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There is much current interest in identifying the anatomical and functional circuits that are the basis
of the brain’s computations, with hope that functional neuroimaging techniques will allow the % vivo
study of these neural processes through the statistical analysis of the time-series they produce. Ideally,
the use of techniques such as multivariate autoregressive (MAR) modelling should allow the
identification of effective connectivity by combining graphical modelling methods with the concept of
Granger causality. Unfortunately, current time-series methods perform well only for the case that the
length of the time-series Nt is much larger than p, the number of brain sites studied, which is exactly
the reverse of the situation in neuroimaging for which relatively short time-series are measured over
thousands of voxels. Methods are introduced for dealing with this situation by using sparse MAR
models. These can be estimated in a two-stage process involving (i) penalized regression and (ii)
pruning of unlikely connections by means of the local false discovery rate developed by Efron.
Extensive simulations were performed with idealized cortical networks having small world topologies
and stable dynamics. These show that the detection efficiency of connections of the proposed
procedure is quite high. Application of the method to real data was illustrated by the identification of
neural circuitry related to emotional processing as measured by BOLD.
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1. INTRODUCTION

There is much current interest in identifying the
anatomical and functional circuits that we believe are
the basis of the brain’s computations (Varela ez al.
2001). Interest in neuroscience has shifted away from
mapping sites of acnivation, towards identifying the
connectiviry that weave them together into dynamical
systems (Lee er al. 2003; Bullmore er al. 2004).
More importantly, the availability of functional
neuroimaging techniques, such as fMRI, optical
images, and EEG/MEG, opens hope for the #n vivo
study of these neural processes through the statistical
analysis of the time-series they produce. Unfortunately,
the complexity of our object of study far outstrips the
amount of data we are able to measure. Activation
studies already face the daunting problem of analysing
large amounts of correlated variables, measured on
comparatively few observational units. These problems
escalate when all pairs of relations between variables
are of interest—a situation that has led some to
consider that the concept of connectivity itself is
‘elusive’ (Horwitz 2003).
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yahoo.com).

One contribution of 21 to a Theme Issue ‘Multimodal neuroimaging
of brain connectivity’.

A neural system is an instance of a complex network.
A convenient representation is that of a graph (figure 1)
defined by a set of nodes that represents observed or
unobserved (latent) variables, a set of edges, that
indicate relations between nodes, and a set of probability
statements about these relations (Speed & Kiiveri 1986;
Wermuth & Lauritzen 1990; Cowell ez al. 1999; Jensen
2002; Jordan 2004). Graphs, with only undirected
edges, have been extensively used in the analysis of
covariance relations (Wermuth & Lauritzen 1990;
Wermuth & Cox 1998, 2004), but do not attempt
causal interpretations. Neuroimaging studies based on
this type of model will identify what Friston has defined
as ‘functional connectivity’ (Friston 1994). To apply
graphical models to functional neuroimaging data, one
must be aware of the additional specificity that they are
vector-valued time-series, with y,,1) = {11 <i<p1<i<ne
the vector of observations at time z, observed at Nt time
instants. The p components of the vector are sampled at
different nodes or spatial points in the brain. There has
been much recent work in combining graphical models
with multiple time-series analysis. An excellent example
of the use of undirected graphs in the frequency domain
is Bach & Jordan (2004) with applications to fMRI
functional connectivity in Salvador ez al. (2005).

A different line of work is represented by Pearl
(1998, 2000, 2003) and Spirtes er al. (1991, 1998,
2000), among others, who studied graphs with directed
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Figure 1. Directed graphical model of a (hypothetical) brain-
causal network. Each node in the graph denotes a brain
structure. An arrow between two nodes indicates that one
structure (parent) exerts a causal influence on another node
(child), a relation also known as ‘effective connectivity’. For
functional images (EEG or fMRI), observations at each node
are time-series. It should be noted that, optimally, time-series
from all brain regions should be analysed simultaneously.
Ignoring, for example, the amygdala might lead to erroneous
conclusions about the influence of visual cortex on FFA, if
only the latter were observed. A necessary (but not sufficient)
condition for effective connectivity is that knowledge of
activity in the parent improves prediction in the child
(Granger causality). It is assumed that the set of directed
links in real networks is sparse and therefore can be recovered
by regression techniques that enforce this property.

edges that represent causal relations between variables.
In the context of neuroimaging, searching for causality
is what Friston terms the identification of effective
connectivity. We will be concerned with this more
ambitious type of modelling.

For functional neuroimages, the arrow of time may
be used to help in the identification of causal relations.
To be more specific, we model these time-series by
means of a linear (stationary) multivariate autoregres-
sive (MAR) model (Hamilton 1994; Harrison er al.
2003). While this type of model is very restrictive and
brain-unrealistic, it will serve our purpose of develop-
ing methods for identifying connectivities in large
complex neural networks for which the number of
nodes p is very large compared with Nt. The general
MAR model reads:

Nt
¥y, = ZAkyl,k +e t=Nk+1,... Nt
k=1

(1.1)

The dynamics of the process modelled are determined
by the matrices of autoregressive coefficients
Apioxp) = {aﬁ,}lgl— i<pthat are defined for different time
lags k and the spatial covariance matrix X, of €,;,x1)s
the white-noise input process (innovations). MAR
modelling has been widely applied in neuroscience
research (Baccala & Sameshima 2001; Kaminski ez al.
2001; Harrison et al. 2003).

