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Small insertions and deletions (indels) and single nucleotide polymorphisms (SNPs) are common genetic variants that
are thought to be associated with a wide variety of human diseases. Owing to the genome’s size and complexity,
manually characterizing each one of these variations in an individual is not practical. While significant progress has
been made in automated single-base mutation discovery from the sequences of diploid PCR products, automated and
reliable detection of indels continues to pose difficult challenges. In this paper, we present PolyScan, an algorithm
and software implementation designed to provide de novo heterozygous indel detection and improved SNP
identification in the context of high-throughput medical resequencing. Tests on a human diploid PCR-based sequence
data set, consisting of 90,270 traces from 13 genes, indicate that PolyScan identified ∼90% of the 151 consensus indel
sites and ∼84% of the 1546 heterozygous indels previously identified by manual inspection. Tests on tumor-derived
data show that PolyScan better identifies high-quality, low-level mutations as compared with other mutation
detection software. Moreover, SNP identification improves when reprocessing the results of other programs. These
results suggest that PolyScan may play a useful role in the post human genome project research era.

[Supplemental material is available online at www.genome.org and http://genome.wustl.edu/tools/software/polyscan.cgi.]

The study of the genetic bases of complex diseases, such as dia-
betes, heart disease, and cancer, requires the accurate identifica-
tion of genomic variations and genetic mutations at different
levels of resolution. Techniques have successfully been estab-
lished in a number of areas. For example, common single nucleo-
tide polymorphism (SNP) genotyping can be performed at 99.9%
accuracy using SNP arrays (Gunderson et al. 2005; Hinds et al.
2005; The International HapMap Consortium 2005). Large struc-
tural variations, such as in copy number, can also be studied by
various methods (Fredman et al. 2004; Iafrate et al. 2004; Conrad
et al. 2006). Conversely, our understanding of small-scale inser-
tions and deletions (indels) is far less advanced (Tuzun et al.
2005; Conrad et al. 2006).

Mills et al. (2006) report that indels may account for up to
25% of all sequence polymorphisms in humans (∼10 M), over
one-third of which could be within known genes. This represents
an average density of one indel per 7.2 kb of DNA. A similar
figure was reported in other studies of human chromosome 22
(Mullikin et al. 2000; Dawson et al. 2001). Although less preva-
lent than substitutions, indels raise a greater probability of del-
eterious biological effects since they are more likely to disrupt
protein structures or to interfere with the functions of coding,
splicing, and regulatory sequence elements.

Small indels have been found in >500 genes that are linked
to diseases such as cystic fibrosis, acute episodic ataxia, spinocer-
ebellar ataxia (SCA types 1,2,3,6,7), Huntington’s Disease (HD),
Fragile X Syndrome, various ataxias, and Myotonic Dystrophy
(Ball et al. 2005). Transposable elements also can be implicated in
indel-related human diseases such as hemophilia, neurofibroma-

tosis, muscular dystrophy, and cancer (Ostertag and Kazazian
2001). Indels in certain genes, e.g., FLT3, NPM1, ERBB2, and
EGFR, also have been postulated to play a role in acute myeloid
leukemia (AML) and non-small-cell lung cancer (Ley et al. 2003;
Strausberg et al. 2003; Pao et al. 2004; Cox et al. 2005). Since it is
clear that indels play an important role in biological processes
and human disease, their accurate detection, annotation, and
characterization are critical for high-throughput human rese-
quencing studies.

Directed sequencing of genomic DNA is presently the most
effective analytic and diagnostic approach to indel identification.
This technique contrasts with mutation-specific genotyping,
which can detect only known sequence variations and is limited
to single base changes. While homozygous indels are readily lo-
cated by identifying gaps in the alignment of the sequences, the
more common heterozygotic indels pose a number of non-trivial
difficulties. First, when aligning sequence traces to a reference
sequence, multiple alignments are possible when these traces
contain signals from dissimilar alleles. Second, phase-shifted sig-
nals, along with the background noise routinely found in dye
terminator sequence traces of PCR products, confuse the stan-
dard base-calling algorithms that were originally designed to ana-
lyze sequences from cloned DNA (Ewing and Green 1998; Ewing
et al. 1998). Lastly, the heterogeneous nature of acquired somatic
mutations and the chromosomal rearrangements often present
in tumor-derived samples may result in a skewed ratio of allele
signal intensities. The combination of these issues leads to low-
ered sensitivity in most of the current indel detection software
tools (Nickerson et al. 1997; Weckx et al. 2005; Stephens et al.
2006).

