIF neuron), then input is directly into the circuit.
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(b) Modelling supra-threshold dynamics

First, we augment a SIF model with an additional
variable T inter-spike time (IST). Typically, the
threshold potential is modelled as an absorbing
boundary condition, with re-entry at the reset voltage.
However, we have chosen to model the IST as a state
variable for a number of important reasons. First, it
constrains the neuronal trajectory to a finite region of
state space, which only requires natural boundary
conditions, i.e. the probability mass decays to zero as
state space extends to infinity. This makes our later
treatment generic, because we do not have to consider
model-specific boundary conditions when, for
example, formulating the FPE or deriving its eigen-
system. Another advantage is that the time between
spikes can be calculated directly from the density of
IST. Finally, having an explicit representation of the
time since the last spike allows us to model time-
dependent changes in the systems parameters (e.g.
relative refractoriness) that would be much more
difficult in conventional formulations. The resulting
model is two-dimensional and automates renewal to
reset voltage, once threshold has been exceeded. We
will refer to this as a modified SIF model. With this
additional state-variable, we have

_V Z
1

C
ðgLðEL KV ÞC sðtÞÞCaðVR KV Þb

_T Z 1KaTHðV Þ

bZ expðKT2=2g2Þ

HðV ÞZ
1 VRVT

0 V!VT:

(

9>>>>>>>>>=
>>>>>>>>>;

(2.5)

The firing rate of this model, in response to different
input, is shown in a later figure (figure 8) when we
compare its response to a stochastic model neuron.
A characteristic feature of this deterministic model is
that the input has to reach a threshold before spikes are
Phil. Trans. R. Soc. B (2005)
generated (see Appendix A for a brief derivation of this
threshold), after which, firing rate increases monotoni-
cally. This is in contrast to a stochastic model that has
non-zero probability of firing, even with low input.
Given a supra-threshold input to the model of equation
(2.5), membrane voltage is reset to VR using the
Heaviside function (last term in equation (2.5)). This
ensures that once VOVT, the rate of change of T with
respect to time is large and negative (aZ104), reversing
the progression of IST and returning it to zero, after
which it increases constantly for VR!V!VT. Mem-
brane potential is coupled to T via an expression
involving b, which is a Gaussian function, centred at
TZ0 with a small dispersion (gZ1 ms). During the first
few milliseconds following a spike, this term provides a
brief impulse to clamp membrane potential near to VR

(cf. the refractory period).
(c) Modelling spike-rate adaptation and synaptic

dynamics

Equation (2.5) can be extended to include ion-channel
dynamics, i.e. to model spike-rate adaptation and
synaptic transmission.

_VZ
1

C
ðgLðELKV ÞCgsKxsKðEsKKV Þ

CgAMPAxAMPAðEAMPAKV Þ

CgGABAxGABAðEGABAKV Þ

CgNMDAxNMDAðENMDAKV Þ=ð1CexpðKðV KaÞ=bÞÞ

CaðVRKV Þb

_T Z1KaTHðV Þ

tsK _xsK Z ð1KxsKÞ4bKxsK

tAMPA _xAMPA Zð1KxAMPAÞðpAMPACsðtÞÞKxAMPA

tGABA _xGABA Zð1KxGABAÞpGABAKxGABA

tNMDA _xNMDA Zð1KxNMDAÞpNMDAKxNMDA:

(2.6)
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Figure 2. Dispersive effect of variable input on trajectories. The top figure shows one trajectory of the model of equation (2.6),
whereas the lower figure shows five trajectories, each the consequence of a different sequence of inputs sampled from a Poisson
distribution. Once threshold is exceeded, V is reset to VR. Vertical lines above threshold represent action potentials. Stochastic
input is manifest as a dispersion of trajectories.
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These equations model spike-rate adaptation and
synaptic dynamics (fast excitatory AMPA, slow excit-
atory NMDA and inhibitory GABA channels) by a
generic synaptic channel mechanism, which is illus-
trated in figure 1. The proportion of open channels is
modelled by an activation variable, xi (iZsK (slow
potassium), AMPA, GABA or NMDA), where
0% xi%1. Given no input, the ratio of open to closed
channels will relax to an equilibrium state, e.g. p/(1Cp)
for GABA and NMDA channels. The rate at which
channels close is proportional to xi. Conversely, the rate
of opening is proportional to 1Kxi. Synaptic input now
enters by increasing the opening rate of AMPA
channels instead of affecting V directly (see the RC
circuit of figure 1).
(d) A stochastic model neuron

The response of a deterministic system to input is
known from its dynamics and initial conditions.
The system follows a well-defined trajectory in state-
space. The addition of system noise, i.e. random input,
to the deterministic equation turns it into a stochastic
differential equation (SDE), also called Langevin’s
equation (Risken 1996). In contrast to deterministic
systems, Langevin’s equation has an ensemble of
solutions. The effect of stochastic terms, e.g. variable
spike-time arrival, is to disperse trajectories through
state space. A simple example of this is shown in
figure 2. The top figure shows just one trajectory and
five are shown below, each with the same initial
condition. The influence of variable input is manifest
as a dispersion of trajectories.

