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ABSTRACT

Evolutionary biologists have identified several factors that could explain the widespread phenomena of
sex and recombination. One hypothesis is that host–parasite interactions favor sex and recombination
because they favor the production of rare genotypes. A problem with many of the early models of this so-
called Red Queen hypothesis is that several factors are acting together: directional selection, fluctuating
epistasis, and drift. It is thus difficult to identify what exactly is selecting for sex in these models. Is one
factor more important than the others or is it the synergistic action of these different factors that really
matters? Here we focus on the analysis of a simple model with a single mechanism that might select for
sex: fluctuating epistasis. We first analyze the evolution of sex and recombination when the temporal
fluctuations are driven by the abiotic environment. We then analyze the evolution of sex and recom-
bination in a two-species coevolutionary model, where directional selection is absent (allele frequencies
remain fixed) and temporal variation in epistasis is induced by coevolution with the antagonist species. In
both cases we contrast situations with weak and strong selection and derive the evolutionarily stable (ES)
recombination rate. The ES recombination rate is most sensitive to the period of the cycles, which in turn
depends on the strength of epistasis. In particular, more virulent parasites cause more rapid cycles and
consequently increase the ES recombination rate of the host. Although the ES strategy is maximized at an
intermediate period, some recombination is favored even when fluctuations are very slow. By contrast, the
amplitude of the cycles has no effect on the ES level of sex and recombination, unless sex and recom-
bination are costly, in which case higher-amplitude cycles allow the evolution of higher rates of sex and
recombination. In the coevolutionary model, the amount of recombination in the interacting species also
has a large effect on the ES, with evolution favoring higher rates of sex and recombination than in the
interacting species. In general, the ES recombination rate is less than or equal to the recombination rate
that would maximize mean fitness. We also discuss the effect of migration when sex and recombination
evolve in a metapopulation. We find that intermediate parasite migration rates maximize the degree of
local adaptation of the parasite and lead to a higher ES recombination rate in the host.

THE vast majority of species reproduce sexually, at
least occasionally. Such a widespread success of

sex and recombination is problematic given the strong
fitness costs associated with sexual reproduction (e.g.,
the twofold cost of sex, the cost of breaking a favorable
combination of genes, the cost of finding and courting a
mate, etc.). This problem has attracted considerable the-
oretical attention (Maynard-Smith 1978; Kondrashov

1993; Barton and Charlesworth 1998). Although
some theories invoke proximate (or mechanistic) explan-
ations (e.g., sex might be induced to promote DNA
repair), we focus on evolutionary (or generative) hypoth-
eses that focus on the effects of sex and recombination
on genetic associations. The modifier theory approach,
introduced by Nei (1967), has helped to clarify the
conditions under which sex and recombination might

evolve by considering the dynamics at genes that alter
(‘‘modify’’) the mode of reproduction and the frequency
of crossover events.

In a general model of recombination evolution,
Barton (1995) showed that two conditions favor a
modifier allele that increases recombination. First, re-
combination can be favored if it breaks apart less-fit
combinations of genes and, consequently, increases the
mean fitness of the descendants, a so-called short-term
benefit of recombination (because a modifier inducing
more recombination immediately increases in frequency).
Second, recombination can be favored if it increases the
variance in fitness of the descendants and, consequently,
the efficacy of selection, a so-called long-term benefit of
recombination (because the frequency of the modifier
changes by hitchhiking with the most fit of the variants
produced, which take several generations to spread). In
either case, selection on the modifier of recombination
is indirect, with frequency changes at the modifier locus
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occurring via associations with other loci that are directly
under selection.

The main determinant of whether these short-term
and long-term effects actually do benefit recombination
is the type of genetic associations (linkage disequilibria)
that exist among selected alleles. In general, evolution-
ary hypotheses can be classified according to the forces
that generate these genetic associations (Kondrashov

1993). Here, we review four leading hypotheses:

i. If selection is constant in time, linkage disequi-
librium develops with the same sign as the multipli-
cative epistasis, which is a measure of the curvature
of the fitness surface measured on a log scale
(Felsenstein 1965; Eshel and Feldman 1970).
Basically, selection builds up allelic combinations
that work well together, which causes disequilibrium
to have the same sign as epistasis and implies that
genetic associations among alleles tend to increase
fitness, on average. In this case, the main short-term
effect of recombination is to decrease the average
fitness of offspring. Nevertheless, evolution favors
higher rates of recombination via a long-term ben-
efit, as long as epistasis is negative and sufficiently
weak that the short-term costs are not too severe
(Feldman et al. 1980; Barton 1995; Otto and
Feldman 1997). With negative epistasis, advanta-
geous alleles at one locus become associated with
disadvantageous alleles at a second locus (negative
disequilibrium), which hinders a population’s re-
sponse to selection. Higher rates of recombination
can be favored in this situation because it breaks this
linkage disequilibrium and thus facilitates the re-
sponse to natural selection.

ii. If epistasis fluctuates over time, a lag between
epistasis and linkage disequilibrium can develop,
leading to a mismatch at some points in time between
which combinations of alleles are most fit and are
most common (Sturtevant and Mather 1938;
Charlesworth 1976; Maynard Smith 1978;
Barton 1995). In this situation, recombination can
be favored because it breaks apart the currently
maladapted allele combinations and increases the
mean fitness of descendants (a short-term benefit).
Because such mismatches must occur often to have
much influence, however, this mechanism works only
under restrictive parameter values (Charlesworth

1976; Barton 1995). In particular, Barton (1995)
found that epistasis must fluctuate very rapidly for
this mechanism to work: epistasis must change sign
every 2–5 generations, implying cycles with a period
of 4–10 generations (the so-called ‘‘Barton zone’’;
Peters and Lively 1999) to account for high rates of
recombination.

iii. When the population is finite, the interaction
between genetic drift and selection yields negative
linkage disequilibrium (Hill and Robertson 1966).

In this case, increased recombination can evolve be-
cause recombination increases the variance in fitness
of the descendants (a long-term benefit) through the
production of high-fitness genotypes that are rare
or absent due to genetic drift (Felsenstein and
Yokoyama 1976; Otto and Barton 2001; Iles et al.
2003; Barton and Otto 2005; Keightley and
Otto 2006; Martin et al. 2006). This process can
select for recombination over a range of both posi-
tive and negative epistasis, but it requires that drift is
neither too weak (no effect on linkage disequilib-
rium) nor too strong (polymorphisms are rapidly
lost). Nevertheless, a drift-based advantage to re-
combination can occur even in very large popula-
tions as long as they are spatially structured (Martin

et al. 2006) and/or selection acts on a large number
of loci (Iles et al. 2003).

iv. Selection that varies over space can promote the
evolution of recombination in the absence of ge-
netic drift. With migration among populations,
spatial heterogeneity in selection can generate posi-
tive or negative linkage disequilibrium and select for
or against recombination, depending on the sign of
epistasis (Pylkov et al. 1998; Lenormand and Otto

2000). Modifier theory thus provides a general
framework that allows us to formalize and compare
different evolutionary hypotheses for the evolution
of sex and recombination.

All of the theories reviewed above focus on a single
species in which recombination is evolving. Where do
species interactions fit within this framework? The Red
Queen hypothesis posits that the biotic environment of
a species is continually changing due to the coevolution
of surrounding species, including parasites, pathogens,
predators, competitors, etc. Within this changing biotic
environment, sex and recombination might be favored
as mechanisms that generate rare combinations of al-
leles to which antagonistic species are not adapted (akin
to the advantage of recombination in an abiotically fluc-
tuating environment). Unfortunately, the intrinsic com-
plexity of coevolutionary dynamics impedes a general
analytical treatment of the problem. In fact, most the-
oretical articles on the Red Queen hypothesis are based
on the exploration of complex simulation models, mak-
ing it difficult to determine exactly what selects for sex
(Otto and Michalakis 1998). For example, in one of
the first simulation models used to formalize the Red
Queen hypothesis in a metapopulation (Ladle et al.
1993), all four of the factors listed above may have been
responsible for the evolution of host recombination: (i)
directional selection, (ii) fluctuating epistasis, (iii) inter-
action between drift and selection, and (iv) spatial co-
variance in selection. Is it the synergistic action of these
multiple factors that explains the success of sex in these
models (West et al. 1999) or could each factor work in
isolation?
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To answer this question one needs to analyze simpler
models with fewer factors affecting the evolution of sex
and recombination. Recent studies of the Red Queen
hypothesis (Peters and Lively 1999; Otto and Nuismer

2004) have focused on two forces: directional selection
and fluctuating epistasis. Otto and Nuismer (2004)
developed a general model of species interactions and
showed that under weak selection, the epistasis gener-
ated by most genetic models underlying species interac-
tions (matching-genotypes model, gene-for-gene model,
a quantitative trait model) is too strong relative to the
strength of selection to favor the evolution of high rates
of recombination. When epistasis is strong relative to
selection, the main effect of sex and recombination is to
break apart the good gene combinations that allowed
parents to survive and reproduce in the face of the
current suite of coevolving species. Consequently, the
short-term cost of sex (the recombination load) is too
severe relative to the long-term benefit (the production
of rare genotypes). Nevertheless when selection is strong,
simulations revealed that recombination can be favored
(Peters and Lively 1999; Otto and Nuismer 2004).
What force selects for recombination in these cases?
Peters and Lively (1999) examined the coevolution-
ary dynamics of a matching-alleles model, where para-
sites must match a host’s alleles to infect, and found that
there is often a discrepancy between which combina-
tions of alleles are currently present (disequilibria) and
which are currently favored (epistasis). They thus con-
cluded that fluctuating epistasis is the primary force
driving the evolution of recombination when selection
is strong, although directional selection also contributed
(see also Lythgoe 2000). In summary, when selection is
weak, recombination induces a short-term cost by break-
ing apart good combinations of alleles, which prevents
the evolution of recombination despite the potential for
long-term benefits. In contrast, when selection is strong,
the short-term effect of recombination is to break apart
currently maladapted gene combinations, which allows
modifiers that increase recombination to spread.