Note that the coefficients afJ measure the influence
that node j exerts on node : after k& time instants.
Knowing that af’;i is non-zero is equivalent to establish-
ing effective connectivity and is also closely related to
the concept of Granger causality (Granger 1969;
Kaminski ez al. 2001; Goebel er al. 2003; Hesse ez al.
2003; Valdes-Sosa 2004; Eichler 2005). The merge of
causality analysis (Pearl 1998, 2000; Spirtes ez al. 1991,
2000) with multi-time-series theory has originated
graphical time-series modelling as exemplified in
Brillinger et al. (1976); Dahlhaus (1997); Dahlhaus
et al. (1997); Eichler (2004; 2005).

Phil. Trans. R. Soc. B (2005)

Unfortunately there is a problem with this approach
when dealing with neuroimaging data: the brain is a
network with extremely large p, in the order of
hundreds of thousands. A ‘curse of complexity’
immediately arises. The total number of parameters
to be estimated for model (1.1) is
s=Nyp>+ (p> + p)/2, a situation for which usual
time-series methods break down. One approach to
overcome this curse of complexity is to pre-select a
small set of regions of interest (ROI), on the basis of
prior knowledge. Statistical dependencies may then be
assayed by standard methods of time-series modelling
(Hamilton 1994) that in turn are specializations of
multivariate regression analysis (Mardia et al. 1979).
The real danger is the probable effect of spurious
correlations induced by the other brain structures not
included for study. Thus, the ideal would be to develop
MAR models capable of dealing with large p.

An alternative to using ordinary multivariate
regression techniques for model (1.1) is to attempt
regression based on selection of variables. This could
drastically reduce the number of edges in the network
graph to be determined, effectively restricting our
attention to networks with sparse connectivity. That
this is a reasonable assumption is justified by studies of
the numerical characteristics of network connectivity in
anatomical brain databases (Sporns ez al. 2000;
Stephan ez al. 2000; Hilgetag ezt al. 2002; Kotter &
Stephan 2003; Sporns ez al. 2004). The main objective
of this paper is to develop methods for the identifi-
cation of sparse connectivity patterns in neural systems.
We expect this method to be scaled, eventually, to cope
with hundreds or thousands of voxels. Explicitly, we
propose to fit the model with sparsity constraints on
Appxp) and ).

Researchers into causality (Scheines er al. 1998;
Pearl 2000) have explored the use of regression by the
oldest of variable selection techniques—stepwise selec-
tion for the identification of causal graphs. This is the
basis of popular algorithms such as principal com-
ponents embodied in programmes such as TETRAD.
These techniques have been proposed for use in
graphical time-series models by Demiralp & Hoover
(2003). Unfortunately these techniques do not work
well for large p/Nt ratios. A considerable improvement
may be achieved by stochastic search variable selection
(SSVS), which relies on Markov chain—Monte Carlo
(MCMUC) exploration of possible sparse networks
(Dobra et al. 2004; Jones & West 2005). These
approaches, however, are computationally very inten-
sive and not practical for implementing a pipeline for
neuroimage analysis.

A different approach has arisen in the data mining
context, motivated to a great extent by the demands
posed by analysis of micro-array data (West 2002;
Efron er al. 2004; Hastie & Tibshirani 2004; Hastie
et al. 2001). This involves extensive use of Bayesian
regression modelling and variable selection, capable of
dealing with the p>> Nt situation. Of particular interest
is recent work in the use of penalized regression
methods for existing variable selection (Fan & Li
2001; Fan & Peng 2004) which unify nearly all
variable selection techniques into an easy-to-
implement iterative application of minimum norm or
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ridge regression. These techniques have been shown
to be useful for the identification of the topology of
huge networks (Leng et al. 2004; Meinshausen &
Biihlmann 2004).

Methods for variable selection may also be com-
bined with procedures for the control of the false
discovery rates (FDR) (Efron 2003, 2004, 2005) in
situations where a large number of null hypothesis is
expected to be true. Large p in this case becomes a
strength instead of a weakness, because it allows the
non-parametric estimation of the distribution of the
null hypotheses to control false discoveries effectively.

In a previous paper, Valdes-Sosa (2004) introduced
a Bayesian variant of MAR modelling that was designed
for the situation in which the number of nodes far
outnumbers the time instants (p>>> Nt). This approach
is, therefore, useful for the study of functional neuro-
imaging data. However, that paper stopped short of
proposing practical methods for variable selection. The
present work introduces a combination of penalized
regression with local FDR methods that are shown to
achieve efficient detection of connections in simulated
neural networks. The method is additionally shown to
give plausible results with real fMRI data and is capable
of being scaled to analyse large datasets.