Under smoothness constraints on the random input,
the ensemble of solutions to the SDE are described
Phil. Trans. R. Soc. B (2005)
exactly by the FPE (Risken 1996; Kloeden & Platen
1999). The FPE enables the ensemble of solutions of a
SDE to be framed as a deterministic dynamic equation,
which models the dispersive effect of stochastic input as
a diffusive process for which many solution techniques
have been developed (Risken 1996; Kloeden & Platen
1999). This leads to a parsimonious description in
terms of a probability density over state space,
represented by r(x,t). This is important, as stochastic
effects can have a substantial influence on dynamic
behaviour (for example, the response profile of a
stochastic neuron verses a deterministic model neuron
in figure 8).

Population density methods have received much
attention over the past decades as a means of
efficiently modelling the activity of thousands of
similar neurons. Knight (2000) and Sirovich (2003)
describe an eigen-function approach to solving
particular examples of these equations and extend
the method to a time-dependent perturbation sol-
ution. Comparative studies by Omurtag et al. (2000)
and Haskell et al. (2001) have demonstrated the
efficiency and accuracy of population density methods
with respect to Monte Carlo simulations of popu-
lations of neurons. The effects of synaptic dynamics
have been explored (Haskell et al. 2001; Nykamp &
Tranchina 2001) and Nykamp & Tranchina (2000)
have applied the method to model-orientation tuning.
Furthermore, Casti et al. (2002) have modelled
bursting activity of the lateral geniculate nucleus.
Below, we review briefly a derivation of the FPE and
its eigen-solution (Knight 2000; Sirovich 2003). We
have adopted some terminology of Knight and others
for consistency.
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Figure 3. The master equation of an SIF model with excitatory input (no synaptic dynamics). Three values of the state x (x and
xGh), the probability of occupying these states (r(xGh) and r(x)) and transition rates (f(x), f(xCh) and r(t)) are shown. The rate
of change of r(x, t) with time (bottom centre formula) is attained by considering the rates in and out of x (formulae at the top left
and right, respectively).
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Consider a 1-divisional system described by
equation (2.1), but now with s(t) as a random variable.

sðtÞZ h
X

n

dðt K tnÞ; (2.7)

where h is a discrete quantity representing the change in
post-synaptic membrane potential owing to a synaptic
event, and tn represents the time of the nth event, which
is modelled as a random variable. Typically, the time
between spikes is sampled from a Poisson distribution
(see Nykamp & Tranchina 2000; Omurtag et al. 2000).
Given the neuronal response function s(t) (see Dayan &
Abbott 2001), the mean impulse rate, r(t), can be
calculated by taking an average over a short time-
interval, T,

sðtÞZ
P

n dðt K tnÞ

rðtÞZ
1

T

ðT

0
sðtÞdt

sðtÞZ hrðtÞ:

9>>>=
>>>;

(2.8)

How does r(x,t) change with time, owing to variability
in s(t)? To simplify the description we will consider a
SIF model with an excitatory input only (without
synaptic dynamics). See Omurtag et al. (2000) for
further details.

Consider the ladder diagram of figure 3. The Master
equation (see Risken 1996), detailing the rate of change
of r(x,t) with time, can be intuited from this figure,

_rðxÞZ _rIN C _rOUT Z rðxChÞf ðxChÞ

CrðxKhÞrðtÞKrðxÞrðtÞKrðxÞf ðxÞ; ð2:9Þ

on rearranging

_rðxÞZðrðxChÞf ðxChÞKrðxÞf ðxÞÞCrðtÞðrðxKhÞKrðxÞÞ:

(2.10)
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If we approximate the first bracketed expression using a
first-order Taylor expansion, we obtain

_rðxÞZK
v

vx
f rC rðtÞðrðxKhÞKrðxÞÞ; (2.11)

which Omurtag et al. (2000) refers to as the population
equation. The first right-hand term is due to leakage
current and generates a steady flow towards EL. The
second expression is due to input and is composed of
two terms, which can be considered as replenishing and
depleting terms, respectively. Given an impulse of
input, the probability between xKh and x will
contribute to flow at x, whereas r(x) flows away from
x. An alternative derivation in terms of scalar and
vector fields is given in Appendix B.

The replenishing term of equation (2.11) can be
approximated using a second-order Taylor series
expansion about x:

rðxKhÞzrðxÞKh
vr

vx
C

h2

2

v2r

vx2
: (2.12)

Substituting this into equation (2.11) and using
w2Zsh, where w is the diffusion coefficient, brings us
to the diffusion approximation of the population
equation, i.e. the FPE or the advection-diffusion
equation:

_rZK
vððf C sÞrÞ

vx
C

w2

2

v2r

vx2
; (2.13)

or, more simply

_rZQðx; sÞr; (2.14)

where Q(x, s) contains all the dynamic information
entailed by the differential equations of the model.
Knight et al. (2000) refer to this as a dynamic operator.
The first term of equation (2.13), known as the
advection term, describes movement of the probability
density owing to the system’s deterministic dynamics.
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The second describes dispersion of density brought
about by stochastic variations in the input. It is
weighted by half the square of the diffusion coefficient,
w, which quantifies the root-mean-squared distance
travelled owing to this variability. Inherent in this
approximation is the assumption that h is very small,
i.e. the accuracy of the Taylor series increases as h/0.
Comparisons between the diffusion approximation and
direct simulations (e.g. Nykamp & Tranchina 2000;
Omurtag et al. 2000) have demonstrated its accuracy in
the context of neuronal models.