In the above studies (Peters and Lively 1999;
Lythgoe 2000; Otto and Nuismer 2004), the case
where selection is strong relative to the rates of sex and
recombination was examined only through simulation
(Pomiankowski and Bridle 2004). In the present ar-
ticle, we examine simpler models that allow us to focus
entirely on the analysis of fluctuating epistasis as a factor
favoring the evolution of sex and recombination. Spe-
cifically, we use fitness functions that lead allele frequen-
cies to equilibrate at 1

2, after which point directional
selection is absent. Although these models are not
empirically justified, we consider them to represent ex-
treme scenarios, where directional selection is absent
and where we can get an analytical handle on the impact
of fluctuations in epistasis, which are observed in more
biologically realistic models. This approach was intro-
duced by Nee (1989), who found that coevolutionary in-

teractions provide an advantage to recombination that
is independent of the period of the fluctuations. This
contrasts with the results of Peters and Lively (1999,
2007), who found that host–parasite coevolution does
not favor high rates of recombination much outside the
Barton zone (i.e., fluctuating epistasis with a period be-
tween 4 and 10 generations).

To elucidate the mechanisms at work, we adopt a two-
step approach. We first analyze a one-species model
where fluctuations in epistasis are governed by the abi-
otic environment (as in Sasaki and Iwasa 1987). We then
study a second model where fluctuations in epistasis are
driven by host–parasite coevolution (as in Nee 1989).
Together these two models help clarify the extent to which
fluctuating epistasis—with or without coevolution—favors
the evolution of sex and recombination. In both cases, we
consider whether evolutionarily stable rates of recombi-
nation coincide with the rate of recombination that maxi-
mizes mean fitness (Sasaki and Iwasa 1987; Nee 1989).

Finally, we use these two models to analyze the evolu-
tion of sex and recombination in a metapopulation,
accounting for migration among patches. Furthermore,
we discuss the link between the evolution of recombina-
tion and local adaptation (a measure of mean fitness in
these models). Throughout, we consider only determin-
istic models with large local and global population sizes.

ONE-SPECIES MODEL

We first consider a single haploid and hermaphro-
ditic organism with nonoverlapping generations living
in an isolated and large population of constant size (no
drift). Using a deterministic model, we follow haplotype
frequencies through a life cycle consisting of a census,
selection, and reproduction. We further assume ran-
dom mating when sex occurs. Selection acts on two loci
(A and B) with two alleles (A/a, B/b). The phenotype
of an individual is set to 0 if it is either AB or ab and to 1
if it is aB or Ab. Phenotype 0 has fitness 1 1 a, while
phenotype 1 has fitness 1� a (Figure 1a). It is assumed
that the quantity a varies sinusoidally over time,

a ¼ aðtÞ ¼ amaxcosðktÞ; ð1Þ

where amax measures the amplitude of the fitness
oscillations and k is the speed of these oscillations,
which varies between 0 (infinitely slow oscillations) and
p (a changes sign each generation). The corresponding
period of the cycle is T ¼ 2p=k. This fitness regime was
first introduced in the case of a single species by
Sturtevant and Mather (1938) and was analyzed by
Sasaki and Iwasa (1987).

To investigate the evolution of sex and recombina-
tion, we allow the probability of sex and/or the rates of
recombination to depend on a third modifier locus (M)
with two alleles (M/m), with gene order MAB. Thus,
there are eight possible haplotypes (MAB, MAb, MaB,
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Mab, mAB, mAb, maB, mab, labeled from 1 to 8), whose
frequencies among adults are xj, for j ¼ 1–8. Whenever
convenient, pj will denote the frequency of allele j.
The modifier locus is assumed to be neutral (but this
assumption is relaxed in the discussion), and the
fitness of genotype j is thus wjðtÞ ¼ 1 1 c aðtÞ, where
c ¼ 1 if j 2 f1; 4; 5; 8g and c ¼ �1 otherwise. After
selection, the haplotypic frequencies are xj* ¼ ðwjðtÞ=
�wðtÞÞxj for haplotype j, where �wðtÞ ¼

P
j wjðtÞxj is the

mean fitness of the population.
Following selection, the probability that two haploid

individuals carrying modifier alleles k and l engage in
sexual reproduction is skl. Haploid individuals that do
not mate reproduce asexually. Sexual mating is followed
immediately by meiosis with recombination between
loci A and B at rate rkl and between loci M and A at rate
Rkl. We let ckl denote the probability of a double cross-
over. Appropriate choices of ckl thus allow interference
among chiasmata and alternative gene orders to be con-
sidered. In deriving the recursions for a haploid popula-
tion, the probabilities of undergoing sex and the rates of
recombination always enter as products. Therefore, we
simplify the equations using the compound parameters

rkl ¼ skl rkl ðprobability that sex occurs with

recombination between A and BÞ

ckl ¼ skl Rkl ðprobability that sex occurs with

recombination between M and AÞ

xkl ¼ skl ckl ðprobability that sex occurs with

a double crossoverÞ:

Because recombination affects the array of offspring
produced only when it occurs between heterozygous
loci, the compound parameters involving the M locus
(ckl and xkl) are relevant only in Mm heterozygotes, so
we may drop the kl subscript. A major advantage of using
these compound parameters is that in a haploid popu-
lation, the same equations apply whether the modifier
locus alters the probability of sex or the rates of recom-
bination or both. The special case of a sexual form

arising within an asexual population with no gene flow
between them can also be modeled by setting rmm . 0
and rMm ¼ rMM ¼ c ¼ x¼ 0, in which case only group
selection acts on the frequency of sex (Felsenstein 1974).
We used the recursion equations presented in Otto

and Nuismer (2004) to follow the frequencies of each
genotype after reproduction.

Change in modifier frequency: To determine if higher
rates of sex and recombination are favored we ask
whether an allele m that increases the rate of sex and
recombination, rkl, rises in frequency. After selection
and sexual reproduction the change in frequency of m
exactly equals

DpmðtÞ ¼
4aðtÞðDmabðtÞ1 dbðtÞDmaðtÞ1 daðtÞDmbðtÞÞ

1 1 4aðtÞðDabðtÞ1 daðtÞdbðtÞÞ
:

ð2aÞ

In the above equation, DijðtÞ and DijkðtÞ refer to the
linkage disequilibria between two loci (i and j) and
between three loci (i, j, and k) at time t (see appendix a).
We simplify the notation in Equation 2a by defining new
variables to measure the departure of the selected allele
frequencies from 1

2: daðtÞ ¼ paðtÞ � 1=2 and dbðtÞ ¼ pbðtÞ
�1=2. If we assume that a and linkage disequilibria are
small (of order z), Equation 2a becomes

DpmðtÞ ¼ 4aðtÞðDmabðtÞ1 dbðtÞDmaðtÞ1 daðtÞDmbðtÞÞ
1 Oðz3Þ: ð2bÞ

Equation 2 shows that the fate of the modifier depends
on the associations between the modifier locus, M, and
the loci A and B; that is, the frequency of the allele m
evolves only through indirect selection (hitchhiking)
with loci A and B. To proceed in the analysis, we thus
need to understand the dynamics of these genetic
associations.

A QLE analysis: As a first attempt to predict the fate of
the modifier, let us assume that the processes generating
disequilibria (epistasis in this model) are weak relative
to the processes reducing disequilibria (sex and recom-
bination). In this case, the disequilibria between loci
quickly reach their steady-state values predicted on the
basis of current allele frequencies, the selection coeffici-
ents, and the rates of sex and recombination. This steady
state is known as the ‘‘quasilinkage equilibrium’’ (QLE).
Assuming a modifier that has only a small effect on sex
and recombination, the dynamics of a modifier allele in
a single population can be approximated at QLE by

Dpm �� pM pm
K

ð1� �rÞ

3 DabE 1
v

2

1

c
1

1

ðc 1 �r� 2xÞ � 1

� �� �
: ð3Þ

Equation 3 was derived following the methods de-
scribed in Barton (1995). The term K measures the
efficacy of the modifier, which equals the average effect

Figure 1.—Coefficients of selection for (a) the one-species
model and (b) the two-species coevolutionary model. The val-
ues in each case give the fitness of the genotypes of the focal
species i (indicated to the left). In the one-species model, se-
lection varies through time because a(t) fluctuates (extrinsi-
cally imposed). In contrast, in the coevolutionary model, the
ai remain constant but selection fluctuates because of the
temporal variation in the genotype frequencies of the coevolv-
ing species (b, top).
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of the modifier, Dr ¼ pmðrmm � rMmÞ1 pM ðrMm � rMM Þ,
divided by the probability that recombination breaks
apart a three-locus haplotype ðc 1 �r� xÞ, thereby
breaking down associations among the modifier and
selected loci. The term �r is the average rate of sex and
recombination between loci A and B. The term E mea-
sures the amount of epistasis defined on a multiplica-
tive scale: E ¼ ðw1=�wÞðw4=�wÞ � ðw2=�wÞðw3=�wÞ. Finally, v
measures the contribution of linkage disequilibrium to
the additive genetic variance in fitness and equals v ¼
2 aaab Dab , where aj is the total selective force acting on
allele j: aj ¼ Dpj=pjð1� pjÞ. When v is positive (nega-
tive), the linkage disequilibrium increases (decreases)
the frequency of the currently most- and least-fit
combinations of alleles, which accelerates (hinders)
evolutionary change (Barton 1995).

The direction of selection of the modifier depends on
the sum of two terms (Barton 1995; Lenormand and
Otto 2000). The first term (proportional to �DabE)
measures the short-term effect of recombination: recom-
bination is beneficial when it breaks apart unfavorable
genetic associations (i.e., when disequilibria have op-
posite sign to the current value of epistasis). The second
term (proportional to�v) measures the long-term effect
of recombination: recombination is beneficial when
breaking down linkage disequilibria increases the addi-
tive genetic variance in fitness (this occurs when v , 0).

Following Barton (1995), we can also determine the
QLE value of the disequilibrium between loci A and
B when epistasis fluctuates according to Equation 1
(appendix a),

D̂ab � 4pqabðtÞ
ð1� �rÞ

�r
aðtÞ; ð4aÞ

where
pqabðtÞ ¼ pAðtÞpaðtÞpBðtÞpbðtÞ

and

E ¼ 4aðtÞ1 Oðz2Þ
aa ¼ 4aðtÞdbðtÞ1 Oðz2Þ
ab ¼ 4aðtÞdaðtÞ1 Oðz2Þ: ð4bÞ

At this QLE, v ¼ 2 aaab Dab is of smaller order than DabE ,
and Equation 3 reduces to

Dpm � �16pqmabðtÞ
K

�r
ðaðtÞÞ2 1 Oðz3Þ ð5Þ

with pqmabðtÞ ¼ pM ðtÞpmðtÞpqabðtÞ. If m is an allele in-
creasing the frequency of sex and/or recombination,
then K . 0, and Equation 5 is always negative, predicting
that sex and recombination should always be selected
against. Essentially, sex and recombination are not favored
because epistasis is too strong relative to the strength of
directional selection, and the main effect of recombi-
nation is to break apart good gene combinations. The
short-term cost of sex and recombination thus out-
weighs any potential long-term benefits.