It should be emphasized that in the context of
functional imaging there are a number of techniques for
estimating the effective connectivity, or edges, among
the nodes of small pre-specified neuroanatomic graphs.
These range from maximum likelihood techniques
using linear and static models (e.g. structural equation
modelling; McIntosh & Gonzalez-Lima 1994) to
Bayesian inference on dynamic nonlinear graphical
models (e.g. dynamic causal modelling; Friston et al.
2003). Almost universally, these approaches require
the specification of a small number of nodes and, in
some instances, a pre-specified sparsity structure, i.e.
elimination of edges to denote conditional indepen-
dence among some nodes. The contribution of this
work is to enable the characterization of graphical
models with hundreds of nodes using the short imaging
time-series. Furthermore, the sparsity or conditional
independence does not need to be specified a prior: but
is disclosed automatically by an iterative process. In
short, we use the fact that the brain is sparsely
connected as part of the solution, as opposed to
treating it as a specification problem.

The structure of this paper is as follows. The
subsequent section introduces a family of penalized
regression techniques useful for identifying sparse
effective connectivity patterns. The effectiveness of
these methods for detecting the topology of large
complex networks is explored in §2 by means of
extensive simulations and is quantified by means of
ROC measures. These methods are then applied
together with local FDR techniques to evaluate real
fMRI data. The paper concludes with a discussion of
implications and possible extensions.

2. SPARSE MAR MODELS

We now describe a family of penalized regression
models that will allow us to estimate sparse multivariate
autoregressive (SMAR) models. In the following we
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shall limit our presentation to first order SMAR models
in which Nk=1. This will simplify the description of
models and methods, allowing us to concentrate on
conceptual issues. Previous studies (Martinez-Montes
et al. 2004; Valdes-Sosa 2004) have shown that first
order MAR models fit fMRI data well (as indicated by
the model selection criteria such as GCV, AIC or BIC).
However, it is clear that for other types of data such as
EEG, more complex models are necessary. All
expressions given below generalize to the more
complete model. In fact, all software developed to
implement the methods described has been designed to
accommodate all model orders.

We first review classical MAR methods. For a first
order MAR equation (1.1) simplifies to:

y,=Ay,_,+te t=2,...,Nt 2.1)

where e; is assumed to follow a multivariate Gaussian
distribution N(0, X), with zero mean 0%, and
precision matrix E@i@.

This model can be recast as a multivariate
regression:

Z=XB+E E,~N@0XX i=1,...m (2.2)

where we define m = Nt — 1 and introduce the notation:
=[z,...., %, ...

T
Z(mXp) = [YZ’ P 42 ""yNt] 9zp]’

B(p><p) :A’lr = [ﬂl’ ~--9ﬁp]’

T
Xy =1yl

T
E(m)(p) = [e29'“7 €y eN[] .

Usual time-series methods rely on maximum like-
lihood (ML) estimation of model (2.2), which is
equivalent to finding:

B = argmin||(Z — XB)||3. (2.3)
B

This has an explicit solution, the OLS estimator:

B=Xx"x)"'x"Zz. (2.4)

It should be noted that the unrestricted ML estimator of
the regression coefficients does not depend on the
spatial covariance matrix of the innovations (Hamilton
1994). One can therefore carry out separate regression
analyses for each node. In other words, it is possible to
estimate separately each column g; of B:

B:i=X"X)"'X"z;, i=1,....p (2.5)

where z; is the i-th column of Z. It is to be emphasized
that these definitions will work only if 7> p. Addition-
ally, it is also well known that OLS does not ensure
sparse connectivity patterns for 4;. We must therefore
turn to regression methods specifically designed to
ensure sparsity.

The first solution that comes to mind is to use the
readily available stepwise variable selection methods.
Such is the philosophy of TETRAD (Glymour ez al. 1988;
Spirtes ez al. 1990). Unfortunately, stepwise methods
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Figure 2. Penalization functions used for the iterative
estimation of sparse causal relations. At each step of the
iterative process, the regression coefficients of each node with
all others are weighted according to their current size. Many
coefficients are successively down-weighted and ultimately set
to zero—effectively carrying out variable selection. y-Axis:
weight according to current value of a regression coefficient 38
(x-axis). Each curve corresponds to a different type of
penalization: heavy line, .2 norm (ridge regression); dashed,
L1 norm (LASSO). Dotted, Hard-Threshold; dash-dot,
SCAD:; light line, mixture.

are not consistent (Hastie er al. 2001). This means that
even increasing the sample size indefinitely (Nt— )
does not guarantee the selection of the correct set of
non-zero coefficients. This result still holds even if all
subsets of variables are exhaustively explored.

Procedures with better performance are those based
on Bayesian methods in which assumptions about B are
combined with the likelihood by means of Bayes’
theorem. A very popular method is stochastic search
variable selection (SSVS) (George & McCulloch 1997;
George 2000). SSVS is based on a hierarchical
model in which the first stage is just the likelihood
defined by equation (2.1), and the other stage
assumes that the elements of B () are each sampled
a priori from a mixture of two probability densities:
Pafp, (B) + (1 — po)fy, (8). The density f, (8) is concen-
trated around zero, while f, (8) has a larger variance.
The decision of sampling from either is taken with
binomial probabilities py and (1—pg), respectively.
When p, is large, this means we expect the matrix B to
be very sparse. The model is explored using Monte
Carlo—Markov chain techniques. This limits the
application of this method to a rather small number
of nodes p as analysed in Dobra ez al. (2004), Dobra &
West (2005) and Jones et al. (2005).