So far, the FPE has been interpreted as the statistical
ensemble of solutions of a single neurons response to
input. An alternative interpretation is that r(x, t)
represents an ensemble of trajectories describing a
population of neurons. The shift from a single neuron
to an ensemble interpretation entails additional con-
straints on the population dynamics. An ensemble, or
‘mean-field’ type population, equation assumes that
neurons within an ensemble are indistinguishable. This
means that each neuron ‘feels’ the same influence from
internal interactions and external input.

These assumptions constrain the connectivity
among a population that mean-field approaches can
model, as they treat the connectivity matrix, quantify-
ing all interactions, as a random variable which changes
constantly with time. The changing connectivity matrix
can be interpreted as a consequence of miss firing
(Abeles 1991; Omurtag et al. 2000). If, however, local
effects dominate, such as local synchronous firing, then
a sub-population will become distinguishable, thereby
violating the basic premise of a mean-field assumption.
Assuming this is not the case, a mean-field approxi-
mation of ensemble activity can then be developed,
which enables the modelling of neuronal interactions
by the mean influence exerted on one neuron from the
rest. Given this, a population response is modelled by
an ensemble of non-interacting neurons, but whose
input is augmented by a mean interaction term.

The FPE equation of (2.13) generalizes to models
with multiple states, such as those derived in the first
section.

_P ZV,ðWVKFðx; sÞÞP ; (2.15)

where P represents the probability distribution over a
multi-dimensional state space and W is the co-variation
matrix involving diffusion coefficients (the denomi-
nator, 2, is absorbed into this). An example of F(x, s) is
equation (2.6).
(e) Solution of the Fokker–Planck equation

Generally, the FPE is difficult to solve using analytic
techniques. Exact solutions exist for only a limited
number of models (see Knight et al. 2000). However,
approximate analytic and numerical techniques
(Risken 1996; Kloeden & Platen 1999; Knight
2000; de Kamps 2003; Sirovich 2003) offer ways of
solving a general equation. We have chosen a solution
based on transforming the PDE to a set of coupled
odes (ordinary differential equations) and projecting
onto a bi-orthogonal set. This results in an equal
number of uncoupled equations that approximate the
original PDE. In turn, this enables a dimension
Phil. Trans. R. Soc. B (2005)
reduction of the original set of equations and an
approximation of input-dependent solutions in terms
of a known solution.

The dynamic operator, Q(s), is generally input-
dependent and non-symmetric. By diagonalizing Q(s),
we implicitly reformulate the density dynamics in terms
of probability modes. Two sets of eigenvectors (right
and left) are associated with the dynamic operator,
forming a bi-orthogonal set. This set encodes modes or
patterns of probability over state-space. The right-
eigenvectors are column vectors of the matrix R, where
QRZRD and left-eigenvectors are row vectors of
matrix L, where LQZDL. Both sets of eigenvectors
share the same eigenvalues in the diagonal matrix D,
which are sorted so that l0Ol1Ol2.. The left
eigenvector matrix is simply the generalized inverse of
the right-eigenvector matrix. The number of eigenvec-
tors and values, n, is equal to the dimensionality of Q.
After normalization Q can be diagonalized,

LQR ZD: (2.16)

For the time being, we will keep input constant,
i.e. sZ0. Projecting the probability density r(x,t) onto
the space L generates an equivalent density m, but
within a different coordinate system. Conversely, R
projects back to the original coordinate system,

mZLr; rZRm: (2.17)

Substituting QZRDL and the right expression of
equation (2.17) into equation (2.14) results in a
diagonalized system, _mZDm, which has the solution

mðtÞZ expðDtÞmð0Þ; (2.18)

where m(0) is a vector of initial conditions. This
solution can be framed in terms of independent
modes, i.e. columns of R, each of which contributes
linearly to the evolution of the density. The expression
of each mode is given by the coefficients in m, whose
dynamics are governed by equation (2.21). The rate of
exponential decay of the ith mode is characterized by
its eigenvalue according to tiZK1/li, where ti is its
characteristic time-constant. The key thing here is that,
in many situations, most modes decay rapidly to zero,
i.e. have large negative eigenvalues. Their contribution
to the dynamics at longer time-scales is therefore
negligible. This is the rationale for reducing the
dimension of the solution by ignoring them. Another
advantage is that the equilibrium solution, i.e. the
probability density that the system relaxes to (given
constant input), is given by the principal mode, whose
eigenvalue is zero (l0). An approximate solution can
then be written as

rðx; tÞZRm expðDmtÞLmrðx; 0Þ; (2.19)

where r(x, 0) is the initial density profile, Rm and Lm are
the principal m modes and Dm contains the first m
eigenvalues, where m%n. The benefit of an approxi-
mate solution is that computational demand is reduced
in modelling the population dynamics.