This prediction matches the results of simulations
presented by Sasaki and Iwasa (1987) when the period
is very large and recombination rates are initially high
(see also our simulation results in Figure 2). When the
period is short or recombination rates are low, however,
some positive level of recombination can evolve. The
discrepancy with the QLE analysis comes from the fact
that fluctuations in epistasis that are rapid relative to the
frequency of sex and recombination drag the linkage
disequilibria away from their QLE values.

Recursion analysis: Following the analysis of Barton

(1995, Appendix 4) we now take into account fluctua-
tions in linkage disequilibria without assuming that
linkage disequilibrium is always and instantaneously
at its steady-state value (the QLE assumption). This re-
cursion analysis is greatly simplified by the peculiar dy-
namical behavior of this simplified model. As pointed
out by Sasaki and Iwasa (1987), the selection regime
used rapidly yields a situation where allele frequencies
converge toward 1

2 [i.e., daðtÞ/0 and dbðtÞ/0 when
t/‘]. Sasaki and Iwasa (1987) proved the con-
vergence in a continuous-time model, and numerical
simulations of our discrete-time model confirm this con-
vergence as long as some recombination occurs. Once
the allele frequencies have reached 1

2, the dynamics of
the system are very simple, and only linkage disequi-
libria vary through time. Furthermore, the dynamics of
the modifier locus are simplified, because v ¼ 0 when
directional selection is absent [aa ¼ ab ¼ 0, see (4b)].
In other words, the evolution of a modifier of recom-
bination is governed only by the short-term effect of

Figure 2.—Evolutionarily stable recombination rates vs.
the period of epistasis fluctuations in the one-species model.
The circles are the ES values of r obtained from numerical
simulations that allowed the recombination rate to evolve
while c was fixed at c ¼ 0 (solid circles), 1

4 (shaded circles),
or 1

2 (open circles); the simulations coincide well with the an-
alytical expectations based on Equation 16b (solid curves).
The squares are the ES values of r obtained from numerical
simulations assuming that that the three loci are equidistant
(i.e., c ¼ r); the simulations match the analytical expectation
based on Equation 16a (dashed curve). While amax¼ 0.01 was
used, other values of amax yielded similar results. The area in
gray denotes the window of parameter values where epistasis
fluctuates with a period between 4 and 10 generations (the so-
called ‘‘Barton zone’’; Peters and Lively 1999).
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recombination, and the change in the frequency of
allele m on the M locus exactly equals

DpmðtÞ ¼
4aðtÞDmabðtÞ

1 1 4aðtÞDabðtÞ
: ð6aÞ

If we further assume that a and linkage disequilibria are
small (of order z) this yields (using 4b)

DpmðtÞ ¼ 4aðtÞDmabðtÞ1 Oðz3Þ
¼ EðtÞDmabðtÞ1 Oðz3Þ: ð6bÞ

Thus the direction of selection on the modifier de-
pends only on the product of epistasis and the three-
locus disequilibrium. This three-locus disequilibrium
depends on the two-locus disequilibrium between loci A
and B. In appendix a, we assume that the effect of the
modifier is weak (OðzÞ) to derive an approximation for
the three-locus disequilibrium,

DmabðtÞ � �DrpqmðtÞ
Xt

t¼1

X t�1ðDabðt � tÞ1 aðt � tÞ=4Þ;

ð7Þ

where pqmðtÞ ¼ pM ðtÞpmðtÞ and X ¼ ð1� ðC 1 �r� xÞÞ.
Using (7) in (6b) we get

DpmðtÞ

� �DrpqmðtÞ
Xt

t¼1

X t�1ð4Dabðt � tÞ1 aðt � tÞÞaðtÞ:

ð8Þ

Because X t�1 ¼ ð1� ðC 1 �r� xÞÞt�1 is a rapidly de-
creasing function of t in the presence of sex and re-
combination, Barton (1995) argued that only the first
few terms in the above sum have a major impact on the
evolution of sex and recombination.

For sex and recombination to be favored, �ð4Dab

ðt � tÞ1 aðt � tÞÞaðtÞ must be positive, which requires
knowledge of the dynamics of the two-locus linkage
disequilibrium. Again assuming that a and linkage dis-
equilibria are small (of order z), the two-locus disequi-
librium is governed by the recursion equation

DabðtÞ ¼ u Dabðt � 1Þ1 aðt � 1Þ
4

� �
1 Oðz2Þ ð9Þ

(appendix a), where u ¼ 1� �r. The Z transform can be
used to solve the recursion Equation 9, and assuming
disequilibrium is initially absent, we obtain the general
solution

DabðtÞ ¼
uðaðt � 1Þ � uaðtÞÞ1 utðamaxuðu� cosðkÞÞÞ

4ð1 1 u2 � 2ucosðkÞÞ
1 Oðz2Þ: ð10Þ

When there is some sex and recombination (u , 1),
Equation 10 converges toward

DabðtÞ ¼
uðaðt � 1Þ � uaðtÞÞ

4ð1 1 u2 � 2u cosðkÞÞ1 Oðz2Þ; ð11aÞ

which can be evaluated using the fitness function (1),

DabðtÞ ¼
uamax

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 u2 � 2u cosðkÞ

p cosðkt � sÞ1 Oðz2Þ;

ð11bÞ

where

s ¼ p� arccos
u� cosðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 1 u2 � 2u cosðkÞ
p
 !

: ð11cÞ

The term s represents the lag between the fluctuations
in epistasis and the two-locus linkage disequilibrium.
This lag increases with the speed of the fluctuations, k,
and it decreases with recombination.

Using (11a) and (7) in (6b) yields the change in
frequency of a modifier allele:

DpmðtÞ ��DrpqmðtÞ
Xt

t¼1

X t�1

3
uðaðt � t� 1Þ� uaðt � tÞÞ
ð11u2� 2ucosðkÞÞ 1aðt � tÞ

� �
aðtÞ:

ð12Þ

Because X , 1 if there is some sex and recombination,
the sum over t can be evaluated explicitly,

DpmðtÞ � � DrpqmðtÞ

3
amaxðcosðkðt � 1ÞÞ � ðX 1 uÞcosðktÞ1 X u cosðkðt 1 1ÞÞÞ

ð1 1 X 2 � 2X cosðkÞÞð1 1 u2 � 2u cosðkÞÞ
3 aðtÞ; ð13Þ

where we have ignored transient dynamics due to the
initial conditions. Averaging over a cycle (denoted ET½ �),
we get the per generation change in the frequency of the
modifier allele:

ET½DpmðtÞ�
� �DrpqmðtÞ

3
a2

maxðcosðkÞð1 1 X uÞ � X � uÞ
2ð1 1 X 2 � 2X cosðkÞÞð1 1 u2 � 2u cosðkÞÞ: ð14Þ

The above expression can be used to predict the
direction of selection on the modifier locus.

If epistasis fluctuates slowly (i.e., k/0), we get

ET½DpmðtÞ� � �DrpqmðtÞ
a2

max

2ð1� X Þð1� uÞ; ð15aÞ

which is equivalent to the QLE prediction (5) averaged
across a cycle. From the fact that (15a) is negative, we
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recover the conclusion obtained from the QLE analysis:
sex and recombination are selected against when epis-
tasis fluctuates slowly. Conversely, selection favors in-
creased levels of sex and recombination if epistasis
fluctuates rapidly (i.e., k/p):

ET½DpmðtÞ� � DrpqmðtÞ
a2

max

2ð1 1 X Þð1 1 uÞ: ð15bÞ

More generally, if a population engages in little sex and
recombination relative to the speed of the cycles (i.e.,
�r; C; x>k), increased levels of sex and recombination
are favored:

ET½DpmðtÞ� � DrpqmðtÞ
a2

max

8 sinðk=2Þ2: ð15cÞ

In summary, when the rate of genetic mixing is initially
low or the period of the cycles is sufficiently short, higher
rates of sex and recombination evolve. Otherwise, de-
creased levels of sex and recombination evolve.

Ultimately, the rates of sex and recombination will
reach an evolutionarily stable (ES) level that is no longer
susceptible to invasion by other modifier alleles; i.e.,
ET½DpmðtÞ� ¼ 0. We now determine the ES level of re-
combination in two cases: when the loci are equidistant
and when the recombination rate between loci M and A
is fixed {other cases can be investigated numerically
by setting ET½DpmðtÞ� ¼ 0 in Equation 14}. In both cases,
we assume that the population is sexual with no inter-
ference in recombination among the three loci
(i.e., x ¼ c �r).

When the loci are equidistant (i.e., c ¼ �r) the ES level
of sex and recombination equals

r* ¼ c* ¼ cosðkÞ � 1 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 2 cosðkÞ � 3 cosðkÞ2

p
2 cosðkÞ :

ð16aÞ

Alternatively, when the recombination rate between M
and A is fixed at c, the recombination rate between loci
A and B evolves to a level that satisfies

r* ¼ 1� 2� c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� cÞ2 � 2ð1� cÞð1 1 cosð2kÞÞ

p
2ð1� cÞcosðkÞ :

ð16bÞ
The evolutionary stability of these ES values was checked
by verifying that dðET½DpmðtÞ�Þ=dr , 0 when r ¼ r*.
Given the restriction that recombination rates must
be , 1

2, we have the following expression for the ES
recombination rate:

rES ¼ if r* . 0:5; then rES ¼ 0:5

if r* , 0:5; then rES ¼ �r*: ð17Þ

(

When c is held fixed, the ES value of recombination
between loci A and B (16b) increases when there is
tighter linkage between the modifier and the first

selected locus (i.e., when c is smaller). This makes sense
as the modifier can hitchhike for longer by association
with favorable alleles if tightly linked to at least one of
the selected loci. Furthermore, the ES value increases
with the speed of the oscillations, k, and thus decreases
with the period of the cycle. Indeed, the maximum level
of recombination, 0.5, is the evolutionarily stable state
for periods between 2 and 7 generations when the loci
are equidistant [from (16a)] or when the modifier is
loosely linked [from (16b)] and for periods between 2
and 9 generations when the modifier is tightly linked
[from (16b)]. Thus, this analysis confirms the general
claim that high recombination rates evolve in the Barton
zone (with periods of 4–10 generations). Although we
find that high rates of recombination can evolve with
periods shorter than the Barton zone (including peri-
ods of 2 generations, i.e., k ¼ p), an examination of
Barton’s 1995 model indicates that this is possible in
haploid models (as considered here), but not in diploid
models as considered by Barton (1995).

