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Virtually all cancer biological attributes are heterogeneous. Be-
cause of this, it is currently difficult to reconcile results of cancer
transcriptome and proteome experiments. It is also established
that cancer somatic mutations arise at rates higher than suspected,
but yet are insufficient to explain all cancer cell heterogeneity. We
have analyzed sequence variations of 17 abundantly expressed
genes in a large set of human ESTs originating from either normal
or cancer samples. We show that cancer ESTs have greater varia-
tions than normal ESTs for >70% of the tested genes. These
variations cannot be explained by known and putative SNPs.
Furthermore, cancer EST variations were not random, but were
determined by the composition of the substituted base (b0) as well
as that of the bases located upstream (up to b � 4) and downstream
(up to b � 3) of the substitution event. The replacement base was
also not randomly selected but corresponded in most cases (73%)
to a repetition of b � 1 or of b � 1. Base substitutions follow a
specific pattern of affected bases: A and T substitutions were
preferentially observed in cancer ESTs. In contrast, cancer somatic
mutations [Sjoblom T, et al. (2006) Science 314:268–274] and SNPs
identified in the genes of the current study occurred preferentially
with C and G. On the basis of these observations, we developed a
working hypothesis that cancer EST heterogeneity results primarily
from increased transcription infidelity.

bioinformatics � transcription � oncology

Cancer is a genetic disease caused by sequential accumulation
of mutations in oncogenes and tumor suppressor genes (1).

Recent work reveals that cancer somatic mutations were more
frequent than initially suspected. A large sequencing effort
directed toward human colorectal and breast cancer DNA gene
coding domains as well as exon–intron boundaries led to the
identification of 1,307 novel confirmed somatic mutations (2).
This study further showed that the subset of affected genes varies
both with cancer type and within the same cancer type with
individual tumors. Thus, the heterogeneity of cancer somatic
mutations has clearly been established.

Virtually all biochemical, biological, and clinical attributes are
heterogeneous within human cancer of the same histological
subtype (3). Somatic mutations, although occurring at rates
higher than suspected, remain relatively rare (3.1 per 106 bases),
leading on average to 90 amino acid substitutions in a given
tumor (2). Thus, somatic mutations alone cannot explain the
large number of variants observed in systematic proteomic
approaches.

The possibility that transcription [a process mediated by
DNA-dependent RNA polymerases (RNAP)], as well as post-
transcriptional enzymatic RNA base changes (4–6), might con-

tribute to molecular heterogeneity of cancer has thus far not
been considered. Recent work using in vitro transcription assays
revealed that T7 RNAP, yeast RNAP II, and bacterial RNAP
permit template–strand misalignment, leading to transcription
infidelity (7, 8). This discovery led to the notion that in vivo
transcription infidelity might increase when abasic sites or
unrepaired DNA lesions are encountered (7, 8).

We sought to compare ESTs deriving from normal and cancer
samples (9). It is known that a great deal of sequence variations
are present in ESTs, specifically those available in noncurated
databases (10, 11). EST sequence heterogeneity has thus far
been considered as noise arising from (i) a high degree of
sequencing errors, (ii) chimeric ESTs, (iii) intronic and inter-
ORF sequences, (iv) pseudogenes and paralogues, (v) SNPs, or
(vi) somatic mutations.

Here we show a higher nonrandom heterogeneity in ESTs
originating from cancer samples as compared with those from
normal samples. Bioinformatic filtering of these sequences did
not suppress increased cancer EST heterogeneity. Cancer EST
sequence variation is determined by the sequence of the DNA
template. The base substituted to the normal base (defined by
Watson–Crick complementarities) occurs nonrandomly and cor-
responds in most cases to the base located immediately upstream
or downstream of the substitution event.

Results
We accessed the noncurated EST database available on human
dbEST from the National Center for Biotechnology Information
(June 2005 version) (11) and classified ESTs according to sample
sources. This led to the creation of three different sets of
sequences containing ESTs from normal (N) tissue (�2.8 � 106

sequences), cancer (C) tissue (�2.6 � 106 sequences), and
unknown origin (�0.7 � 106 sequences). This last set was not
considered in this analysis. We then selected 17 genes on the
basis of their large representation in the database. Each EST

Author contributions: B.T., J.-M.M., P.V., G.K., P.O., and B.E.B. designed research; M.B., D.L.,
O.C., W.L., B.T., and E.G. performed research; M.B., O.C., B.T., E.G., S.J., V.O., O.R., F.T.Y.,
O.P., M.G., and P.O. analyzed data; and B.E.B. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

Abbreviations: RNAP, DNA-dependent RNA polymerase; pmRNA, pre-mRNA; LBE, location-
based estimator; DHPLC, denaturing HPLC.