(f) A time-dependent solution

The dynamic operator, Q(s), is input-dependent, and
ideally needs calculating for each new input. This is
time consuming and can be circumvented by using
a perturbation expansion around a solution we already
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know, i.e. for sZ0. Approximating Q(s) with a Taylor
expansion about sZ0

QðsÞzQð0ÞC s
vQ

vs
; (2.20)

where Q(0) is evaluated at zero input and vQ=vs is a
measure of its dependency on s. Substituting and using
D(0)ZLQ(0)R, we have the dynamic equation for the
coefficients m, in terms of the bi-orthogonal set of Q(0)
(see Knight 2000 for a full treatment)

_mZ Dð0ÞC sL
vQ

vs
R

� �
mZ D̂ðsÞm: (2.21)

For multiple inputs

D̂ðsÞZDð0ÞC
X

k

skL
vQ

vsk

R: (2.22)

We are assuming here that the input can be treated as
constant during a small interval. This approximation
enters equation (2.19) to provide density change over
this interval. D̂ðs; tÞ is re-evaluated and the process
repeated to give the time-dependent evolution of the
population density.
(g) The observation function

Expectations over r(x, t) are generated by an obser-
vation function yZMr, where y corresponds to
predicted measurements. An example is the average
firing rate yr(t).

yrðtÞZ hrðT ; tÞiK1
T ; (2.23)

where r(T, t) is the marginal distribution over IST.
(h) Multiple populations: interaction through

coupling

Interactions within a network of ensembles are mod-
elled by coupling activities among populations. Coupled
populations have been considered by Nykamp &
Tranchina (2000) in modelling orientation tuning in
Phil. Trans. R. Soc. B (2005)
the visual cortex. Coupling among populations, each
described by standard Fokker–Planck dynamics, via
mean field quantities (e.g. mean firing rate) induces
nonlinearities, and thereby extends the network’s
dynamic repertoire. This can result in a powerful set of
equations that have been used to model physical,
biological and social phenomena (see Kuramoto 1984;
Frank 2000 and others therein). To model influences
among source and target populations, an additional
input, which is a function of population activity, sc( y, t),
is needed. The combined input is now

sðtÞ2fs1ðtÞ;.; sK ðtÞ; scðy; tÞg: (2.24)

A simple example is self-feedback in one population,
where yi(t) is the rate of firing per neuron, and g is a gain
function, which here is a constant,

scð y; tÞZ gyiðtÞZ gMRmi : (2.25)

The total mean field now depends on the populations
own activity, which has been described as a dynamic
mean field (Omurtag et al. 2000). The notion can be
extended to multiple populations, where g becomes a
gain or coupling matrix. A schematic of two interacting
populations of the model in equation (2.6) is shown in
figure 4.

Generally, coupling can be modelled as a modu-
lation of the parameters of the target population (i) by
inputs from the source (j). The effect of a small
perturbation of these parameters is used to approxi-
mate the time-dependent network operator, which
leads to a further term in equation (2.22). To a first-
order approximation

_mi Z D̂iðs;mÞmi

D̂iðs;mÞZDið0ÞC
P

k skL
vQi

vsk

RC
X

j

gijmjL
vQi

vmj

R:

9>>=
>>;

(2.26)



Table 1. Variable description and symbols.

variable description symbol

membrane potential V
inter-stimulus time T
proportion of open channels (slow

potassium)
xsK

proportion of open channels (AMPA) xAMPA

proportion of open channels (GABA) xGABA

proportion of open channels (NMDA) xNMDA

state vector xZ ½V ;T ; xsK;

xsK; xAMPA;

xGABA; xNMDA�
T

probability density r

probability mode density m

dynamic operator Q
right eigenvector matrix R
left eigenvector matrix L
eigenvalue matrix D
observations y
observation operator M

Table 2. Parameter values used in simulations.

parameter description symbol value/units

firing threshold VT K53 mV
reset voltage VR K90 mV
equilibrium potential

(passive current)
EL K73 mV

equilibrium potential (sK) EsK K90 mV
equilibrium potential (AMPA) EAMPA 0 mV
equilibrium potential (GABA) EGABA K70 mV
equilibrium potential (NMDA) ENMDA 0 mV
passive conductance gL 25 nS
active conductance (sK) gsK 128 nS
active conductance (AMPA) gAMPA 24 nS
active conductance (GABA) gGABA 64 nS
active conductance (NMDA) gNMDA 8 nS
membrane capacitance C 0.375 nF
time constant (sK) tsK 80 ms
time constant (AMPA) tAMPA 2.4 ms
time constant (GABA) tGABA 7 ms
time constant (NMDA) tNMDA 100 ms
background opening coefficient

(AMPA)
pAMPA 0.875 a.u.

background opening coefficient
(GABA)

pGABA 0.0625 a.u.

background opening coefficient
(NMDA)

pNMDA 0.0625 a.u.