As previously pointed out by several authors
(Charlesworth 1976; Maynard-Smith 1978; Barton

1995), selection for high rates of recombination requires
rapid fluctuations in the sign of epistasis. Interestingly,
the amplitude of the oscillations (amax) does not affect
the direction of selection on a modifier or the ES value,
although amax does affect the strength of selection and
thus matters when there are direct costs associated with
higher recombination (see discussion).

Mean fitness: It is worth comparing the ES recombi-
nation rate to the recombination rate that would max-
imize the long-term geometric average of the mean
fitness within the population, as studied by Sasaki and
Iwasa (1987). In this one-species model with allele
frequencies at 1

2, the mean fitness is

�wðtÞ ¼ 1 1 4aðtÞDabðtÞ: ð18aÞ

If selection is weak [i.e., the amplitude, amax, is small
and the disequilibrium is approximately (11b)], the geo-
metric average of �wðtÞ is well approximated by the arith-
metic average over one cycle, which is

ET½�wðtÞ� ¼ 1 1
uðcosðkÞ � uÞa2

max

2ð1 1 u2 � 2u cosðkÞÞ

¼ 1 1
ua2

max

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 u2 � 2u cosðkÞ

p cosðsÞ; ð18bÞ

where again u ¼ 1� �r, and s is the lag between fluc-
tuations in epistasis and disequilibrium given by Equa-
tion 11c. Recombination affects the mean fitness by
altering the amplitude of the fluctuations in linkage
disequilibrium and the lag, s. While increasing recombi-
nation decreases the amplitude by which linkage dis-
equilibrium oscillates in response to fluctuations in
epistasis (see Equation 11b), it also decreases the lag be-
cause disequilibrium responds more quickly to changes
in epistasis. These two effects act on the arithmetic
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mean of fitness in opposite directions, and there is con-
sequently a recombination rate that maximizes (18b):

r� ¼ 1� 1� sinðkÞ
cosðkÞ : ð19Þ

According to (19), the optimal recombination rate
increases with the speed of the cycles. For long periods
(k small), Equation 19 is�r� � k, as found by Sasaki and
Iwasa (1987) using a similar model. For short periods
(k large), Equation 19 more nearly equals r� � 2k=p, as
found by Sasaki and Iwasa (1987) using a square-wave
model of selection with maximally strong selection.

If group selection were governing the evolution of sex
and recombination, the rate of sex and recombination
would evolve toward rES � r�. Indeed, when the mod-
ifier is completely linked to the A locus (c ¼ 0), the
optimal rate of sex and recombination (Equation 19)
coincides with the ES level (Equation 16b). Conse-
quently, the solid curve describing the ES level in Figure
2 when c ¼ 0 coincides with the optimal level of sex
and recombination. In all other cases, the ES level of sex
and recombination is lower than the value that would
maximize mean fitness; this mismatch occurs because
recombination between the modifier and the selected
loci uncouples the fate of the modifier from its effects
on the mean fitness of offspring.

COEVOLUTIONARY MODEL

In the one-species model analyzed above, fluctuations
in epistasis are imposed externally (see Equation 1). In
contrast, we now focus on a situation where the tem-
poral variability in epistasis emerges from coevolution-
ary interactions with an antagonist species. We follow
haplotype frequencies in two haploid hermaphroditic
species (the host and the parasite) through a life cycle
consisting of a census, selection, and reproduction, with
nonoverlapping generations. The two organisms form
two large populations of constant size (no drift). Within
each population we further assume random mating
(when sex occurs). The species interaction is mediated
via two loci (A and B) with two alleles (A/a, B/b) in each
species. Every generation, each host encounters one
parasite, chosen randomly from the parasite popula-
tion. In each species, the phenotype of an individual is 0
if it is either AB or ab and is 1 if it is aB or Ab. When the
host phenotype matches that of the one parasite that it
encounters, the parasite gains a fitness advantage (ap .

0), while the host suffers a fitness cost (�1 # ah , 0).
The assumption regarding the specificity of the inter-
action (Figure 1b) was first introduced by Nee (1989) as
a simple two-locus model that captures two essential
features of the Red Queen hypothesis: fitness interac-
tions are antagonistic and recombination influences the
outcome of the species interaction. We thus refer to this
coevolutionary model as the Nee model.

As in the one-species model, we allow the probability
of sex and/or the rates of recombination to depend on
a third modifier locus (M) with two alleles (M/m) and
with gene order MAB. Thus, in each species, there are
eight possible haplotypes (MAB, MAb, MaB, Mab, mAB,
mAb, maB, mab, labeled from 1 to 8), whose frequencies
among adults in species i are xi,j for j ¼ 1–8. Where con-
venient, we denote the frequency of allele j by pi,j. We use
the subscript i ¼ h to refer to parameters and variables
in the host species and i¼ p to refer to the parasite. The
fitness of genotype j of species i is then wi;j ¼ 11ai

ðcðx�i;1 1x�i;4 1x�i;5 1x�i;8Þ1ð1� cÞðx�i;2 1x�i;3 1x�i;6 1x�i;7ÞÞ;
where c ¼ 1 if j 2 f1; 4; 5; 8g and c ¼ 0 otherwise, and
where �i refers to the other species. After selection, the
haplotypic frequencies are xi;j* ¼ ðwi;j=�wiÞxi;j for haplo-
type j in species i, where �wi ¼

P
j wi;j xi;j is the mean

fitness of species i.
Following selection, the probability that two haploid

individuals carrying modifier alleles k and l engage in
sexual reproduction follows the rules defined in the
single-species case. To simplify matters, we consider the
evolution of sex and recombination in one species (the
focal species) at a time, setting x �i;j ¼ 0 in the interacting
species for j ¼ 5–8. To determine if higher rates of sex
and recombination can be favored we track changes in
the frequency of allele m in the focal species i.

QLE analysis: When the fluctuations in epistasis are
slow relative to the rates of recombination (i.e., when
selection is weak, see Equation 27 below), a QLE analysis
can be used to predict the fate of the modifier allele
from Equation 3. In this model, the speed of these fluc-
tuations is not a parameter but depends on the coevo-
lutionary dynamics and, in particular, on the strength
of selection on the host and the parasite (see Equation
27 below). Under the assumption that ai and linkage
disequilibria are small (of order z), we have

D̂i;ab ¼ 8pqi;abðtÞ
ð1� �riÞ

�ri

aid�i;aðtÞd�i;bðtÞ1 Oðz2Þ; ð20aÞ

with pqi;abðtÞ ¼ pi;AðtÞpi;aðtÞpi;BðtÞpi;bðtÞ. The selection
coefficients induced by the other species become

Ei ¼ 8aid�i;aðtÞd�i;bðtÞ1 Oðz2Þ
ai;a ¼ �8aidi;bðtÞd�i;aðtÞd�i;bðtÞ1 Oðz2Þ
ai;b ¼ �8aidi;aðtÞd�i;aðtÞd�i;bðtÞ1 Oðz2Þ; ð20bÞ

where di;aðtÞ ¼ pi;aðtÞ � 1=2 and di;bðtÞ ¼ pbðtÞ � 1=2.
Consequently, as in the one-species model, the product
ai;aai;b can be neglected relative to the strength of
epistasis, and (3) reduces to

Dpi;m � �pi;M pi;m
Ki

�ri

pqi;abðtÞð8aid�i;aðtÞd�i;bðtÞÞ2: ð21Þ

Thus, if the modifier allele m increases recombination
in species i, Ki . 0 and (21) is always negative. Here, as in
the one-species model and as in most models analyzed
by Otto and Nuismer (2004), sex and recombination
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are not favored because epistasis is too strong relative
to the strength of directional selection.

Like the single-species model analyzed above, this
coevolutionary model is peculiar in that allele frequen-
cies converge toward 1

2 as long as there is some recombi-
nation. After this convergence, allele frequencies remain
fixed, and only the fluctuations in linkage disequilibrium
are needed to describe the dynamics of the selected loci.
Equation 20 no longer applies once the allele frequen-
cies have reached 1

2, however, as the d terms equal zero. It
is thus necessary to consider smaller-order terms in the
QLE approximation to predict the dynamics of the mod-
ifier. Assuming that sex and recombination are suffi-
ciently frequent relative to the strength of selection in
species i that the focal species (but not necessarily the
interacting species) has reached QLE, and assuming
that linkage disequilibria in both species are small (of
order z), we have

D̂i;ab ¼
ð1� �riÞ

16�ri

Ei 1 Oðz2Þ ð22aÞ

Ei ¼ 16D�i;ab

ai

2 1 ai
1 Oðz2Þ ð22bÞ

Dpi;m � �pi;M pi;m
Ki

ð1� �riÞ
E2

i : ð22cÞ

If the interacting species is also at QLE, Equations 22
are satisfied for both species only if D̂i;ab ¼ D̂�i;ab ¼ 0,
indicating that disequilibria will not be maintained in
this model when rates of sex and recombination are
sufficiently high in both species.

When the rate of sex and recombination is high
relative to selection in the focal species but not in the
interacting species, the QLE analysis predicts that rates
of sex and recombination should decrease over evolu-
tionary time in the focal species (i.e., Equation 22c is
negative for modifier alleles with positive Ki). As the rate
of genetic mixing decreases, however, the assumption
that the focal species will be at QLE becomes tenuous.
Indeed, simulations reveal that sex and recombination
do not evolve to zero but to some positive level, which
increases with the strength of selection (see Figure 3).
To explore cases where selection is strong relative to
the rate of sex and recombination, we follow Barton

(1995) and study the dynamics of linkage disequilibria,
just as we did in the one-species model.

Recursion analysis: When the allele frequencies
have converged toward 1

2 at both loci in both species,
the dynamics of linkage disequilibrium between se-
lected loci can be approximated by the linear recursion
equations

Dh;ab

Dp;ab

� �
t11

¼ D 3
Dh;ab

Dp;ab

� �
t

1 Oðz2Þ; ð23Þ

where

D ¼
uh

uhah
2 1 ah

upap

2 1 ap
up

 !
ð24Þ

and ui ¼ ð1� �riÞ. Although similar to the QLE analysis
in requiring that the disequilibria are small, this re-
cursion analysis does not assume that the disequilibria
instantaneously reach the steady-state values predicted
by the current level of epistasis, as does the QLE analysis.