For this reason, we chose to explore other methods as
alternatives to SSVS for variable selection, giving
preference to those that were computationally more
feasible. There has been much recent attention on
different forms of penalized regression models. The
simplest and best known of this family of methods is
ridge regression (Hoerl & Kennard 1970), also known as
quadratic regularization, which substitutes the argu-
ment (2.3) for the following one:

B = argmin||(Z — XB)||3 + 22||(PB)||>. (2.6)
B

Minimization of this functional leads to the estimator:
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Table 1. Derivatives of penalty functions.

type of penalization derivative

LASSO
SCAD

P3(6) = A sign(0)

pi(0) = /\{1(0 e (b A)}

Hard-Threshold pioh=—2(161 — A4
ridge ph() =220
MIX

/ _ Poﬁ0(5)+P1f;1(‘9)
pi(f)=—2 [pofpowwplf;l 0)

_ =) <_L |x,xO|p)
where £,(0) - (%) exp( =5~

I'(+) denotes the Gamma function

B=X'Xx+2P'P)'X"Z, (2.7
A being the regularization parameter which determines
the amount of penalization enforced. There are very
efficient algorithms based on the singular value
decomposition for calculating these estimators as well
as their standard errors. Forms of ridge regression have
been recently applied (with P=1I,) to analyse micro-
array data by West (2002) and (with Pa spatial Laplacian
operator) to study fMRI time-series by Valdes-Sosa
(2004). These papers showed the ability of this method
to achieve stable and plausible estimates in the situation
p>>n. In the present paper, we explore the feasibility of
using ridge regression as part of a technique for variable
selection. It should be clear that ridge regression does
not carry out variable selection per se. For this reason
it is necessary to supplement this procedure with a
method for deciding which coefficients of B are
actually zero. This will be described in detail below.

Following ridge regression, a number of penalized
regression techniques have been introduced in order to
stabilize regressions and perform variable selection. All
these methods can be expressed as the solution of the
minimization of:

d
8= arg min 1Z-XBI1> + 4>~ p(l6;D) (2.8)

7=1

where p(|@;]) is the penalty function applied to each
component of the vector of regression coefficients 3.
The form of different penalty functions as a function of
the current value of a regression coefficient 3 is shown
in figure 2. It should be noted that the quadratic
function is the ridge regression described above.
Another type of penalty, perhaps one of the best
known in the statistical learning literature, is the
LASSO (Hastie et al. 2001), or L1 norm. This method
has been recently implemented with great compu-
tational efficiency (Efron er al. 2004).

During the process of implementing algorithms for
each type of penalty function, advantage was taken of
the recent demonstration by Fan & Li (2001), Fan &
Peng (2004), Hunter (2004) and Hunter & Lange
(2004) that estimation of any one of many penalized
regressions can be carried out by iterative application of
ridge regression:

~R+1

B = (XTX + 2D@E)X Tz i=1,...p. (2.9)

where D([ff), a diagonal matrix is defined by D(8)=
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diag(pi(6,)/10:) k=1, ...,p and p}(6) is the derivative
of the penalty function being evaluated.

The algorithm described by Fan & Peng (2004)
unifies a large number of penalized regression tech-
niques. These are summarized in table 1, in which the
derivatives of the penalty functions are provided.

The reason that this algorithm works may be
inferred from figure 2. At each step of the iterative
process, the regression coefficients of each node with all
others are weighted according to their current size.
Many coefficients are successively down-weighted and
ultimately set to zero—effectively carrying out variable
selection in the case of the LASSO, Hard-Threshold
and SCAD penalization. It must be emphasized that
the number of variables set to zero in any of the
methods described will depend on the value of the
regularization parameter A with higher values selecting
fewer variables. In this paper, the value of the tuning
parameter A was selected to minimize the generalized
crossvalidation criterion (GCV).

The penalizations explored in this article for variable
selection are:

(1) ridge: the L2 norm;
(i1) LASSO: the L1 norm;
(iii) Hard-Thresholding;
(iv) SCAD: smoothly clipped absolute deviation pen-
alty of Fan & Li (2001); and
(v) MIX: mixture penalty.

It came as a pleasant surprise to us during the
programming of the variable selection algorithms, that
the SSVS of George & McCulloch (1997) can also be
expressed as a penalized regression with penalty
—In(paf,, (B) + (1 — po)f,, (8)). We therefore added to
the comparisons this ‘quick and dirty’ implementation
of SSVS as the MIX criteria which also carries out
automatic variable selection.

The specific implementation of penalized regression
used in this article is that of the maximization—
minorization (MM) algorithm (Hunter 2004; Hunter &
Lange 2004), which exploits an optimization technique
that extends the central idea of EM algorithms to
situations not necessarily involving missing data, nor
even ML estimation. This new algorithm retains
virtues of the Newton—Raphson algorithm. All algo-
rithms were implemented in MaTLAB 7.0 and will be
made available on the website of this journal.

Additionally, the iterative estimation algorithm
allows us to compute the covariance matrix of the
resulting regression coefficient via a ‘sandwich for-
mula’. This allows the estimation of standard errors for
different contrasts of interest. For example, these
standard errors were used to define a ¢ statistic for
each autoregressive coefficient to test its presence, or to
calculate confidence intervals for different contrasts.