diffusion coefficient (V) w1 4 mV2 msK1

diffusion coefficient (t) w2 0 msK1

diffusion coefficient (sK) w3 0.125 msK1

diffusion coefficient (AMPA) w4 0.125 msK1

diffusion coefficient (GABA) w5 0.125 msK1

diffusion coefficient (NMDA) w6 0.125 msK1
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The source-dependent change in the target operator
vQi=vmj follows from the chain rule,

vQi

vmj

ZKV,
v _mi

vqi

vqi

vyj

vyj

vmj

� �
; (2.27)

where vqi=vyj specifies the mechanism whereby synap-
tic input from the source population affects the
biophysics of the target. The probability density over
the source region mj causes a change in its output yj,
which modulates synaptic channel-opening dynamics
in the target region, parametrized by qi (e.g. qiZ
pAMPA). This leads to a change in the dynamics of the
target region _mi. These interactions among ensembles
are scaled by the gain or coupling parameter gij, and are
implemented by augmenting D̂iðs;mÞ. Once equation
(2.26) has been integrated, the output of the target
region can be calculated,

yi ZMRmi : (2.28)

It can be seen that self-coupling above is simply a
special case of coupling in which g/gii.
3. ESTIMATION AND INFERENCE
The previous section has furnished a relatively simple
dynamic model for measured electrophysiological
responses reflecting population dynamics. This model
can be summarized using equations (2.26) and (2.28),

_mi Z D̂iðs;m; qÞmi

yi ZMRmi C3i :

)
(3.1)

This is a deterministic input-state-output system with
hidden states mi controlling the expression of prob-
ability density modes of the ith population. Notice that
the states no longer refer to biophysical or neuronal
states (e.g. depolarization), but to the densities over
states. The inputs are known deterministic pertur-
bations s and the outputs are yi. The architecture and
mechanisms of this system are encoded in its par-
ameters. The objective is to estimate the conditional
density of these parameters given some data. In the
Phil. Trans. R. Soc. B (2005)
examples below we focus on the coupling parameters
q2gij.

In this section, we review briefly the necessary
inference and estimation procedure. This procedure
has already been established for bilinear approxi-
mations to generative models of fMRI data and
NMM of ERP. A full description can be found in our
earlier papers. In brief, we use expectation maximiza-
tion (EM) to identify the conditional moments of the
parameters and the maximum likelihood estimates of
the covariance components of the error term. This
entails minimizing the variational free energy with
respect to the conditional moments in an E-step and
the covariance components in an M-step. This
corresponds to a coordinate descent on the free
energy (the negative log-likelihood of the model, plus
the divergence between the estimated and true
conditional density of the parameters). The con-
ditional density depends on the prior density and the
likelihood of the parameters, which are described
next (see table 1).
(a) Prior assumptions

Priors have a dramatic impact on the landscape of the
objective function (free energy) to be extremized:
precise prior distributions ensure that the objective
function has a global minimum that can be attained
robustly. Under Gaussian assumptions, the prior
distribution pðqÞZNðhq;SqÞ is defined by its mean
and covariance. The mean hq corresponds to the prior
expectation. The covariance Sq encodes the amount of
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prior information about the parameters. A tight
distribution (small variance) corresponds to precise
prior knowledge. The log-prior density is

ln pðqÞZK
1

2
pTSK1

q pK
1

2
lnjSqj

p Z qKhq:

9=
; (3.2)

In our case, we can adopt very precise priors for
biophysical constants, because these embody our
knowledge of the intrinsic dynamics of neurons and
synapses. The interesting parameters, which determine
the large-scale functional architecture of the system, are
the coupling parameters gij in equation (2.26). In the
example below, we used relatively uninformative priors
for these, and infinitely precise priors for the remaining
parameters Sq/0. In other words, we fix the remaining
parameters to their prior expectations (see the values in
table 2).
(b) Estimation and inference

Using the generative model of the §3a, the likelihood
pðyjqÞZNðvecfhðs; qÞg;S3Þ, where h(s,q) is the predicted
response, is easily computed under Gaussian assump-
tions about the error covðvecf3gÞZSðlÞ3. l are covari-
ance parameters of the error. The vec operator arranges
data from multiple channels and time bins into one
large vector. This reflects the fact that we are treating
the dynamic model as a static model that produces
finite-length data sequences. We can do this because
the model is, by design, deterministic.

The log-likelihood is based on the difference
between the observed response and that predicted by
Phil. Trans. R. Soc. B (2005)
integrating the generative model. This prediction is
h(s,q) (see Friston 2002 and Appendix B for details of
this integration)

ln pðyjq; lÞZK
1

2
eTSK1

3 eK
1

2
lnjS3j

e Z vecfyKhðs; qÞg:

9=
; (3.3)

Having specified the prior and likelihood, the
posterior or conditional expectation of the parameters
hqjy can be computed using EM, where the conditional
density pðqjy; lÞZNðhqjy;Sqj yÞ.