Figure 3.—Evolutionarily stable host
recombination rate in the two-species co-
evolutionary model as a function of (a)
the strength of selection on the host, (b)
the strength of selection on the parasite,
(c) the period of the coevolutionary
cycles, and (d) the parasite recombina-
tion rate. The ES values obtained from
simulations (circles) are compared to
Equation 34 (shaded curve). When re-
combination is so frequent that R , 1
(see Equation 36), the coevolutionary
cycles and, hence, selection on recombi-
nation vanish (solid area). Except for
the parameters illustrated on the horizon-
tal axes, default parameters of ap ¼ 100,
ah ¼ �1, �rp ¼ 0, c ¼ 0:5, and x ¼ c r
were used (in c, ah was varied as in a, from
which the period was calculated). In d,
we also incorporate different intrinsic
costs of recombination (see Equation
44): k ¼ 0 (solid circles), k ¼ 0.1 (dark-
shaded circles), and k¼ 0.5 (light-shaded
circles ).
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Thus, Equation 23 can be applied even when selection is
large relative to the rates of sex and recombination.

Given the linear recursions (23), the dynamics of the
disequilibria in both species can be solved using stand-
ard algebraic techniques. It can be readily seen that the
point where Dh;ab ¼ Dp;ab ¼ 0 is an equilibrium of (23).
A local stability analysis of this equilibrium reveals that
it is unstable with complex eigenvalues as long as

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðDÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uhup

1 1 ah=2 1 ap=2

ð1 1 ah=2Þð1 1 ap=2Þ

s
. 1;

ð25Þ

where detðDÞ is the determinant of matrix D, and R is
the magnitude of the complex eigenvalue of D. When
(25) is satisfied the disequilibria of both species cycle
sinusoidally over time, with an amplitude that increases
over time. In other words, the coevolutionary cycles can
persist over the long term only if selection is sufficiently
strong relative to the rates of recombination of both
species; otherwise the Dh;ab ¼ Dp;ab ¼ 0 equilibrium is
locally stable. We focus on the case where R is near one
(recombination rates low relative to selection), so that
linkage disequilibria persist but remain small for ex-
tended periods of time.

Measuring time as the first point at which the host
disequilibrium passes zero, the general solution to
Equation 23 is

Dh;ab ½t� ¼ Rt�1uh
ah

2 1 ah
Dp;ab ½0�

sin½Ft�
sin½F� ð26aÞ

Dp;ab ½t� ¼ �Rt�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � uhup

q
Dp;ab ½0�

sin½Ft � s�
sin½F� ; ð26bÞ

where F is the speed of the coevolutionary cycles (i.e.,
T ¼ 2p=F is the period),

F ¼ arccos
uh 1 up

2R

� �
; ð27Þ

and s is the phase shift between the parasite and the
host cycles,

s ¼ arccos
uh � up

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � uhup

q
0
B@

1
CA

¼ arccos
uh � up

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uhup � ahap=ðð2 1 ahÞð2 1 apÞÞ

p
 !

ð28Þ

with the parasite always lagging behind the host. When-
ever (25) is satisfied, the radical terms in (26) and (28)
are real and positive.

Because R is an increasing function of ai , Equation 27
indicates that the cycles become faster as selection in

either species becomes stronger. The effect of recombi-
nation on the speed of the cycles is more complex,
however. The cycles become faster as the recombination
rates of the two species approach one another. Increas-
ing both recombination rates (while holding their dif-
ference constant), however, slows down the cycles.

According to Equation 28, the parasite cycle lags 90�
behind the host cycle when the average recombination
rates between loci A and B are the same in both species
(uh ¼ up). If, however, the host undergoes more recom-
bination than the parasite then the phase shift increases.
We can think of this case as the host ‘‘winning’’ the Red
Queen race (the host is less susceptible to parasitic
attack when averaged across a cycle). Conversely, if the
host undergoes less recombination then the phase shift
decreases, and the parasite is winning the Red Queen
race. The speed of the cycle (and hence the selection
coefficients) also influences the lag. Typically (i.e., for
periods greater than four generations), increasing the
speed of the cycle brings the lag closer to 90�.

After selection and sexual reproduction (under the
assumption that allele frequencies remain constant at 1

2
in both species), the change in frequency of allele m in
species i is

Dpi;mðtÞ ¼
8Di;mabðtÞD�i;abðtÞai

1 1 ai

2 ð1 1 16Di;abðtÞD�i;abðtÞÞ
� �: ð29aÞ

Under the assumption that linkage disequilibria are
small (of order z) this yields

Dpi;mðtÞ ¼ 16Di;mabðtÞD�i;abðtÞ
ai

2 1 ai
1 Oðz3Þ: ð29bÞ

Using the fact that the epistasis experienced by species
i at time t is

EiðtÞ ¼ 16D�i;abðtÞ
ai

2 1 ai
1 Oð§2Þ ð30Þ

we can rewrite (29b) as

Dpi;mðtÞ ¼ EiðtÞDi;mabðtÞ1 Oðz3Þ: ð31Þ

We thus recover the result of the one-species model
(compare Equations 31 and 6b).

To further analyze Equation 31 we need to under-
stand the dynamics of the genetic associations. The anal-
ysis is simplified when we assume that the effect of the
modifier of species i is of small order (Dr;i ¼ OðzÞ), in
which case the recursion for the three-locus disequilib-
rium may be approximated by

Di;mabðtÞ � � Dr;ipi;mð1� pi;mÞ
Xt

t¼1

X t�1
i

3 Di;abðt � tÞ1 ai

2 1 ai
D�i;abðt � tÞ

� �
ð32Þ

(see appendix a, Three-locus disequilibrium), where Xi ¼
ð1� ðci 1 �ri � xiÞÞ. Plugging (32) into (29b) yields
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Dpi;mðtÞ � � Dr;ipi;mð1� pi;mÞ
16ai

2 1 ai
D�i;abðtÞ

Xt

t¼1

X t�1
i

3 Di;abðt � tÞ1 ai

2 1 ai
D�i;abðt � tÞ

� �
: ð33Þ

Using the fact that Xi , 1 when there is some sex and
recombination, the sum over t can be evaluated ex-
plicitly using Equations 26. Then, as in the one-species
model, we can average the change in modifier allele
frequency over one coevolutionary cycle, ignoring trans-
ient dynamics due to the initial conditions. When cal-
culating this average, we also average over all possible
starting points in the host–parasite cycle. Using Equa-
tions 25, 27, and 28 to simplify the result, we find that a
modifier allele m that increases the frequency of sex
and/or recombination in species i spreads whenever
the following is positive,

signðET½Dpi;mðtÞ�Þ

� sign c1Xi 1� r�i

2
� r�i

2

� �
�ð�ri � r�iÞð1�Xi � r�iÞ

� �
;

ð34Þ

where c1 is the positive constant (recall that�1 # ah , 0
and ap . 0):

c1 ¼
�ahap

2 1 ah 1 ap
:

The first term in Equation 34 is always positive, favoring
higher rates of sex and recombination, especially when
selection is strong (large c1), the modifier is tightly linked
(large Xi), or host and parasite recombination rates are
similar (�ri � r�i). If the focal species has a much higher
rate of sex and recombination than the species with
which it interacts (�ri?r�i), however, decreased levels of
sex and recombination will evolve (second term in
Equation 34). For a modifier that is completely linked
(Xi ¼ 1� �ri), the first term dominates the second in
Equation 34, and higher rates of sex and recombination
are always favored (assuming that R $ 1). These results
differ from that of the QLE analysis, where lower rates of
recombination are always favored. This discrepancy is
due to the QLE assumption that recombination rates are
large relative to selection, not small as assumed in (34).

To determine the ES level of recombination, we set
Equation 34 to zero and solved for ri* under the
assumption that xi ¼ ci�ri , giving

ri* ¼ r�i 1 ð1� r�iÞ �c2 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

2 1
c1

1� c1=2

r� �
; ð35Þ

where again c1 and c2 (as well as 1� c1=2) are strictly
positive constants:

c1 ¼
�ahap

2 1 ah 1 ap
:

and

c2 ¼
c1

2� c1
1 1

1

2ð1� ciÞ

� �
1

ci

2ð1� ciÞ
:

Equation 35 indicates that the evolutionarily stable
recombination rate for the focal species, ri*, is always
larger than the recombination rate in the interacting
species, r�i . Furthermore, it can be shown using Equa-
tion 35 that stronger selection (which induces faster
cycles) increases the ES recombination rate in both the
host and the parasite. Similarly, tighter linkage between
the modifier and the selected loci (lower ci) favors
higher ES recombination rates. As in the one-species
model, the amplitude does not, by itself, affect the di-
rection of selection on the modifier; the amplitude of
the cycles can be altered independently of the speed
and the phase shift by changing Dp;ab ½0� in Equation 26,
yet the direction in which the modifier evolves (Equa-
tion 34) is independent of Dp;ab ½0�.

Figure 3 explores the relationship between the ES
recombination rate in the host vs. the strength of
selection (Figure 3, a–c) and the level of recombination
in the parasite (Figure 3d). The evolution of host
recombination was simulated by introducing a series
of modifier alleles and tracking their spread or loss until
further modifier alleles failed to spread. As expected,
higher rates of recombination evolved in the host
when selection was stronger (Figure 3, a and b). This
was due to the faster coevolutionary cycles associated
with stronger selection (Figure 3c), as was observed in
the one-species model (compare to Figure 2). Equation
35 provides an excellent approximation of the evolu-
tionary endpoint of these simulations when the strength
of selection is high (Figure 3, a and b). When selection is
weak, however, recombination evolution halts before
it reaches the expected level (Figure 3, a and b, left).
This occurs because selection on recombination
vanishes when the cycles disappear (Figure 3, solid
areas). Using Equation 25, the cycles disappear when-
ever the recombination rate rises above a threshold
level given by

r̂i ¼ 1� ð1 1 ah=2Þð1 1 ap=2Þ
ð1 1 ah=2 1 ap=2Þð1� r�iÞ

: ð36Þ

This threshold also explains the nonmonotonic effect
of parasite recombination on the evolution of host re-
combination (Figure 3d). When parasite recombina-
tion is rare, higher recombination in the parasite favors
higher recombination in the host, as this helps the host
‘‘keep up’’ in the coevolutionary arms race (as predicted
by Equations 34 and 35). When parasite recombination
is common, however, coevolutionary cycles dissipate
once the host reaches the critical level of recombination
(Equation 36). As the rate of recombination in the para-
sites increases, this critical value becomes lower (Figure
3d), explaining why the evolutionarily stable rate of host
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recombination falls once recombination in the parasite
becomes sufficiently common.

When selection is strong, the core assumption of our
analysis, that linkage disequilibria remain small need
not be valid. Nevertheless, Figure 3 indicates that Equa-
tion 35 continues to provide an excellent approximation
for the evolutionarily stable rate of recombination even
when selection in the host and/or parasite becomes very
strong.