**To whom correspondence should be addressed. E-mail: bbihain@yahoo.com.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0611076104/DC1.

© 2007 by The National Academy of Sciences of the USA

7522–7527 � PNAS � May 1, 2007 � vol. 104 � no. 18 www.pnas.org�cgi�doi�10.1073�pnas.0611076104

http://www.pnas.org/cgi/content/full/0611076104/DC1
http://www.pnas.org/cgi/content/full/0611076104/DC1


sequence was then aligned against its mRNA Reference Se-
quence (RefSeq) by using MegaBLAST 2.2.13 software (12). We
then measured the proportion of ESTs deviating from RefSeq at
any given position. Fig. 1 provides a graphical representation of
these variations occurring in the normal and cancer sets for a
representative gene (VIM coding for vimentin: gene ID 7431).
Supporting information (SI) Fig. 6 provides the same graphical
representation for the remaining 16 genes. The data show that
sequence variation occurred most frequently in the cancer set
and further that the phenomenon appeared most predominant
in specific mRNA sites. The very high number of variations could
not be explained by SNPs. Putative SNPs (open squares in Fig.
1 and SI Fig. 6) and biologically validated SNPs (open circles in
Fig. 1 and SI Fig. 6) are shown on the graph (dbSNP, build 126,
September 2006) (13). Both putative and biologically validated
SNPs leading to EST variations (n � 442) were excluded from
further analysis.

We next (i) tested the statistical significance of the differences
in sequence variation occurring between cancer and normal
ESTs, and (ii) when the statistical test was significant we
determined whether the difference arose from sequence varia-
tion occurring in the normal (N � C) or cancer (C � N) sample.
The statistical method is provided in SI Fig. 7 (14).

Data in Fig. 2 show that, for 15 of 17 abundantly expressed
genes, statistically significant sequence variations arising from
the cancer set, C � N, largely exceeded variations originating in
the normal set, N � C. Furthermore, sequence variations C �
N consistently and largely exceeded that of the estimated error
resulting from multiple testing as defined by the location-based
estimator (LBE) (shown as vertical bars). Variations N � C
occurring at rates greater than that of LBE were found in 12 of
17 genes, but the ratio between statistically significant sequence
variations and LBE was much lower in the normal set than in the
cancer set. A more detailed analysis of these data is provided as
SI Fig. 8.

Random sequencing errors cannot account for differences in
sequence variation occurring between the normal and cancer
sets. This interpretation is supported by the fact that libraries
originating from cancer or from normal samples are processed
essentially in the same manner. Mathematical analysis is con-
sistent with this interpretation (SI Fig. 7).

Random sequencing errors being excluded, we sought to
eliminate other sources of EST heterogeneity by filtering pro-

cedures. Our initial requirements were that EST aligned to
RefSeq with 100% identity on at least 16 consecutive bases, and
with �90% identity on at least 50 bases. As shown in Table 1, this
yielded 2,281 and 725 statistically significant differences C � N
and N � C, respectively, that were distinct from putative or
biologically validated SNPs. The constraints of the statistical test
were met at 7,644 positions of 23,930 cumulated positions of the
17 genes. The second filter required that each EST aligned to
RefSeq continuously on �70% of its length. The third filter
removed ESTs with sequence more closely related to paralogues
and pseudogenes than to the bona fide RefSeq. The fourth filter
deleted from analysis the first and last 50 bases of each EST
alignment to remove mismatches at the 3� and 5� borders of EST
created by the MegaBLAST program. As shown in Table 1,

Fig. 1. EST number and variations of Vimentin (VIM) gene. (A) The number of available ESTs at any given position of the mRNA RefSeq; ESTs deriving from
cancer (Left) and normal samples (Right) are shown. (B) The percentage of ESTs differing from RefSeq at any given position (Left, cancer set; Right, normal set).
Putative SNPs and biologically validated SNPs are shown as open squares and open circles, respectively.