The conditional moments (mean hqjy and covari-
ance Sqjy) are updated iteratively using an expectation-
maximization (EM) algorithm with a local linear
approximation of equation (3.3) about the current
conditional expectation. The E-step conforms to a
Fisher-scoring scheme (Press et al. 1992) to update the
conditional mean. In the M-step, the covariance
parameters l are updated to their maximum likelihood
values, again using Fisher-scoring. The estimation
scheme can be summarized as follows:
(i) Repeat until convergence

E�step hqjy)maxq ln pðqjy; lÞZ
maxqfln pðyjq; lÞC ln pðqÞg

M�step l)maxl ln pðyjlÞ:

9>=
>; (3.4)

Under a Laplace or Gaussian approximation for the
conditional density, the conditional covariance is an
analytic function of the conditional expectation
(Friston et al. 2002). See also figure 5.
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Figure 6. Response of a single population of neurons (FPE based on the model dynamics of equation (2.5)) to a steep rise in
input, i.e. a boxcar input. The top figure shows the mean firing rate per neuron within the ensemble. The horizontal bar indicates
the duration of input. The population responds with an increase in firing that briefly oscillates before settling to a new
equilibrium and returns to its original firing rate after the input is removed. Below are two three-dimensional images of the
marginal distributions over V and T (left and right, respectively). Before input, the majority of probability over r(T, 0) is peaked
close to 0.1 ms. However, input causes a shift in density towards shorter time-intervals, reflecting an increase in mean firing rate.
This is also seen in the left figure, where input disperses the density towards the firing threshold and reset potential. After input is
removed, both densities return to their prior distributions.
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Bayesian inference proceeds using the conditional or
posterior density estimated byEM. Usually this involves
specifying a parameter or compound of parameters as a
contrast cThqj y. Inferences about this contrast are made
using its conditional covariance cTSqjyc. For example,
one can compute the probability that any contrast is
greater than zero or some threshold, given the data. This
inference is conditioned on the particular model
specified. In other words, given the data and model,
inference is based on the probability that a particular
contrast is bigger than a specified threshold. In some
situations, one may want to compare different models.
This entails Bayesian model comparison.
4. APPLICATIONS
In this section we illustrate the nature of the generative
model of the previous sections and its use in making
inferences about the functional architecture of neur-
onal networks. We focus first on a single population and
the approximations entailed by dimension reduction.
We then consider the coupling between two popu-
lations that comprise a simple network.

(a) Dynamics of a single population

Figure 6 shows the response of a population of
modified SIF neurons (cf. equation (2.5)) to an
Phil. Trans. R. Soc. B (2005)
increase in exogenous input. The top figure shows

the mean firing rate over time. The black bar indicates

the duration of sustained input. The rate oscillates

briefly before being damped, after which it remains

constant at a new equilibrium-firing rate that is

determined by the magnitude of the input. Once the

input is removed, the rate decays to its background

level. Below are two three-dimensional plots of the

evolution of marginal distributions over V and T
with time. The results were obtained by integrating

equation (2.26) for a single population and single

(boxcar) input, using a dynamic operator based on

equation (2.5).

Just prior to input, there is very little probability

mass at ISTs below 0.1 ms. This is seen as the large

peak in r(T,t) at tZ0 at the far right corner of the

lower right figure. The inverse of the expected inter-

spike interval hrðT ; 0ÞiK1
T corresponds to baseline-

firing rate. After input, both distributions change

dramatically. Density over the shorter ISTs increase

as the population is driven to fire more frequently.

This is also seen in r(V,t) (lower left), where density

accumulates close to VT and VR, indicating a higher

firing rate. These distributions return to their

original disposition after the input returns to

baseline.
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(b) Dimension reduction

The question now is how many probability modes are

required to retain the salient aspects of these dynamics?

An indication comes from the characteristic time-

constants of each mode. These are shown for all modes,
excluding the principle mode, which is stationary, in

figure 7. The time-constants decrease rapidly with

mode number. A comparison of approximations in

terms of response to different levels of input is shown in

figure 8. We considered approximations truncated at

16, 64 and 128 (D̂16ðsÞ, D̂64ðsÞ and D̂fullðsÞ, respectively)

and the response curve for the deterministic model.

First, the stochastic models exhibit a key differ-

ence in relation to the deterministic model, i.e. firing
rate does not have an abrupt start at an input

threshold. Instead, there is a finite probability of

firing below threshold and the response curve tapers

off with lower input. Second, the solution using all

probability modes of the perturbation approximation

compares well with D(s) computed explicitly at each

time-point. The approximation is less accurate as

input increases, however, it remains close to, and

retains the character of, the true response curve.

Third, the truncated approximation using 64 modes
is almost indistinguishable from the full approxi-

mation. The solution using only 16 modes, despite

loosing accuracy with larger inputs, still maintains

some of the character of the response curve and, at

low input levels, is a reasonable approximation.

Given that this approximation represents an eightfold

decrease in the number of modes, this degree of

approximation is worth considering when optimizing

the balance between computational efficiency and
accuracy.
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(c) Coupling among populations

We next simulated a small network of populations.
A schematic of the network is shown in figure 9. The
model consisted of two identical regions, each contain-
ing sub-populations of excitatory and inhibitory
neurons. The excitatory sub-population exerted its
effect on the inhibitory through AMPA synaptic
channels, while GABA channels mediated inhibition
of the excitatory neurons. The regions were recipro-
cally connected, with region two being driven by one
through fast excitatory AMPA channels, while region
one was modulated by feedback from two, mediated by
slow excitatory NMDA channels. Only region one was
driven by external input. This conforms to a simple
cortical hierarchy, with region two being supraordinate.
These receptor-specific effects where specified by
making vqi=vyj non-zero for the rate of receptor-specific
channel opening (see equation (2.6) and figure 9) and
using the mean spike rate as the output yj from the
source population. The dynamics of a population were
approximated with 64 principal modes (see table 3).