Mean fitness: Nee (1989) used this coevolutionary
model to determine the recombination rate maximiz-
ing the geometric mean fitness. When allele frequencies
have converged upon 1

2, the mean fitness of species i is

�wiðtÞ ¼ 1 1
ai

2
1 8aiDi;abðtÞD�i;abðtÞ: ð37Þ

We may use (37) to derive the geometric mean fitness
over one coevolutionary cycle. To make progress,
however, we approximate the geometric mean by the
arithmetic mean over one coevolutionary cycle (as in
the one-species model and Nee 1989). The arithmetic
mean provides a good approximation for the geometric
mean as long as the amplitude of the oscillations re-
mains small. If we further assume that the system re-
mains near a coevolutionary limit cycle (i.e., R ¼ 1) this
yields (using equation 26)

ET½�wiðtÞ� ¼ 1 1
ai

2
1 4aiAhAp cos½s�; ð38aÞ

where Ah and Ap are the amplitudes of the linkage
disequilibrium oscillations in the host and parasite (i.e.,
the magnitude of the factors multiplying the sine terms
in Equation 26). We obtained a very similar expression
for the arithmetic mean fitness in the one-species model
[compare (18b) and (38a)].

Nee (1989) pointed out that the impact of recombi-
nation on the long-term mean fitness depends only on
the ‘‘geometry of the coevolution’’ (i.e., the amplitudes
of and the lag between the fluctuations in the host and
the parasite),

@ET½�wiðtÞ�
@ri

¼ 4aiAhAp

3
@Ah=@ri

Ah
cos½s�1 @Ap=@ri

Ap
cos½s� � @s

@ri

sin½s�
� �

:

ð38bÞ

When hosts and parasites are nearly 90� out of phase
(i.e., when recombination is similar in the two species,
see Equation 28), cos½s� is approximately zero. In this
case, whether recombination increases or decreases
mean fitness depends only on its effect on the lag (the
last term within parentheses in Equation 38b). The lag
increases (the parasite falls further behind) with higher
rates of recombination in the host (@s=@rh . 0 from

Equation 28), while the lag decreases (the parasite more
closely matches the host) with higher rates of recombi-
nation in the parasite (@s=@rp , 0). Thus, the sign of
�4aiAhApð@s=@riÞsin½s� is always positive, implying that
increasing recombination increases long-term mean fit-
ness in either species (Nee 1989).

Further insight can again be gained by assuming that
recombination rates between the selected loci are low.
To linear order in �rh and �rp (replacing R, F, and s with
Equations 25, 27, and 28), the mean fitness is

ET½�wiðtÞ� � 1 1
ai

2
� 4aið�rh � �rpÞ

2 1 ah 1 ap

ð2 1 ahÞap
D2

p;ab ½0�:

ð38cÞ

Recalling that ai is defined to be negative in the host
and positive in the parasite, Equation 38c indicates that
increasing the frequency of sex and/or recombination
would always increase the mean fitness of a species in the
Nee model.

As with the single-species model, we find that examin-
ing the evolution of recombination using a mean fitness
approach generates different predictions than using a
modifier approach. As long as cycles are maintained
(�ri , r̂i), the mean fitness approach predicts that in-
creased recombination is always favorable (Equation 38c,
confirmed by a numerical exploration), while the mod-
ifier approach predicts that increased recombination
evolves only up until the evolutionary stable level given
by ri* (Equation 35). Once again, this discrepancy occurs
because recombination between the modifier and the
selected loci uncouples the fate of a modifier allele from
its long-term effects on mean fitness. Only when ci ¼ 0
does the modifier approach predict that higher rates of
sex and recombination should always evolve (Equation
34), as predicted by an analysis of mean fitness.

METAPOPULATION MODELS

We now briefly describe results extending the above
analysis to situations where the habitat consists of a
number n of local populations connected by gene flow.
We assume that population sizes are large (locally and
globally), so that genetic drift is negligible. We also
assume that dispersal among populations follows the
rules of an island model (no isolation by distance).

One-species model: For the sake of simplicity, we
assume that the amplitude and the speed of abiotic
oscillations in selection remain constant over space, but
we allow the phase of the cycle to vary, with all possible
phases being equally common. Selection in a given
population z (z 2 ½1; n�) at time t is then given by

a ¼ azðtÞ ¼ amaxcos kt 1
z

n
2p

� �
: ð39Þ

The parameter ðz=nÞ2p measures the phase shift of popu-
lation z and ensures that selection among populations is
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asynchronous. (When selection is synchronized among
populations the metapopulation behaves as a single
population and, consequently, migration has no effect.)
According to (39), the average selection over the whole
metapopulation (denoted E ½ �) equals zero: �aðtÞ ¼
E ½azðtÞ� ¼ 0.

Migration among populations is assumed to take
place just after selection and reproduction with a prob-
ability d. The haplotypic frequencies in a given popu-
lation, z, after migration are thus given by

x9j ;z ¼ ð1� dÞxo
j ;z 1 d

Xn

y51
y 6¼z

xo
j ;y

	
ðn � 1Þ

0
BB@

1
CCA: ð40Þ

For simplicity, we assume in the following that the
number of populations is extremely large (i.e., n/‘).
In this case, we can use the approximation

Pn
y51
y 6¼z

xo
j ;y=

ðn � 1Þ � 1
4, because the negative frequency dependence

tends to maintain all genotypes at the two loci at the
same global frequency (i.e., when measured at the scale
of the metapopulation).

The recursion analysis can be readily adapted to study
the effect of migration rates. This yields a new expres-
sion for the change in modifier frequency in population
z (i.e., ET½Dpm;z� see appendix b). The evolutionarily
stable recombination rate is defined as the strategy that
cannot be invaded at the scale of the metapopulation.
Because a modifier will spread throughout the meta-
population if and only if it spreads in the migrant pool,
the ES value must satisfy

Pn
z¼1 ET½Dpm;z� ¼ 0. In partic-

ular, in the absence of interference in recombination
among the three loci (i.e., xz ¼ cz rz), the ES recombi-
nation rate between loci A and B (holding the re-
combination rate between M and A fixed at cz ¼ c) is

r* ¼ 1� 2� c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� cÞ2 � 2ð1� cÞð1 1 cosð2kÞÞ

p
2ð1� dÞð1� cÞcosðkÞ :

ð41Þ

This differs from Equation 16b only by the (1 � d) term
in the denominator. Thus, the effect of gene flow is to
decrease the ES recombination rate. Increasing migra-
tion, like increasing the recombination rate c between
the modifier and selected loci, decouples the dynamics
at the modifier locus from the potential benefits of be-
ing associated with particular alleles at the selected loci.
This decoupling decreases the strength of indirect se-
lection at the modifier locus through the decrease of the
three-locus linkage disequilibrium (appendix b).

Because selection is spatially heterogeneous one
might expect populations to be locally adapted. One
measure of local adaptation at time t is the difference be-
tween the mean performance of the population in the
original habitat [i.e., the mean fitness of the population,

�wzðtÞ ¼ 1 1 4azðtÞDab;zðtÞ, see Equation 18a] and the
mean performance of the population in a randomly
chosen habitat in the metapopulation [i.e., the mean fit-
ness averaged over the different habitats: E ½�wzðtÞ� ¼
1 1 4E ½azðtÞ�Dab;zðtÞ ¼ 1]. This measure of local adapta-
tion thus equals DzðtÞ ¼ 4azðtÞDab;zðtÞ, which oscillates
over time. It will be positive only when linkage disequi-
librium and epistasis in the local patch (az) have the
same sign. When local adaptation is averaged over the
different populations this yields D ¼ 4E Dab;zðtÞazðtÞ½ � ¼
4 Cov Dab ; að Þ. Because we assume that all possible phases
are equally common among the different populations,
we would get the same result if we compared the mean
fitness of a population with the mean fitness obtained by
taking the same population, holding the genotype
frequencies constant, and averaging over all time points
in the cycle: ET½D� ¼ ET½Dz� ¼ 4ET½Dab;zðtÞaz ðtÞ� ¼ D.

Several factors affect the mean level of local adapta-
tion. In particular r� (Equation 19) is the recombina-
tion rate that maximizes mean local adaptation because
maximizing arithmetic mean fitness also maximizes
local adaptation. Migration also affects the long-term
average mean fitness in a population [approximated by
��wzðtÞ ¼ 1 1 D, given by Equation 18b with u ¼ ð1� rÞ
ð1� dÞ]. When the speed of the oscillations is low, mig-
ration always decreases D, as in classical models (Slatkin

1987; Lenormand 2002). When the oscillations are fast,
however, migration can increase D. The migration rate
maximizing mean fitness and local adaptation is

d� ¼ 1� 1� sinðkÞ
ð1� rÞcosðkÞ: ð42Þ

The mean fitness is maximized when there is some
migration because gene flow allows the population to
better track fluctuations in epistasis.

Coevolutionary model: In the coevolutionary model
we again assume that the strengths of selection (ah and
ap) do not vary through space. Host and parasite
genotype frequencies, however, may vary from one pop-
ulation to the next, and this generates heterogeneous
selective pressures and local adaptation. Migration among
populations is assumed to take place independently for
the host and the parasite (with probabilities dh and dp,
respectively). The haplotypic frequencies after migra-
tion are thus given by

x9i;j ;z ¼ ð1� diÞxo
i;j ;z 1 di

Xn

y51
y 6¼z

xo
i;j ;y=ðn � 1Þ

0
BB@

1
CCA: ð43Þ

In this deterministic metapopulation model, migra-
tion rapidly leads to the synchronization of coevolution-
ary cycles among populations. After synchronization,
migration has no effect on coevolutionary dynamics,
and the metapopulation behaves as a single population.
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One way to desynchronize the dynamics among
populations is to allow genetic drift within each pop-
ulation (Gandon 2002; Sasaki et al. 2002). In Figure 4
we present the results of numerical simulations that
examine the effect of both host and parasite migration
rates on the evolution of recombination (see details of
the simulations in the Figure 4 legend). These simu-
lations show that intermediate levels of parasite migra-
tion increase the mean fitness (and the level of local
adaptation) of parasites (Figure 4a). Furthermore, these
simulations show that an allele increasing host recom-
bination is more strongly favored for intermediate para-
site migration rates as long as the host migration rate is not
much higher than the parasite migration rate (Figure 4b).