Fig. 2. Number of statistically significant deviations originating from normal
and cancer ESTs. Statistically significant differences in the proportion of
sequence variations originating from normal and cancer ESTs are shown by
gray and black bars, respectively. The false positives estimator (LBE) is shown
by vertical open bars.
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filters 2–4 decreased statistically significant sequence variation
events C � N and N � C to 1,300 and 374, respectively. The C �
N versus N � C ratio of sequence variations (C/N) increased
from 3.15 to 3.48 (�10%), and the same ratio subtracted from
LBE increased from 6.95 to 7.95 (�14%). The effect of filtering
on C/N ratio subtracted from LBE was even more pronounced
(25%) when one considered only the set of 13 genes with
prefiltering C/N ratio �2 (SI Fig. 9).

We next hypothesized that cancer EST variations occurred
because of differences in the base composition on genomic DNA
template. This analysis was performed exclusively by using EST
variations where C � N was statistically significant. To avoid bias
that might be introduced by the filtering procedures, we used all
available nonfiltered data. Results of Fig. 3 show the difference in
base composition observed when comparing sequences upstream
and downstream of substitution events (heterogeneous, n � 2,281)
with those where no substitution event was detected (nonhetero-
geneous, n � 12,273). The criteria for nonheterogeneous sites were
cancer set variations �0.5% and not statistically different from
normal set variations. It must be emphasized that the 2,281 C � N
heterogeneous positions used at this stage of analysis are defined on
a statistical basis and hence contain a limited number of false
positives as well as false negatives. Furthermore, the populations
are necessarily incomplete because statistical tests cover only 32%
of gene lengths. In this analysis we refer to the base undergoing
substitution as b0, bases located on pre-mRNA (pmRNA) sequence

5� end are referred to as b � n, and bases located on 3� end are
referred to as b � n. The data show first that not all four bases were
equally susceptible to variation: b0 � A (33%) � T (32%) �� C
(21%) �� G (14%). Furthermore, the compositions of the four
bases upstream and three bases downstream of the site of event
were statistically different from those of the sites without significant
EST variation (Fig. 3). Specifically, sites where variations occur
were more frequently preceded and followed by A � G � T � C.
Thus, the occurrence of cancer EST heterogeneity is not random,
but is determined first by the nature of the base undergoing
substitution and second by the nature of the bases that immediately
precede and follow the event.

It is clear from Fig. 4 that the replacement base was also not
selected randomly. A was preferentially replaced by C (P � 2.8 �
10�125), T by G (P � 5.7 � 10�29), and G by A (P � 2.2 � 10�32).
Substitution of C showed a more even distribution, with a slight
paucity of T (P � 0.007).

To identify the underlying causes of such preferential base
replacement, we distinguished two sets of informative and
noninformative events.

Informative events were situations where the substituted base
was different from either the preceding base (b � 1) or the
following base (b � 1) (n � 1,676) (SI Fig. 10). Noninformative
events were situations not matching these criteria. When infor-
mative events were analyzed, two cases were encountered:

Table 1. Variations in ESTs before and after sequential application of electronic filters

Filtering procedure C � N LBE N � C LBE (C � N)/(N � C)
	(C � N) � LBE
/
	(N � C) � LBE


EST alignment � 50 bp 2,281 259 725 488 3.15 6.95
�70% EST aligned 2,065 230 722 429 2.86 5.59
Removal of paralogues and pseudogenes 2,065 223 694 428 2.98 6.08
Fifty base pairs deleted at each extremity 1,300 132 374 266 3.48 7.95

The C � N column provides the number of positions where statistically significant sequence variations are in excess in the cancer set.
N � C provides the number of positions where sequence variations originate from the normal set. (C � N)/(N � C) ratio was calculated
from pooled data. 	(C � N) � LBE
 and 	(N � C) � LBE
 were calculated for each gene. Negative results were treated as 0. Results of all
genes were pooled to yield 	(C � N) � LBE
/	(N � C) � LBE
 ratio. The data show the results of each filtering procedure applied
sequentially on the 17 studied genes.

Fig. 3. Effect of pmRNA sequence base composition on base b0 heteroge-
neity. (Upper) The results of �2 analysis of the differences in pmRNA base
composition at any given position, as well as upstream and downstream of C �
N statistically significant sequence variations (n � 2,281) versus that where no
EST heterogeneity was observed (n � 12,273). The dotted line is the P value
threshold (P � 0.01). (Lower) The base composition for sites on pmRNA
corresponding to significant C � N EST heterogeneity (H) and nonheteroge-
neous sites (NH). Gray shading shows enriched bases; darker gray shows
paucity bases.