Indels are routinely mischaracterized in a number of ways.
In particular, signature trace patterns are interpreted as low qual-
ity data or identified as multiple heterozygous SNPs with irregu-
lar alignments. Also, the lower intensity allele can be incorrectly
filtered as background noise or signal contamination. Regions

1Corresponding author.
E-mail kchen22@wustl.edu; fax (314) 286-1810.
Article published online before print. Article and publication date are at http://
www.genome.org/cgi/doi/10.1101/gr.6151507.

Resource

17:659–666 ©2007 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/07; www.genome.org Genome Research 659
www.genome.org



of high GC content and low sequence complexity, e.g., micro-
satellite repeats and homopolymeric/mononucleotide repeats,
may be hot spots of indel acquisition, yet they present significant
challenges to accurate PCR amplification and dye terminator se-
quencing. Manual evaluation is normally required to correct
computational predictions, despite the high error rate and intrin-
sic inconsistencies resulting from subjective interpretation.

While significant advancements have been made for SNP
discovery and detection in PCR-amplified genomic DNA
samples, progress in indel detection and annotation has been
rather limited. We have addressed this problem with a new al-
gorithm and software implementation called PolyScan. In par-
ticular, PolyScan is intended to provide de novo heterozygous
indel detection functionality with high sensitivity and improved
specificity that is adjustable, according to different needs. Fur-
thermore, PolyScan increases SNP identification accuracy by se-
lectively combining the results of existing SNP detection pro-
grams, especially those mentioned above. Most variant discovery
pipelines rely on a sequential, multi-program strategy, e.g., phred/
phrap/PolyPhred or phred/SIM/SNPdetector, that tend to propa-
gate errors. For example, secondary alleles miscalled by phred lead
to genotyping errors in PolyPhred and SNPdetector. Conversely,
PolyScan was designed as a fully integrated approach, combining
base calling, sequence alignment, and indel/SNP detection into a
single program to reduce the extent of error propagation (see
Methods).

Results

Indel detection for polymorphism discovery

We tested PolyScan (version 2.0) on a subset of diploid traces
used by Stephens et al. (2006) and obtained from http://droog.
mbt.washington.edu/poly_data.html. Of the 26 genes that were
manually annotated, 13 contained indels at 151 chromosomal
locations (Supplemental Table 1). Heterozygous alleles were
found at each of these 151 sites across various sets of samples that
were sequenced for each gene. Homozygous rare alleles were
found only at 83 sites (55.0%). Altogether, there are a total of
1546 occurrences of heterozygous indel sites among individual
samples, almost exactly half of which are 1-bp indels (Supple-
mental Table 2). The sequences of a DNA sample are usually
represented by multiple overlapping reads produced by different
amplicons in different orientations. Consequently, we will use
the term “read sites” to represent variant sites that were identi-
fied from individual reads and the term “sample sites” to repre-
sent variant sites identified for individual samples.

We processed all 90,270 traces using phred and aligned them
to corresponding GenBank reference sequences using the Consed
cross-match algorithm (Gordon et al. 1998). We ran PolyScan on
each of these 13-gene data sets and compared the predicted an-
notations with those generated manually. Because the available
manual annotations are lists of sample sites, whereas the pre-
dicted annotations are lists of read sites, a formal system is re-
quired to compare annotations at two different levels. There is no
standard way to combine read sites into sample sites. The possi-
bility of biased amplification means that reads sequenced from
the same sample by overlapping amplicons are not necessarily a
uniform representation of a diploid DNA sequence. In addition,
reads of different qualities may not contribute equal confidence
to the determination of sample sites. Moreover, because the lo-
cations of the indel sites are inherently ambiguous in repetitive

regions, conclusive matches to manual annotation cannot rou-
tinely be obtained. Consequently, we make use of the following
rule: a sample site is correctly identified if at least one read site
from any of its associated reads lies within a fixed interval of W
bp, where W is a variable controlling the stringency of compari-
son. Detection sensitivity is thus defined at the sample level as
the ratio of the number of correctly identified sample sites to the
total number of sample sites in the manual annotation. Con-
versely, the specificity is defined at the read level as the number
of predicted read sites that hit sample sites divided by the total
number of predicted read sites.