Perhaps not surprisingly, the parameter combina-
tions promoting parasite adaptation are also the ones
most conducive to the evolution of host recombination.
This is consistent with the results of the coevolutionary
model in a single population, where parasite recombi-
nation allowed parasites to be better adapted to their
hosts and promoted the evolution of higher rates of host
recombination (Equation 35). These stochastic simula-
tions introduce two factors ignored in the deterministic
models considered above, however. First, the simulations
allow genetic drift, which can have a strong effect on the
evolution of recombination (see Introduction). Sec-
ond, genetic drift prevents the convergence of allele
frequencies to 1

2 and, consequently, allows directional
selection to act in the simulations. Thus, the simulations
include all four factors known to influence the evolu-
tion of recombination: (i) directional selection, (ii) fluc-
tuating epistasis, (iii) interaction between drift and
selection, and (iv) spatial covariance in selection, mak-
ing it difficult to pinpoint their relative importance.

DISCUSSION

The speed, shape, and size of cycles matter: Using
one-species and two-species models that focus solely
on fluctuating epistasis in the absence of directional
selection, we have derived analytical predictions for the
evolution of a modifier of sex and recombination under
a pure Sturtevant–Mather process (Sturtevant and
Mather 1938). These models are highly symmetric in
that the ‘‘extreme’’ genotypes (ab and AB) always have
equal fitness, as do the ‘‘intermediate’’ genotypes (Ab
and aB). This type of selection leads allele frequencies
to converge upon 1

2, after which point directional se-
lection disappears. While this selection regime is argu-
ably not very realistic, we believe that these models have
a heuristic value and provide interesting insights regard-
ing the effect of fluctuating epistasis and host–parasite
coevolution. In particular, these models can be solved
analytically across a broad range of recombination rates,
whereas other analytical results use QLE approxima-
tions that require high rates of recombination relative to

Figure 4.—Effect of host and parasite migration rates on
(a) parasite local adaptation and (b) the evolution of a mod-
ifier of recombination in the host. These results are obtained
from numerical simulations of a stochastic version of the Nee
coevolutionary model in a metapopulation. We considered 50
host and parasite populations of equal size (1000 individuals
in each population), connected by host and parasite migra-
tion. In a we plot the level of local adaptation: in the solid area
the parasite is locally adapted (D . 0:01); in the shaded area
there is no local adaptation (�0:01 . D . 0:01); in the open
area the parasite is locally maladapted (D , � 0:01). In b we
plot the frequency of a modifier allele after 500 generations
(on the basis of the mean of 100 runs using the same param-
eter values). The modifier allele m is codominant and induces
free recombination in homozygotes, while the resident allele
M induces no recombination. The contours give the final fre-
quency of m, given an initial frequency of 0.5. Observe that
the area where recombination is favored in the host corre-
sponds to parameter values where the parasite is relatively
more locally adapted (a). Other parameter values: ah ¼ �1,
ap ¼ 1000, c ¼ 0:5, x ¼ c r, and rp ¼ 0.
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selection (Barton 1995; Otto and Nuismer 2004) or
are based on models where selection is constant over
time. Our analyses reveal that the evolution of recom-
bination depends on three aspects of the fluctuations in
epistasis, whether epistasis is extrinsically induced or
results from coevolution.

First, faster fluctuations in epistasis favor the evolu-
tion of higher recombination rates. We derive explicit
expressions for the evolutionarily stable recombination
rate in both the one-species model (Equation 16) and
the two-species model (Equation 35). In both cases, we
find that higher rates of recombination are favored for
cycles of low-to-intermediate periods, as pointed out
earlier by Charlesworth (1976) and Barton (1995).
Fluctuating epistasis is often presented as an unlikely
mechanism explaining the evolution of recombination
because it requires such fast oscillations. It is important
to emphasize, however, that some recombination is
always favored by fluctuating epistasis (Figures 2 and
3), even outside the window of parameter values de-
scribed in earlier studies (the so-called Barton zone of
periods between 4 and 10 generations). For example,
when the modifier and selected loci are equidistant (i.e.,
c ¼ r), cycles with a period of 40 generations can select
for recombination rates as high as 0.1. This result does
not conflict with the general analysis of Barton (1995),
because Barton focused on the periods necessary to
evolve high rates of recombination (near 1

2). Indeed, we
also find that the evolutionarily stable recombination
rate is near 1

2 only in or near the Barton zone in both
the one-species model (Figure 2) and the host-parasite
model (Figure 3c). Our analysis also allows us to
demonstrate that stronger selection on either the host
or the parasite generates faster coevolutionary cycles,
bringing the species into the zone where sex and
recombination are favored (Figure 3a). This confirms
previous claims based on simulation results (Peters and
Lively 1999, 2007; Otto and Nuismer 2004).

Second, we find that higher levels of recombination
are favored when the linkage disequilibrium and epis-
tasis within a species are more out of phase (Figures 5
and 6). Linkage disequilibrium results from past selec-
tion and always lags behind the fluctuations in epistasis.
This lag yields a short-term benefit of recombination,
because it is almost always beneficial to break down
linkage disequilibrium that is opposite in sign to the
form of epistasis (see Box 1 in Otto and Lenormand

2002). Interestingly, in the one-species model, this lag is
tightly governed by the speed of the fluctuations in
epistasis (see Equation 11c). The slower the cycles the
smaller the lag, and it is thus difficult to distinguish
between the effect of the speed and the effect of the lag
on the evolution of recombination (Figure 5). As a
consequence, analyses of the one-species model have
focused on the speed of the cycles rather than on the lag
between epistasis and linkage disequilibrium (Sasaki

and Iwasa 1987; Barton 1995). In the coevolutionary

model, however, the lag does not depend just on the
speed of the coevolutionary cycles (see Equation 28).
Indeed, the lag depends strongly on the difference
between host and parasite recombination rates (see
Equation 28 and Figure 6). Parasite recombination
allows the parasite population to track the temporal
fluctuations of host genotypes more closely. The fact
that parasites are better adapted to their hosts than vice
versa causes a larger phase shift between linkage
disequilibrium and epistasis in the host population
(Equations 22, 26, and 28), which favors higher re-
combination in the host (Equation 34).

Our article also resolves an apparent discrepancy
between claims that the speed of the cycles is critical to
the evolution of recombination (Charlesworth 1976;
Barton 1995) and claims that it is irrelevant when
coevolution is explicitly modeled (Nee 1989). While the
claims of Charlesworth (1976) and Barton (1995)
are based on modifier models, Nee (1989) focused on
the mean fitness of a population. As shown in Equation
38c, the mean fitness of a species is always improved by
increasing its recombination rate. Nevertheless, modi-
fier alleles that increase the rate of recombination need
not be able to spread within the species. This is because
modifiers can recombine away from the gene combina-
tions that they produce; this distributes the long-term
mean fitness advantage of increased recombination
among all of the alleles at a modifier locus, not just
the ones that increase recombination. Furthermore, the
period of the cycle has an important impact on the
spread of modifier alleles. If the period is very long,

Figure 5.—Schematic description of the fluctuations be-
tween multiplicative epistasis and linkage disequilibrium be-
tween selected loci A and B in the one-species model.
There is an advantage (short-term benefit) of a modifier that
increases recombination in the shaded area (where epistasis
and linkage disequilibrium have opposite signs). In the
absence of epistasis fluctuations, linkage disequilibrium is
expected to be proportional to epistasis (dotted line,
Lenormand and Otto 2000). When epistasis fluctuates
slowly, linkage disequilibrium lags behind epistasis (counter-
clockwise movement), and this yields the elongated ellipses
(dashed). When epistasis fluctuates rapidly, linkage disequi-
librium lags far behind epistasis and this yields ‘‘fatter’’ ellip-
ses (solid). The slope of the main axis of these ellipses also
decreases with the speed of the cycle. The faster the fluctua-
tions, the longer the period of time spent in the shaded area
where a modifier increasing recombination is favored.
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disequilibria generated by epistasis typically remain
favorable for long periods of time, and there is a short-
term cost to breaking apart these favorable genetic asso-
ciations. Using a modifier approach, we found that the
evolutionarily stable recombination rate does decline with
the period of the cycles in Nee’s model (i.e., increases with
the strength of selection in Equation 35, see Figure 3c),
as found in one-species models (Charlesworth 1976;
Barton 1995, Figure 2). Thus both the speed and the
phase difference between host and parasite cycles stron-
gly affect the evolution of recombination.

The ‘‘size’’ of these cycles (i.e., the amplitude of host
and parasite fluctuations) appears to have less effect on
the direction of evolution. Indeed, we found that the ES
recombination rate is independent of the terms that set
the amplitude of epistasis fluctuations: amax in the one-
species model (Equation 17) and Dp;ab ½0� in the coevo-
lutionary model (Equation 35). This inference relies on
the assumption that there is no direct cost of sex and/or
recombination. If one assumes that the m modifier
allele inducing a higher rate of sex and/or recombina-
tion carries a small cost (k ¼ OðzÞ), which is paid re-
gardless of whether recombination actually occurs, the
average change in frequency of m over one cycle in the
one-species model changes from (14) to

ET½DpmðtÞ�
� �DrpqmðtÞ

3
a2

maxðcosðkÞð11X uÞ�X � uÞ
2ð11X 2� 2X cosðkÞÞð11u2� 2ucosðkÞÞ1k

� �
:

ð44Þ

Clearly, the benefits of sex and recombination (the
first term in brackets) can compensate for the costs (the
second term) only when the amplitude of the cycles,

amax, is sufficiently large. Indeed, with costs, the ES rate
of sex and recombination rises with higher-amplitude
oscillations (amax). Thus, when sex and recombination
are costly, the outcome of evolution depends not only
on the speed and the phase relationship of the cycles
between epistasis and linkage disequilibria but also on
the size of these cycles. Similar conclusions are reached
with the coevolutionary model. For example, costs of re-
combination were incorporated in the simulations re-
ported in Figure 3d, always leading to a lower ES rate of
recombination. Furthermore, because higher rates of re-
combination in the parasite tend to decrease the ampli-
tude of the fluctuations, the advantages of recombination
become less able to pay for the costs. This explains
why the ES rate of host recombination declines as a
function of the rate of recombination in the parasite
(right-hand side of Figure 3d), even though cycles are
still maintained.