Fig. 4. Composition of replacement base for each substituted base. The
figure represents, for each substituted base C � N, the composition of the most
common replacement base. Statistical significance of difference in propor-
tions was calculated with the null hypothesis that the replacement base is
selected randomly.
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substituted base was replaced by b � 1 or b � 1 (79%) or by
another base, different from b � 1 and b � 1 (21%). (i) In the
first subset, replacement base was identical to b � 1 (n � 799)
or b � 1 (n � 530). When replacement base was b � 1, then b0 �
A (36%) � C (30%) �� T (21%) �� G (13%). A was prefer-
entially replaced by C (71% of the cases). When replacement
base was b � 1, then b0 � T (47%) �� A (21%) � C (19%) ��
G (13%) (SI Fig. 11). T was preferentially replaced by G (71%).
For b � 1 substitutions, the pattern of relative influence of base
composition was b0 � b � 1 � b � 2 � b � 1 � b � 3 � b �
2. For b � 1 substitutions, the relative influence of the sur-
rounding base followed a pattern of b0 � b � 1 � b � 1 � b �
2 � b � 3 � b � 2. (ii) In the second subset of informative events,
the replacement base did not correspond to either b � 1 or b �
1 (n � 347). Affected bases were in the following order: A
(47%) � T (29%) � C (14%) � G (10%). A was most commonly
replaced by C (91% of the cases), T by C (50%) and A (42%),
C by G (46%), and G by C (73%). Thus, when replacement base
does not correspond to b � 1 or b � 1, the replacement base is
not randomly selected, but C is in large excess.

We next considered the set of noninformative events, i.e.,
situations where (i) b � 1 � b � 1 and where (ii) b � 1 � b0 �
b � 1 (SI Fig. 10). When b � 1 and b � 1 were identical but
different from b0 (n � 339), substituted bases were in the order
T (34.8%) � G (23.6%) � C (21.2%) � A (20.4%) and followed
the same pattern of preference as in Fig. 4: T3G, G3A, and
A3C. Substitutions occurring on the central base of repeat of
three identical bases (n � 266) were observed in the following
order: A (46.2%) � T (36.9%) � G (10.5%) � C (6.4%). In this
case, the most common substitution events were A3C and T3C
and A. Rare GGG substitutions were most commonly replaced
by GCG and CCC by CAC.

Thus, when substitutions occur within three consecutive iden-
tical bases and when substitutions did not correspond to either
b � 1 or b � 1, then C was the most common replacement base.
When the replacement base corresponds to b � 1, the most
common substitution was A3C; when the replacement base
corresponds to b � 1, the most common substitution was T3G.
It can therefore be concluded that neither the base undergoing
substitution nor the replacement base was selected randomly.
Both phenomena followed predictable patterns defined by the
composition of the base undergoing substitution and that of
bases located upstream and downstream of this event.

Because EST sequences used in this analysis originated from
many patients and several laboratories, we next sought to obtain
biological validation of the differences in mRNA heterogeneity

between normal and cancer cells isolated from the same patient.
Preliminary analysis of denaturing HPLC (DHPLC) profiles
revealed the ability to detect three bases cDNA heterogeneity
occurring at a rate of 2.5–5% (data not shown). We selected the
ENO1 gene because (i) it appears clearly affected by the
increased EST heterogeneity in the cancer set (Fig. 2) and (ii) its
sequence allowed identification of primers that do not match on
a genome-wide basis with paralogues or pseudogenes. The
difference in cumulated percentage of base substitutions be-
tween cancer and normal ESTs for the ENO1 gene-amplified
fragment that was calculated from dbEST data is 7.25%, i.e.,
within DHPLC sensitivity range. We also selected TMSB4X as
the negative control because we found no statistical difference
in EST heterogeneity between normal and cancer sets and were
also able to identify genome-specific primers. The results show
a difference in heterogeneity of RT-PCR-amplified products of
ENO1 gene isolated from kidney normal and cancer cells of the
same patient (Fig. 5A). This contrasted with the absence of
difference observed with the TMSB4X gene using the same
samples (Fig. 5B). The lengths of amplified fragments were
similar for both genes, and the same polymerases were used in
both experiments. PCR infidelity did not create variations for the
TMSB4X gene, so one can therefore reasonably assume that it
is also the case for ENO1 and thus that the observed difference
between normal and cancer profiles reflects the heterogeneity of
mRNA sequence. To further establish this conclusion, we re-
peated the analysis of ENO1 using two different PCR prepara-
tions and again observed significant differences between cancer
and normal tissue of the same patient (Fig. 5C). Finally, we
verified the reproducibility of the loading procedure to DHPLC
(Fig. 5D). These data establish that mRNA heterogeneity is
different when one compares RNA from cancer to normal
tissues isolated from the same patient. We have repeated the
procedure using different genes and different cancer types and
obtained results indicating that cancer mRNA heterogeneity is
both cancer- and gene-specific (data not shown). Because
DHPLC does not allow probing the extent and position of
sequence heterogeneity, a detailed analysis of cancer versus
normal mRNA sequences using highly accurate sequencing
procedures is needed.