3. PERFORMANCE OF PENALIZED REGRESSION
METHODS WITH SIMULATED DATA

(a) Description of simulations

In order to measure the performance of different
penalized regression methods for estimating SMAR
models, a number of simulations were carried out. For
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Figure 3. Idealized cortical models used to test regression
methods for the identification of sparse graphs were simulated
by a ‘small world’ network topology. Nodes resided on a two-
dimensional grid on the surface of a torus, thus imposing
periodic boundary conditions in the plane. For each simu-
lation, a set of directed connections was first formed with a
distribution crafted to induce the ‘small world effect’.
The strengths of the connections between parents and children
were sampled from a Gaussian distribution. Directed links
are shown on the surface of the torus for one sample network.

this purpose, a universe of idealized cortical models
was defined based on the concept of ‘small world
topology’ (Watts & Strogatz 1998; Albert & Barabasi
2002; Jirsa 2004; Sporns et al. 2004; Sporns & Zwi
2004; Sporns 2005).

The simulated ‘cortex’ was defined as a set of nodes
comprising a two-dimensional grid on the surface of a
torus (figure 3). This geometry was chosen to avoid
special boundary conditions since the network is
periodic in the plane in both dimensions. For each
simulation a set of directed connections was formed
randomly. Following Sporns & Zwi (2004), the
existence of a directed connection between any nodes
1 and j was sampled from a binomial distribution with
probabilities p;. These probabilities were in turn
sampled from a mixture density:

2
1
Pj = T €Xp (a—”2> + 1 = m)y.

The Gaussian component of the mixture (depending on
distance) will produce short-range connections and
induce high clustering among nodes. The uniform
component of the mixture ensures the presence of long-
range connections which induce short-path lengths
between any pair of nodes in the network. The parameters
of the mixture (&, v) were tuned by hand to produce a
‘small world’ effect, which was in practice, possible with
only a small proportion of uniformly distributed connec-
tions. The directed links for one sample network are
shown on the surface of the torus in figure 3.

A more detailed view of a sample small-world
network is shown in figure 4 which shows in (a)
the two-dimensional view of the links between
nodes and in (b), their connectivity matrix. Once
the connectivity matrix of the network was defined,
the strengths of the connections between parents
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Figure 4. Connectivity structure of the simulated cortical network shown in figure 3. This type of small-world network has a high
probability of connections between geographical neighbours and a small proportion of larger range connections. The network
mean connectivity was: 6.23; the scaled clustering: 0.87; the scaled length: 0.19. (a) Two-dimensional view of the links between
nodes. (b) Connectivity (0—1) matrix in with a row for each node and non-zero elements for its children.

and children were sampled from a Gaussian distribution
truncated around zero with a variable threshold 7. With
higher 7, only stronger connections were allowed, thus
increasing the ‘signal to noise ratio’ for the detection of
network connections. The resulting matrix of (auto)-
regressive coefficients 4; of the network has the same
sparsity structure as that of the connectivity matrix.
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Those 4; with singular values greater than one were
rejected from the simulation, since our purpose was to
study stable SMAR models.
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Simulated fMRI time-series were generated by the
first order SMAR model (2.1) with the connectivity
matrix obtained as described above. A random starting
state was selected, and then a ‘burning in’ period of
several thousand samples was first generated and
discarded to avoid system transients. Subsequent
samples were retained for the analyses presented
below. The result of this process, a typical fMRI
simulation is shown in figure 5.

Simulations with different types of innovations e,
were carried out. They differed in the type of inverse
covariance matrices from which they were generated.
Three variants of connectivity patterns for the spatial
covariance X of the innovations were used to simulate
fMRI time-series. Shown in figure 6 are the connectivity
matrices for the precisions ' (a) spatial indepen-
dence with a diagonal precision matrix, (b) nearest-
neighbour dependency with partial autocorrelations
existing only between nodes close to each other,
(¢) nearest-neighbour topology with an additional
‘master’ node linked to all other nodes in the network.

(b) Comparison of methods

It must be remembered that the purpose of the
simulations was to generate time-series from which
the network topology of the idealized cortical network
could be estimated. As is usual in the evaluation of
diagnostic methods, a number of indices were calcu-
lated to evaluate the performance of different penalized
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Figure 5. Simulated fMRI time-series generated by a first
order multivariate autoregressive model y, =4y, ; + e,, the
autoregressive matrix being sampled as described in figures 3
and 4. The innovations e, (noise input) were sampled from a
Gaussian distribution with a prescribed inverse covariance
matrix £/ as described in figure 6. Y-axis: simulated BOLD
signal, x-axis: time. The effect of different observed lengths of

time-series (IN) on the detection of connections was studied.

regression techniques. For reference purposes, the
definition of these indices is summarized in table 2.
The actual sensitivity and specificity of each
regression method depends, of course, on the threshold
selected to reject the null hypothesis for the 7 statistic of
each regression coefficient. Overall performance for
each regression method under different conditions was
measured by means of their receiver operating charac-
teristic (ROC) curves which are, as is well known, the
representation of the tradeoffs between sensitivity (Sn)
and specificity (Sp) (table 2). The plot shows false
alarm rate (1 — Sp) on the x-axis and detection rate (Sn)
on the y-axis. ROC curves are further summarized by
their areas, which we shall call for brevity the ‘detection
efficiency’. In all comparisons, at least 25 simulated
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Figure 6. Connectivity matrices for the precisions £~ '. Three situations were explored: (a) spatial independence with a diagonal
precision matrix, (b) nearest-neighbour dependency with partial autocorrelations existing only between nodes close to each
other, (¢) nearest-neighbour topology with a ‘master’ node linked to all other nodes in the network.