Event-related signals (mean depolarization of excit-
atory populations), generated by the network in
response to an impulse of exogenous input, are shown
in figure 10. These responses have early and late
components, around 150 and 350 ms, respectively,
which are characteristic of real evoked response
potentials (ERPs).

(d) Inverting the model to recover coupling

parameters

Gaussian observation noise (approximately 10%) was
added to the mean potentials from both regions to
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Table 3. state variable ranges and number of bins used to grid
state space.

state variable number of bins range of values

V 16 [K92,K48] mV
T 8 [0,0.1] s
xsK 4 [0,1] a.u.
xAMPA 2 [0,1] a.u.
xGABA 2 [0,1] a.u.
xNMDA 2 [0,1] a.u.

Models of neuronal dynamics L. M. Harrison and others 1087
simulate data. The model was then inverted to estimate
the known parameters using EM as described above.
The predicted response of the generative model is
compared with the synthetic data in figure 10. Three
coupling parameters (mediating exogenous input to
region one, from region one to two and from two to
one—bold connections with question marks in figure 9)
were given uninformative priors. These represent
unknown parameters which the estimation scheme
was trying to identify. Their conditional expectations
(with prior and posterior densities of the feedback
parameters) are shown with the true values in figure 11.
They show good agreement and speak to the possibility
of using this approach with real data.
5. DISCUSSION
The aim of this work was to establish the feasibility of
using the FPE in a generative model for ERPs. The
ensuing model embodies salient features of real
neuronal systems; neurons are (i) dynamic units,
(ii) driven by stochastic forces, (iii) organized into
populations with similar biophysical properties and
response characteristics and (iv) multiple populations
interact to form functional networks. Despite the
stochastic nature of neuronal dynamics, the FPE
formulates the solution in terms of a deterministic
process, where the dispersive effects of noise are
modelled as a diffusive process. The motivation for
using such a model is that its associated parameters
have a clear biological meaning, enabling unambiguous
and mechanistic interpretations.

We have reviewed well-known material on the
integrate-and-fire model neuron with synaptic
Phil. Trans. R. Soc. B (2005)
dynamics, which included fast excitatory AMPA,
slow excitatory NMDA and inhibitory GABA
mediated currents. The FPE was used to model the
effect of stochastic input, or system noise, on popu-
lation dynamics. Its time-dependent solution was
approximated using a perturbation expansion about
zero input. Decomposition into a bi-orthogonal set
enabled a dimension reduction of the system of
coupled equations, owing to the rapid decay of many
of its probability modes. Interactions among popu-
lations were modelled as a change in the parameters of a
target population that depended on the average state of
source populations.

To show that the model produces realistic responses
and, furthermore, it could be used as an estimation or
forward model, separate ensembles were coupled to
form a small network of two regions. The coupled
model was used to simulate ERP data, i.e. mean
potentials from excitatory sub-populations in each
region. Signals were corrupted by Gaussian noise and
subject to EM. Three parameters were estimated;
input, forward and back connection strengths, and
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were shown to compare well to the known values. It is

pleasing to note that the stochastic model produces

signals that exhibit salient features of real ERP data and

the estimation scheme was able to recover its

parameters.

The key aspect of the approach presented here is the

use of population density dynamics as a forward model

of observed data. These models have been developed

by Knight et al. and have been used to explore the

cortical dynamics underlying orientation tuning in the

visual cortex. Our hope is that these models may find a

place in ERP and EEG data analysis. In these models,

random effects are absorbed into the FPE and the

population dynamics become deterministic. This is a

critical point because it means system identification has

only to deal with observation noise. Heuristically, the

deterministic noise induced by stochastic effects is

effectively ‘averaged away’ by measures like ERPs.

However, the effect of stochastic influence is still

expressed and modelled, deterministically, at the level

of population dynamics.
Phil. Trans. R. Soc. B (2005)
There are many issues invoked by this modelling

approach. The dimensionality of solutions for large

systems can become extremely large in probability

space. Given an N-dimensional dynamic system,

dividing each dimension into M bins results in an

approximation to the FPE with a total of MN ordinary

differential equations. The model, used to simulate a

network of populations, used 4096 equations to

approximate the dynamics of one population. Dimen-

sion reduction, by using a truncated bi-orthogonal set

is possible, however, as was demonstrated in figure 8,

there is a trade-off between accuracy and dimension of

the approximation. Generally, a more realistic model

requires more variables, so there is a balance between

biological realism and what we can expect from current

computational capabilities.

The model neuron used in this paper is just one of

many candidates. Much can be learnt from comparing

models. For instance, is modelling the IST as a state

variable an efficient use of dimensions? This may

eschew the need for detailed boundary conditions,
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however, it may well be an extravagant use of
dimensions given computational limitations. The
current modelling approach is not limited to electro-
physiological data. Any measurement which is coupled
to electrical activity of a neuronal population could, in
principle, also be included in the generative model,
which could be used to combine measurements of
electrical and metabolic origin, e.g. fMRI.