Discussion
The primary conclusions of this analysis are that cancer EST
heterogeneity is greatly increased compared with that of normal
ESTs and is not random noise, but follows a specific pattern
defined by the genomic DNA template and determined first by

Fig. 5. DHPLC elution profiles of double-stranded DNA amplified from cDNA obtained from kidney cancer and adjacent normal tissues. mRNA isolated from
cancerous and adjacent normal kidney tissues from the same patient were reverse-transcribed, and the double-stranded cDNA PCR-amplified by using primers
specific to the ENO1 gene (A) and the TMSB4X gene (B) was loaded on a DHPLC system. DNA elution was followed by absorbance (mV) in function of retention
time (minutes). Normal and cancerous elution profiles are shown in green and black, respectively. Variations due to repeated PCR applied to ENO1 cDNA are
shown in C (green and red, normal; black and blue, cancer). Variations due to DHPLC loading of the ENO1 PCR products are shown in D with the same color coding.
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the composition of the base undergoing substitution and second
by the composition of the bases that immediately precede or
follow this event. Applying stringent filters did not erase the
differences between cancer and normal groups. Therefore,
cancer EST variations reflect the fact that a small but significant
proportion of cancer cell mRNA are heterogeneous and do not
carry the information predicted by simple base-pairing to the
human genome.

Direct comparison of mRNA heterogeneity between cancer
and normal cells from the same patient indicate that differences
exist for some but not all mRNA. It is also most probable that
genes affected are cancer-specific. We speculate that a large
sequencing effort of normal and cancer cDNA libraries from the
same patient using accurate pyrosequencing method (15, 16) will
lead to the definition of cancer-specific molecular signature of
mRNA base substitution.

There are five limitations of our current study. First, the
method of analysis does not take into account variations of EST
sequences other than single base substitutions. Testing the
possibility that deletion(s) and/or insertion(s) are also present
requires a different analytical strategy. Second, the analysis is
restricted to substitution events considered independent of one
another. A longitudinal analysis of the relationship between
substitution events is needed. Third, the statistical method
chosen for this first study was conservative. The less stringent
Fisher exact test will be needed to achieve complete coverage of
gene lengths and allow testing of low-abundance genes. A large
proportion (76%) of tested genes showed increased cancer EST
heterogeneity and C/N � 2. However, selection criteria are
biased toward genes highly transcribed and with relatively short
transcripts. Hence, the conclusion may not extend to low-
abundance genes and mRNA. Fourth, the analysis did not
discriminate between different cancer types or cancer cell lines.
We verified that a greater statistically significant EST hetero-
geneity persisted in the cancer set after removing ESTs produced
from cultured cancer cells (data not shown). Fifth, we are
currently unable to determine whether EST heterogeneity oc-
curs in normal cells following a pattern similar to or different
from that of cancer cells. Indeed, the number of N � C events
is not in large excess of the estimated rate of false positives. Thus,
N � C events contain a large proportion of false positives that
prevent meaningful data interpretation. To address this impor-
tant issue we need larger sets of data comparing the mRNA
sequence of cancer and normal cells from the same individual.

The next issue is to define the origin of cancer EST hetero-
geneity. The first source is mutations affecting genomic DNA.
We have excluded from our analysis all putative and biologically
validated SNPs. Thus, except if a large number of SNPs are
currently unsuspected, it is unlikely that SNPs are responsible for
cancer mRNA heterogeneity. Furthermore, within the SNP pool
of the 17 studied genes, C and G are preferentially affected (68%
of 442 SNPs), whereas A and T are preferentially affected in
cancer ESTs (65% of 2,281 substitution events).