fMRI series were generated. For each comparison, each
method was represented by its worst case scenario, the
ROC curve with the lowest detection efficiency for all
25 replications. A typical example of ROC curves is
shown in figure 7, which corresponds to ridge
regression applied to a simulated network with
p»=100 nodes and a recorded length of Nt=200 time
points. The dark line corresponds to a simulated fMRI
generated with spatially independent noise, as well as
with a high signal to noise ratio. The ROC curve is well
above the diagonal line that would be the result with a
random detection procedure.

From the whole set of simulations a number of
findings can be summarized.

In the first place, the detection efficiency in all
simulations was well above the chance level, validating
the hypothesis that penalized regression techniques are
useful for the detection of connectivity topologies in
complex networks. The difference between penaliza-
tion techniques was rather disappointing, as summa-
rized in figure 8 which shows that all methods are
roughly equivalent with respect to detection efficiency.
Exceptions are the hard threshold penalty which
performs slightly worse than the others and ridge
regression that performs slightly better. In view of the
ease with which ridge regression is computed, there
seems to be no point in using more complicated
techniques. For this reason, from now onwards, unless
explicitly stated, all results presented and discussed
correspond to ridge regression.

With regard to the p/Nt ratio, figure 8 shows the
detection efficiency as a function of Nt for a fixed
number of nodes (p=100). All methods perform
equally well when the number of nodes is small with
regard to the number of time points. Efficiencies
decrease uniformly when the number of data points
decreases but are well above chance levels even for
p=4Nt.

Detection efficiency depends monotonically on the
S/N ratio connection strength. Figure 9 shows that even
with networks with small connection strengths relative
to the system noise, good detection efficiencies are
possible (LASSO penalization).

Strong spatial correlations in the innovations tended
to diminish the detection efficiency for 4; with respect
to the uncorrelated case. The worse performance is
with innovations generated from precision matrices
with strong structure and a master driving node. The
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Table 2. Definition of quantities used for assessing the
methods network reconstruction.

quantity definition
number of true edges TP+FN
number of zero-edges TN+ FP
significant edges TP +FP
detection rate TP/(TP+FN)
false alarm rate FP/(TN+FP)

thin line in figure 7 corresponds to a time-series
generated with both spatially correlated innovations
(nearest-neighbour topology), as well as with a low
signal to noise ratio. Note the interaction of both
factors that produce marked decreases of detection
efficiency when compared with the situation denoted
by the thick line (high S/N and no spatial correlation).

For the real fMRI experiments, we must select a
threshold for rejecting the null hypothesis. This
involves multiple comparisons for a large number of
autoregressive coefficients. The simulations gave us the
opportunity of checking the usefulness for this purpose
of the FDR procedure introduced by Benjamini &
Hochberg (1995). Given a set of p hypotheses, out of
which an unknown number p, are true, the FDR
method identifies the hypotheses to be rejected, while
keeping the expected value of the ratio of the number
of false rejections to the total number of rejections
below ¢, a user-specified control value. In the present
paper we use a modification of this procedure, the
‘local’ FDR (which we shall denote as ‘fdr’ in lower
case) as developed by Efron (2003, 2004, 2005).
Multiple tests are modelled as being sampled from the
mixture of two densities given by f..) = pofoz) + D112
which are estimated with non-parametric methods. An
R program LOCFDR is available from the CRAN website
for this calculation. The fdr procedure was used
to analyse the same data used to generate figure 7.
Figure 10 shows the results of applying locfdr which
estimates the r statistics for all regression coefficients
as the mixture of two of the null and alternative
densities. Figure 11 shows the fdr curve produced
which allows the selection of a threshold with a given
local false-positive rate. LLooking back to figure 7, the
dashed line shows the performance of the local fdr
thresholds calculated withour knowledge of the true
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Figure 7. Efficiency of ridge regression for the detection of
causal connections in simulated fMRI from a network with
p=100 nodes and a recorded length of Nt=200 time points,
as measured by receiver operating curves (ROC). y-Axis:
probability of detection of true connections, x-axis: prob-
ability of false detections. The dark line corresponds to an
fMRI generated with spatially independent noise as well as
with a high signal to noise ratio. The thin line corresponds to a
time-series generated with spatially correlated noise (nearest
neighbour), as well as with a low signal to noise ratio. Note the
decreases of detection efficiency with these factors. The
dashed line shows the performance of the local false discovery
rate thresholds calculated withour knowledge of the true
topology of the network. Note the excellent correspondence
at low false-positive rates.
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Figure 8. Effect of the ratio of network size (p) to temporal
sample size (Nt) on the detection efficiency for different
penalized regression methods. The number of nodes in the
network was kept at p=100. y-Axis: area under ROC curve.
x-Axis: sample size (IN). Though efficiency decreases with
smaller sample sizes, all methods perform well above chance
even for p=4N. Ridge regression dominates the other
methods for p=N with no significant differences at other
p/Nt ratios

topology of the network. Note the excellent correspon-
dence between the fdr and the ROC curve at low false-
positive rates.