Other coevolutionary models: In most coevolution-
ary models, both fluctuating epistasis and directional
selection are present and influence the evolution of
recombination (Peters and Lively 1999, 2007; Otto

and Nuismer 2004). When selection is weak relative to
recombination, host–parasite models select against sex
and recombination because directional selection dom-
inates (Otto and Nuismer 2004). When selection
is strong, however, fluctuating epistasis plays a more
important role (Peters and Lively 1999, 2007;
Lythgoe 2000), and the models analyzed in this article
provide us with a better understanding of how much sex
and recombination could evolve in the extreme case
where fluctuating epistasis dominates. In fact, it is possible
to conduct a similar analysis to that above using the
matching-genotypes model considered by Peters and
Lively (1999) if we fix the allele frequencies at 1

2 for the
selected loci in hosts and parasites. In contrast with the

Figure 6.—Schematic description of (a) the
fluctuations in host and parasite linkage dis-
equilibria over time and (b) the multiplicative
epistasis induced in the host vs. the host linkage
disequilibrium between selected loci A and B, in
the coevolutionary model. In a we show how the
ratio between host and parasite recombination
rates affects the phase shift between host disequi-
librium (solid curves) and parasite disequilib-
rium (dashed curves). Higher parasite
recombination rates allow the parasite to track
host genotype frequencies more closely. In b
we show how the ratio between host and parasite
recombination rates affects the geometry of the
cycles between linkage disequilibrium and epis-
tasis in the host. The fact that host linkage dis-
equilibrium and epistasis more often have
opposite signs (shaded regions) as parasite re-
combination increases indicates that there is
more often a short-term benefit to breaking
down disequilibrium in the host. This explains
why higher parasite recombination selects for
higher host recombination (assuming that the
cycles are maintained, �rh , r̂h).

1850 S. Gandon and S. P. Otto



Nee model, the allele frequencies do not converge to 1
2

in the matching-genotypes model. Holding the allele
frequencies at 1

2, however, allows us to isolate the impor-
tance of fluctuating epistasis. Doing so, we obtained
qualitatively similar conclusions regarding the effect of
the speed and shape of coevolutionary cycles (not
shown). Thus, we speculate that results similar to those
described in this article will hold in models where
directional selection is present, but weak relative to
fluctuating epistasis. The interaction between fluctuating
epistasis and directional selection may, however, yield
interesting evolutionary dynamics. In a matching-geno-
types model, Peters and Lively (2007) found a bimodal
relationship between mean recombination rate and
parasite virulence for a linked modifier. We confirmed
that this bimodality is also true of the ES level of recom-
bination, by simulating the appearance of multiple
linked modifiers until an ES was reached (not shown).
As pointed out by Peters and Lively (2007), this could
be due to the balance of the effects of directional selec-
tion (effective when selection is not too strong) and
fluctuating epistasis (effective when selection is strong).

Metapopulation models: Previous results, from both
simulation (Ladle et al. 1993; Keeling and Rand 1995;
Sasaki et al. 2002) and analytical studies (Agrawal

2006), demonstrate that the direction in which sex and
recombination evolves depends strongly on whether
or not random mixing between hosts and parasites is
assumed. Our metapopulation models explicitly allow
for nonrandom mixing because of limited migration.
We show that migration of the focal species (say the host
in the coevolutionary model) selects for lower sex and
recombination in that species. Migration effectively
breaks the association between the modifier locus and
selected loci. Because recombination evolves only by
hitchhiking, decreasing this association impedes the evo-
lution of recombination. In simulations of the coevolu-
tionary model, we have shown that migration of the
interacting species (say, the parasite) can, however, pro-
mote the evolution of recombination in the host. This is
consistent with results obtained from previous simula-
tion studies (Ladle et al. 1993; Sasaki et al. 2002). Para-
site migration yields parasite local adaptation, with a
shorter lag between parasite and host dynamics (Gandon

et al. 1996; Gandon 2002). In response, higher rates of
sex and recombination (increasing the lag) can evolve in
the host. Although Figure 4 is broadly consistent with
this interpretation, it was obtained from a complex simu-
lation model involving evolutionary forces not included
in our models (i.e., genetic drift and directional se-
lection). Further work is needed to investigate the re-
lationship between fluctuating epistasis, local adaptation,
and the evolution of recombination.

Recombination, mutation, migration, and canaliza-
tion: We studied the effect of fluctuating epistasis on the
evolution of recombination rates but other traits may
also evolve as an adaptation to a variable environment.

Nee (1989) pointed out the similarity between the selec-
tive pressure acting on the evolution of recombination
and on the evolution of mutation rates in his coevolu-
tionary model. Haraguchi and Sasaki (1996) showed
with a different host–parasite model that coevolution
may indeed favor modifiers of mutation rates in both
the host and the parasite. The present analysis could be
extended to study the evolution of mutation rates to see
how various quantities, such as the speed, the shape, and
the size of fluctuations, influence the evolution of muta-
tion rates.

The metapopulation models reveal that migration
among populations acts like recombination in breaking
down the genetic associations in the species that migra-
tes. In the models we considered, migration tends to
buffer the effect of selection on local genotypic frequen-
cies because it pushes the population toward a trajectory
where all genotypes have the same frequency. This buff-
ering effect of migration is analogous to the effect of
canalization. Kawecki (2000) showed that a modifier
locus that acts to canalize fluctuations in fitness can be
favored when selection varies sufficiently fast. The evolu-
tion of migration rates and canalization may thus repre-
sent yet other strategies to adapt to variable environments.

Conclusion: Here we analyze simple models where
the only factor selecting for recombination and sex is
fluctuating epistasis. Our analyses reveal that the evolu-
tion of recombination is governed by the speed, the
shape, and the size of the fluctuations between epistasis
and linkage disequilibrium. It also demonstrates that
models with or without coevolution have very similar
effects on the evolution of recombination. Despite the
artificial nature of this highly simplified model, our re-
sults have heuristic value in improving our understand-
ing of those cases where sex and recombination are
most likely to be favored by cyclic dynamics (when fluc-
tuations in epistasis are substantial relative to directional
selection). Future work should test the robustness of our
predictions by incorporating fluctuations in allele fre-
quencies (and thereby directional selection) in addition
to fluctuating epistasis. Ultimately, the analysis of these
and more complex coevolutionary models will allow us
to identify more precisely the conditions under which
the Red Queen hypothesis for the evolution of sex and
recombination is most effective.
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APPENDIX A: LINKAGE DISEQUILIBRIA—DEFINITIONS AND RECURSION EQUATIONS

Linkage disequilibria measure genetic associations among two or more loci within a haploid genome. Within the
general framework proposed by Kirkpatrick et al. (2002), one may describe the allelic state of an individual sampled at a
biallelic locus i using the variable §i ¼ Xi � pi , where Xi may take a value of 1 or 0 (depending on the presence or absence
of the focal allele) and pi is the expected frequency of the focal allele in the population. In this article we assume that m, a,
and b are the focal alleles at loci M, A, and B, respectively. One may then define various measures of associations among a
set U of different loci. For example, if we are interested in the linkage disequilibria between three loci (U ¼ ijk), then

DU ¼ §i§j §k ;

where the bar over the product §i§j §k denotes the expectation over the distribution of genotype frequencies in the
population. The above definition is used to derive the linkage disequilibria that appear in Equation 4. In particular,
the two-locus disequilibrium between loci A and B is Dab ¼ ðx1 1 x5Þðx4 1 x8Þ � ðx2 1 x6Þðx3 1 x7Þ, which corresponds
to the standard measure of two-locus linkage disequilibrium.

One-species model: Two-locus disequilibrium: The recursion for the linkage disequilibrium between A and B is

Dabðt 1 1Þ ¼ ð1� �rÞðDabðtÞ1 4pqabðtÞaðtÞÞ1 Oðz2Þ;
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where pqabðtÞ ¼ paðtÞpAðtÞpbðtÞpBðtÞ.
The quasilinkage equilibrium is the value D̂ab (Equation 6) that satisfies Dabðt 1 1Þ ¼ DabðtÞ.
Three-locus disequilibrium: When allele frequencies at loci A and B have converged upon 1

2, the effect of the modifier
is small (Dr ¼ OðzÞ), and the disequilibria are small (D ¼ OðzÞ), the recursion for the linkage disequilibrium among
the three loci M, A, and B is

Dmabðt 1 1Þ ¼ð1� ðC 1 �r� xÞÞDmabðtÞ
� Drpmð1� pmÞ DabðtÞ1 aðtÞ=4ð Þ1 Oðz3Þ:

Technically, the term ðC 1 �r� xÞ should read ðC 1 �r� Drð1� 2pmÞ � xÞ, but we assume that the effect of the
modifier on the recombination rates, Dr, is small relative to the recombination rates themselves. Following Barton

(1995), this recursion may be iterated to yield

DmabðtÞ ¼ð1� ðC 1 �r� xÞÞtDmabð0Þ

� Drpmð1� pmÞ
Xt

t¼1

ð1� ðC 1 �r� xÞÞt�1 Dabðt � tÞ1 aðt � tÞ=4ð Þ1 Oðz3Þ:

With recombination, the influence of the initial conditions measured by the first term in the above expression
decays, leaving Equation 7.

Two-species model: Two-locus disequilibrium: The recursion for the linkage disequilibrium between A and B in
species i is

Di;abðt 1 1Þ ¼ ð1� �riÞ Di;abðtÞ1
ai

2 1 ai
D�i;abðtÞ

� �
1 Oðz2Þ:

The quasilinkage equilibrium is the value D̂i;ab (Equation 26) that satisfies Di;abðt 1 1Þ ¼ Di;abðtÞ.
Three-locus disequilibrium: The three-locus disequilibrium in species i is

Di;mabðtÞ ¼X t
i Di;mabð0Þ

� Dr;ipi;mð1� pi;mÞ
Xt

t¼1

X t�1
i Di;abðt � tÞ1 ai

2 1 ai
D�i;abðt � tÞ

� �
;

where Xi ¼ ð1� ðCi 1 �ri � xiÞÞ. With recombination and migration, the influence of the initial conditions measured
by the first term in the above expression decays, leaving (32).

APPENDIX B: METAPOPULATION MODELS

In the one-species metapopulation model the dynamics of the linkage disequilibrium between loci A and B is given
by (10) after replacing u with uz ¼ ð1� �rzÞ ð1� dÞ. The recursion analysis yields the average change in frequency of the
modifier allele m (with an effect Dr on recombination) over a cycle of the fluctuations of selection,

ET½Dpm;zðtÞ� � �Drpm;zð1� pm;zÞð1� dÞ a2
maxðcosðkÞð1 1 XzuzÞ � Xz � uzÞ

2ð1 1 X 2
z � 2XzcosðkÞÞð1 1 u2

z � 2uzcosðkÞÞ;

where Xz ¼ ð1� ðCz 1 �rz � xzÞÞð1� dÞ.
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