Alternatively, one can speculate that somatic mutations of
cancer cell DNA account for mRNA heterogeneity. Similar to
SNPs of the current study, colon and breast cancer somatic
mutations were shown to affect preferentially C and G bases
(80.6% of cases). However, in-depth efforts of breast and colon
cancer DNA sequencing that included 14 of 17 genes used in our
study led to an estimated somatic mutation rate of 3.1 mutations
per 106 bases (2). Sites of cancer EST variations are 3 to 4 orders
of magnitude more commonly encountered than those of so-
matic mutations. This is not to say that all cancer cell mRNA
carries 10 mutations every 100 bases but rather that up to 10
bases per 100 bases can be substituted on any given cancer
mRNA. Thus, it is likely that EST heterogeneity occurs not at the
genomic level, but rather at the pmRNA level.

Two mechanisms are envisioned. First, RNA editing is able to
change C to U, U to C, and A to I read as G (4–6). In the cancer
set we observed at the cDNA level 5.7% C3T, 9.2% T3C, and
4.7% A3G changes. Thus, mRNA editing cannot account for
�20% of single base substitutions described here. Indeed, the
most common base substitutions, A3C (24.6%) and T3G
(16.8%), represent base family changes that are not explained by
known human enzymatic RNA editing processes.

The alternate hypothesis is therefore to consider that cancer
mRNA heterogeneity occurs as a result of transcription infidel-
ity, leading most frequently (73%) to repeat of b � 1 or b � 1.

Cases of transcription infidelity have been reported. In the
Brattleboro rat with diabetes insipidus resulting from a � 2
frameshift in the vasopressin gene, GA deletion of the GAGAG
sequence of the mRNA reverts part of the transcript to normal
and improves the phenotype (17, 18). Transcriptional frameshift
events affecting repetitive A sequence of �-amyloid and ubiq-
uitin B yield proteins with alternate reading frames that are
detected by immunological staining of Alzheimer’s disease
plaques (19, 20). Transcriptional infidelity of dog AP3B1 gene
yields to the addition or removal of a single A within a poly(A)
stretch (21). In the rat p53 gene A6 transcription leads to the
insertion of an extra A in 9% of cloned transcripts (22).

In vitro assays of transcription infidelity using multisubunit
yeast RNAP II show misalignment and b � 1 base replacement
(7, 8). Forward misalignment results from extrahelical f lipping
out of the substituted base on DNA template. Crystal structure
data show that space is available within the RNAP active site to
transiently accommodate the flipped-out base and hence allow
misalignment. Thus, a molecular mechanism explaining cases
where replacement base is b � 1 is documented. However, no
molecular model currently explains our most common observa-
tion, i.e., repetition of b � 1. Consistent with the hypothesis that
cancer EST heterogeneity is due to transcription infidelity is the
finding that bases most influential of the substitution events are
not only the substituted base itself (b0), but also the four bases
located upstream and the three downstream of this event. This
pattern corresponds in the elongation complex with the first four
RNA–DNA base-pairing and to the three transcription-driven
melted bases (23). In vitro studies of RNAP infidelity established
that DNA grip three bases downstream of the misalignment
event is critical at controlling transcription fidelity (24, 25).

Although this is not the first report of transcription infidelity,
our analysis introduces the notion that the phenomenon might
occur on a previously unsuspected scale in cancer samples where
it could affect a large proportion of genes. Furthermore, we show
that transcription infidelity represents a nonrandom phenome-
non driven in part by genomic DNA sequence. The underlying
causes of the increase of transcription infidelity in cancer
samples are currently unknown.

The relatively low selectivity of RNAP makes misincorpora-
tion unavoidable (26). Transcript-assisted transcriptional proof-
reading with strong Mg2� dependence corrects base misincor-
poration events (27). Most of the RNA in erroneous complexes
are cleaved, but a fraction is extended past the misincorporation
site (28). We compared in vitro efficacy of transcription-assisted
transcriptional proofreading by measuring the kcat/Kd ratio from
data of Zenkin et al. (27) obtained with an in vitro model where
b � 1 � G and b � 1 � C. Interestingly, the highest efficacy of
repair was for substitution with A. Among 138 substitutions that
in our pool correspond to the same sequence context as that of
Zenkin et al. (27), only seven substitutions with A were observed.
Furthermore, Zenkin et al. (27) show that C3G substitutions
led to equal ratio of cleavage versus extended RNA; we observed
67 C3G substitutions of 138. We thus speculate that increased
transcription infidelity in the cancer set is due in part to defective
transcription-assisted transcriptional proofreading. Alterna-
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tively, heterogeneous mRNA might accumulate in cancer cells
because of a decrease in their degradation rate.