4. ANALYSIS OF FMRI DATA

A combination of ridge regression and local FDR was
used to analyse fMRI data recorded during a face
processing experiment. No attempt was made to reach
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Figure 9. Effect of signal to noise ratio of network connectivity
generation on efficiency of detection by LASSO. y-Axis: area
under the ROC, x-axis: signal to noise ratio.
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Figure 10. The local FDR (fdr) is ideal for the detection of
sparse connections. If there are few connections, then testing
for links between all nodes should lead to a sample of test
statistics for which the null hypothesis predominates. The
distribution of the statistics can therefore be modelled as a
mixture of the density of null hypothesis with that of the
alternative hypothesis. These are separated by non-para-
metric density estimation as shown in this figure, in which the
thick line denotes the estimated null distribution and the thin
one the estimated alternative distribution for the ridge
regression example shown in figure 7 (thick line). y-Axis:
counts, x-axis: values of the r statistics for estimated
regression coefficients.

exhaustive substantive conclusions about the experi-
ment analysed, since the purpose of this exercise was
only to demonstrate the feasibility of working with the
new methods. The experimental paradigm consisted of
the presentation of faces of both men and women under
the following conditions:

Condition 1: static faces with fearful expressions
(SFF);

Condition 2: neutral faces (with no emotional
content), (NF);

Condition 3: dynamic fear faces (in this condition
faces are morphed from neutral emotional content to
fear; DFF).

The subject was asked to count the number of faces
that belonged to women. Stimuli were presented in a
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Figure 11. The local false discovery of the ridge regression

example of figure 7. y-Axis: fdr, x-axis: ¢ statistic for estimated
regression coefficients.

block design with the following order: SFF—NF—
DFF. Each block lasted 40 s and was repeated six
times. The experiment duration was 720 s=12 min.
The duration of each stimulus was 1s for each
condition. Stimuli presentation and synchronization
to the MR scanner was performed using COGENT
modelling software v.2.3 (http://cogent.psyc.bbk.ac.uk/;
figure 12).

Images were acquired using a 1.5T Symphony
Scanner, Siemens, Erlangen, Germany. Functional
images were acquired using a T2* weighted echo planar
sequence in 25 oblique slices (interleave acquisition).
The EPI sequence was defined by: TE=60 ms,
TR=4000 ms, flip angle: 90° FOV=224 mm,
slice thickness: 3.5 mm, acquisition matrix =64 X 64.
The number of scans recorded was 185. The first five
scans were rejected for the analysis because of T1
saturation effect. A high resolution anatomical
image acquisition was also acquired using a Tl
MPRAGE sequence (TE=3.93 ms/TR=3000 ms),
voxel size=1X1X1mm>, FOV=256 mm. Matrix
size =256 X256.

The fMRI data were first analysed using the
StaTisTiICAL PARAMETRIC Mapping Software package
SPM2 (www.fil.ion.ucl.ac.uk/spm/software/spmz2/).
Preprocessing with SPM was restricted to the following
steps: (i) slice time correction (using trilinear inter-
polation); (ii) motion correction; (iii) unwarping.
No temporal smoothing was used. As a preliminary
check, using standard SPM procedures for the com-
parison of conditions it was possible to show activation
of fusiform face area (FFA) as well as involvement of
limbic structures to the presentation of fearful faces.

Inspection of the fMRI time-series for all fMRI
voxels revealed a rhythmic artefact, synchronous for all
voxels that was eliminated by suppression of the first
pair of singular vectors in the SVD decomposition of
the raw data matrix. In order to reduce the spatial
dimensions of the data, the subject’s MRI time was
segmented into 116 different structures using an
automated procedure and based on the macroscopic
anatomical parcellation of the MNI MRI single-
subject brain used by Tzourio-Mazoyer ez al. (2002).
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block design
40s
1213

Task: to detect women

Condition 2
Figure 12. fMRI acquisition: the experimental paradigm
consisted of visual stimuli presented under three conditions.
Condition 1, static fearful faces, (SFF); Condition 2, neutral
faces (with no emotional content), (NF); Condition 3,
dynamic fearful faces (in this condition faces are morphed
from neutral emotional content to fear; DFF). A general
linear model was posited that included not only a different
mean level pc vector, but also a different autoregressive
matrix AlC for each condition C. Thus, the model explores
changes across voxels not only of mean level of activity but
also of connectivity patterns.

The fMRI time-series data were spatially averaged over
these ROI to yield 116 time-series.

For the analysis of these data, model (2.1) was
expanded to:

v, =d, +p’ +ASy,_, +e, t=2,..,N, (4.1)

where d, is a drift term estimated by a second-order
polynomial defined over the whole experiment, uc is
the mean level for conditions and A4S the condition-
dependent autoregressive matrices. Thus, the model
explores changes across voxels, not only of mean
level of activity, but also of connectivity patterns.
We decided to compare conditions SFF and DFF
(fearful faces). The model was fitted by means of
ridge regression (with no regularization on the drift
and condition mean effects). ¢ Statistics were computed
for the relevant contrasts.