The use of Bayesian system identification enables
the formal inclusion of additional information when
estimating model parameters from data. We have not
given the topic of priors much consideration in this
paper, but it is an important issue. Analytic priors
derived from stability or bifurcation analyses could be
used to ensure parameter values which engender
dynamics characteristic of the signals measured, i.e.
stable fixed point, limit cycle or chaotic attractors.
Empirical priors derived from data also have great
potential in constraining system identification. A
Bayesian framework also facilitates model comparison
through quantifying the ‘evidence’ that a dataset has for
a number of different models (Penny et al. 2004b).

We are very grateful to Pedro Valdes-Sosa and Rolf Kötter for
their editorial guidance, two anonymous reviewers for their
comments and the Wellcome Trust for funding this research.
APPENDIX A: FIRING-RATE OF A
DETERMINISTIC, INTEGRATE-AND-FIRE
MODEL-NEURON
C _V Z gLðVL KV ÞC sðVT

VR

C

gLðVL KV ÞC s
dV Z

ð
dt ZT

T ðsÞZK
C

gL

½logðgLðVL KV ÞC sÞ�
VT

VR

T ðsÞZ
C

gL

log
ðVR KVLÞK s=gL

ðVT KVLÞK s=gL

� �
C

f ðsÞZ
gL

C
log

ðVR KVLÞK s=gL

ðVT KVLÞK s=gL

� �
C

� �K1

;

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(A 1)

where T(s) and f(s) are the period and frequency of
firing. A plot of the last of these equations is shown in
figure 8 to compare with the rate-response of a
stochastic model. In the context of deterministic
input, the neuron starts firing abruptly at threshold
input and increases monotonically thereafter. Input
threshold, ST, given by

sT Z gLðVT KVLÞ: (A 2)

The current associated with the input s, in nano-
ampere, is given by the relationship IsZs/gLRm, where
total membrane resistance is Rm (see Dayan & Abbott
2001).
APPENDIX B: DERIVATION OF POPULATION
EQUATION IN TERMS OF VECTOR FIELDS
For an alternative perspective on equation (2.11) we
can think of the density dynamics in terms of scalar and
vector fields. The probability density, r(x,t), is a scalar
function which specifies the probability mass at x. This
quantity will not be static if acted on by a force, whose
influence is quantified by a vector field over x. This field
represents the flow of probability mass within state
Phil. Trans. R. Soc. B (2005)
space. The net flux within a volume dx is given by the
divergence of the vector field V$J (where V is the
divergence operator). The net flux is a scalar operator,
as it specifies how much the density at x changes per
unit time. It contains all the information needed to
determine the rate of change of probability mass with
time:

_rZKV,J: (B 1)

The negative sign ensures that probability mass flows
from high to low densities. The two forces in our
simplified model are the leakage current and excitatory
input. The former moves a neuron towards its
equilibrium potential, EL, while excitatory input drives
V towards VT. Each force generates its own field of flux
in state space, which are in opposite directions. The
overall flux is the combination.

J Z Jf CJs: (B 2)

The first term is the flux owing to leakage current, while
the second is owing to input. Both are functions of
probability density, which have the following form:

Jf Z f r

Js Z rðtÞ

ðx

xKh
rðx0; tÞdx0

9>=
>; (B 3)

ðx

xKh
rðx0; tÞdx0zh 1K

h

2
V

� �
r:

Substitution of these expressions into (B 2) and (B 1)
leads to equation (2.11) in the main text. This
mathematical equivalence illustrates the convergence
of different perspectives on this formulation of popu-
lation dynamics.
APPENDIX C: NUMERICAL SOLUTION
OF FOKKER–PLANCK EQUATION
The equation to solve is:

_rðx; tÞZQr: (C 1)

First, grid state-space xiZih, where iZ1,.,N. Evaluate
_xZ f C s at all grid points. Calculate the operators K
V$(fCs) and w2/2V2, where V2 is the Laplacian
operator, required to construct an approximation to
the dynamic operator Q

Q̂ ZKV,ðf C sÞC
w2

2
V2:

Equation (C 1) is a system of coupled differential
equations that can be solved at discrete time points,
where time is tnZnDt (nZ0,.,T).

r̂ðx; t CDtÞZ expðDtQ̂Þr̂ðx; tÞ: (C 2)

These are de-coupled using the eigenvectors and values
of Q.

After discretizing state-space and approximating Q̂
for one population, the eigenvectors and values were
calculated using the MATLAB function ‘eig’ and saved.
Given these, a reduced or full model can be used to
model a network of populations by specifying the
connectivity among ensembles. The exponential matrix
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of the reduced or full model was calculated using the
MATLAB function ‘expm’ (see Moler & Van Loan 2003).
This uses a (6, 6) Pade approximation of order 12.
Explicit and implicit numerical integration schemes
can be reformulated into a Pade approximation, e.g.
(0, 1) approximation of order 1 is a forward Euler
scheme, whereas (1, 1) approximation of order 2 is
a Crank–Nicolson implicit scheme. As the ‘expm’
function uses an approximation of order 12 and is
implicit, the scheme is accurate and unconditionally
stable (see Smith 1985).
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