Cancer mRNA heterogeneity might explain the relative lack
of reproducibility of cancer microarray transcriptome experi-
ments (29). If heterogeneous cancer mRNA are translated, this
would cause the occurrence of a myriad of protein variants,
possibly explaining the complexity of current cancer proteomic
results (30).

If the hypothesis of increased transcription infidelity during
carcinogenesis is confirmed, we will have to recognize that EST
sequencing efforts contributed by many laboratories and often
considered of limited value have allowed the emergence of a new
paradigm, perhaps opening new avenues toward a better under-
standing of cancer biology.

Materials and Methods
Gene Selection. Genes were selected solely on the basis of their
high abundance in Unigene clusters and without consideration
for their putative or established function, as well as their
association with diseases. Selected genes were VIM
(NM�003380.2), GAPDH (NM�002046.3), FTH1 (NM�002032.2),
ENO1 (NM�001428.2), HSPA8 (NM�006597.3), TPT1
(NM�003295.1), RPS4X (NM�001007.3), RPL7A (NM�000972.2),
RPS6 (NM�001010.2), TMSB4X (NM�021109.2), ALB
(NM�000477.3), FTL (NM�000146.3), ALDOA (NM�000034.2),
ATP5A1 (NM�001001937.1), CALM2 (NM�001743.3), LDHA
(NM�005566.1), and TPI1 (NM�000365.4).

Filtering Procedure. ESTs that did not align continuously with
RefSeq on 70% of its length were removed.

For pseudogenes and paralogues filter, pseudogene sequences
were downloaded from the http://pseudogene.org database by
Ensembl identification number. Paralogue sequences were gen-
erated by sequence alignment of RefSeq against human RefSeq
mRNA by using BLASTN, MegaBLAST, or Discontiguous
MegaBLAST with default parameters (except W � 16 for
MegaBLAST). Homologous sequences were defined by
BLASTN results completed by MegaBLAST and Discontiguous
MegaBLAST results. ESTs deriving from pseudogene or para-
logue sequences (Ps/Pa) were removed based on the following

calculation: Cost 1 corresponds to the number of mismatches
between RefSeq and EST. Cost 2 is calculated as the number of
mismatches between EST and RefSeq � the number of mis-
matches between Ps/Pa and RefSeq � [2 � the number of
common mismatches (with the same replacement base) between
Ps/Pa and EST] � the number of common mismatches (with
different replacement base) between Ps/Pa and RefSeq. When
Cost 2 is lower than Cost 1, it is assumed that the EST sequence
corresponds more closely to Ps/Pa, and the EST is removed.

Fifty bases were deleted on both 5� and 3� extremities of each
aligned EST.

DHPLC Profiles of Kidney Cancer Tissue Versus Normal Adjacent Tissue.
cDNA from cancerous and adjacent normal kidney tissues
obtained from the same individual (BioChain; CliniSciences,
Montrouge, France) were amplified by PCR with oligonucleo-
tides complementary to the ENO1 gene (positions 1505–1524
and 1788–1812), the TMSB4X gene (positions 311–335 and
590–614), and the Pfx polymerase (Invitrogen, Cergy-Pontoise,
France). These cDNA of 300 bp were then purified on Nucle-
ospin Extract II columns (Macherey-Nagel, Hoerdt, France),
visualized on agarose gel, quantified, and normalized. Another
PCR cycle was performed by using 50 ng of each cDNA with a
Pfx DNA polymerase. Samples were then denatured for 5 min at
95°C and slowly renatured by decreasing the temperature by 1°C
for 38 seconds and 72 cycles. The double-stranded DNA samples
were then injected on a DHPLC system (Transgenomic, Elan-
court, France). The temperature of the oven for each gene was
selected by using Navigator software. For the ENO1 gene the
temperature was 61.5°C, and for TMSB4X the temperature was
55°C. DNA elution was followed by absorbance (millivolts) in
function of retention time (minutes). Curves were visualized and
normalized with Navigator software.
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