Figure 13 shows the tomography of the ¢ statistics
contrasting the average of the fearful face means (usgg
(uspr + uppp)/2 with that of neutral faces puyg. The
map is thresholded using the local FDR (fdr) as
explained above with ¢=0.01. Note the activation of
the FFA area which was very similar to that obtained
with the analysis carried out with SPM2.

A similar analysis was carried out with the connec-
tivity matrices (figure 14). The contrast compared the
pooled estimate of fearful faces (A?FF + APFF)/2 to that
of neutral faces (AII\IF). Graphs are constructed with
only those edges which fell above the fdr threshold
for the z statistics of the contrast. Both (@) and (&) of
figure 14 show the same data with a more schematic
and a more realistic rendering, respectively. It is
interesting to note the involvement of brain structures
involved in processing emotional stimuli. Absent are
connections to FFA which have approximately the
same level in all face conditions.

5. DISCUSSION
This paper proposes a method for identifying large scale
functional connectivity patterns from relatively short
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Figure 13. Tomography of 7 statistics contrasting fearful face means (usgr + uprr)/2 with that of neutral faces unr. -Values are
obtained by Bayesian ridge regression and thresholded using the local FDR (fdr) as explained in figures 10 and 11. Note the
activation of the FFA which was very similar to that obtained with the SPM package.

time-series of functional neuroimages. The method is
based on estimating SMAR models by a two-stage
process that first applies penalized regression (Fan &
Peng 2004), and is then supplemented by pruning of
unlikely connections by use of the local FDR procedure
developed by Efron (2003). The methods are demon-
strated to perform well in identifying complex patterns
of network connectivity by means of simulations on an
idealized small world cortical network. These simu-
lations also show that the simplest of the methods, ridge
regression, performs as well as more sophisticated and
recent techniques. This does not rule out that the
performance of other penalized techniques might be
improved, for example, by a better estimate of the
regularization parameter, just to mention one possi-
bility. Of particular interest is the complete exploration,
not carried out in the present project owing to time
constraints, of the mixture penalties that provide a
bridge between SSVS (George & McCulloch 1997) and
penalized regression techniques.

The simulations also highlight an important area for
improvement. The detection efficiency of penalized
regression decreases with unobserved correlations
between the inputs of the system which in graphical
models correspond to unobserved latent variables. This is
in agreement with theoretical insights provided by
statistical analyses of causality (Pearl 1998), as well as
being part of the accumulated experience of time-series
analysis in the neurosciences (Kaminski ez al. 2001). Part
of the problem is the relative unreliability of estimating
very large dimensional covariance matrices. Inspection of

Phil. Trans. R. Soc. B (2005)

Table 3. Effect on detection efficiency of different spatial
correlation patterns of the innovations for a network with
p=100 and Nt=60.

(The two columns correspond to the detection efficiencies for
estimates that do not take into consideration £~ ! and those
that do.)

> ! detection efficiency detection efficiency
for A, estimated for A, estimated
alone with information
about !
diagonal 0.8001 0.8012
nearest neighbour 0.7873 0.7880
nearest neighbour 0.6747 0.6298

with master
node

table 3 shows that estimation and use of the covariance
matrix of the innovations does not improve the detection
efficiency for autoregressive coefficients.

The assumption of sparsity of neural connections
has been supported by quantitative studies of databases
of neural connections (Hilgetag ez al. 2002). Sparseness
is a central concept of modern statistical learning
(Gribonval ez al. 2005), but had not been applied, to
our knowledge, to the estimation of MAR models. This
general requirement for sparsity may be combined in
the future with the information provided by fibre
tractography methods based on diffusion MRI.

The simulations presented and the real fMRI
example analysed comprised 100 and 116 time-series,
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Figure 14. (a) Graph of connections that change with appearance of fearful expression. Obtained by element wise comparison
of the autoregressive matrices of fearful faces (AfFF—I—A]l)FF)/Z as compared with that of neutral faces (47F). Only those
connections above the fdr threshold are shown. Note involvement of areas related to emotional responses. (b) Three-
dimensional rendering of the connectivity patterns shown in (a).

respectively. Although falling short of the spatial
dimensionality of functional neuroimages, they repre-
sent an order of magnitude increase in the size of
problem than those that are solvable standard time-
series techniques. The methods and software devel-
oped have been tested to be scalable for the analysis of
hundreds of thousands of voxels.

For the sake of simplicity, the SMAR has been
posited to be linear, stationary and to involve only lags
of the first order. It is relatively straightforward to
generalize this formalism to the analysis of more
complex situations. Such extensions have already
been carried out for the small p case for non-stationary
time-series analysis (Hesse er al. 2003) and for non-
linear processes (Freiwald er al. 1999). Work is
currently in progress to apply sparse restrictions in
order to address more realistic assumptions when
modelling functional neuroimages.
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While it is true that nothing can substitute for the
lack of data, the next best thing, if the data are scarce, is
not to use it in estimating things that are probably not
there.

The authors thank Mitchell Valdés-Sosa, Maria A. Bobes-
Leodn, Nelson Trujillo Barreto and Lorna Garcia-Penton for
providing the experimental data analysed in this paper, as well
as for valuable insights and support.
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