Accuracy of indel identification

We first ran PolyScan in single (S) mode in which each read is
analyzed independently. At a score threshold of 10 and W = 50,
1248 sample sites (80.72%) and 138 consensus sites (91.39%)
were found with 29.14% specificity. We then ran PolyScan in
group (G) mode, where overlapping reads from different samples
that contain similar indel patterns are grouped together to scan
for a common indel site. Owing to the increased read depth,
PolyScan was able to correctly identify 1297 sample sites
(83.89%) and 134 consensus sites (88.74%) with 29.85% speci-
ficity.

We manually examined all consensus sites that were over-
looked by PolyScan when executed in G mode. Out of 17 missed
sites, 14 have estimated minor allele frequencies (MAFs) <0.1, 11
have estimated MAFs <0.01, and nine are singletons (only one
sample is heterozygous at this position). Visual inspection in
Consed indicated that 10 of these 17 sites were actually detected
by PolyScan with exact sizes, but were placed >50 bp away from
their target locations (including the three sites that have MAFs
>0.1). Of the seven undetected, six were singletons, four were
covered by low-quality reads having significant background sig-
nal, and one was immediately (40 bp) downstream of another
indel site. Only two singleton sites were missed for no apparent
reason.

For comparison, we ran PolyPhred (version 6.0 beta) on the
same data using default parameters and evaluated its perfor-
mance under the same criteria. At a threshold of 90, PolyPhred
correctly identified 1057 sample sites (68.37%) and 114 consen-
sus sites (75.50%) with 34.53% specificity. When a threshold of
70 was used, 1109 sample sites (71.73%) and 120 consensus sites
(79.47%) were found with 22.16% specificity.

Plotting sensitivity versus specificity at various score thresh-
olds (Fig. 1) revealed that PolyScan G mode achieved a better
sensitivity/specificity tradeoff than either PolyScan S mode or
PolyPhred 6.0b. We further dissected the overall sensitivity by
plotting the percentage of missed sample sites versus indel sizes
and found that PolyScan G mode performed the best for a wide
range of indel sizes (Supplemental Fig. 1; Supplemental Table 2).

Accuracy of indel size identification

To test how accurately PolyScan identifies indel sizes, we in-
creased the stringency of our evaluation criteria. Besides requir-
ing computational indels to reside within 50 bp of manually
annotated ones, we also required the sizes of the predicted indels
to exactly match those in the manual annotation. Here, PolyScan
correctly identified 1223 sample sites in S mode and 1254 sample
sites in G mode. In light of the figures reported above, it appears
that 1223 of 1248 indels (97.9%) are identified with the exact
sizes in S mode and 96.7% (1254 of 1297) in G mode. These
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numbers compare quite favorably with PolyPhred 6.0b, whose
accuracy we found to be 1003 of 1057 (94.5%) at a threshold of
90 and 1044 of 1109 (94.1%) at a threshold of 70.

Accuracy of indel location

We further assessed the accuracy of predicted indel locations by
plotting the sample site sensitivity as a function of W, which
varies from 0 to 100 (Fig. 2). It is clear that PolyScan G mode
locates indel sites more accurately than both PolyScan S mode
and PolyPhred 6.0b. In PolyScan G mode, 79.50% of the compu-
tational sites are located within 30 bp of the manually annotated
sites, 73.67% are within 10 bp, and 66.24% are within 5 bp. In
PolyScan S mode, these numbers are 72.57%, 62.81%, and
57.83%, respectively. In PolyPhred 6.0b, we find 66.17%,
58.34%, and 48.71%, respectively. Although the G mode of
PolyScan did not significantly improve the overall sensitivity and
specificity, it significantly improved the accuracy in identifying
indel locations, which ultimately can lead to more accurate geno-
typing.

Indel detection for mutation discovery

We have incorporated PolyScan into our mutation discovery
pipeline for analyzing putative oncogenes and tumor suppressor
genes which themselves have previously characterized indels. All
data described in the analysis below originated from this pipeline
and have previously undergone extensive expert manual review
and annotation.

We analyzed Nucleophosmin (NPM1), a gene that encodes a
nucleo-cytoplasmic shuttling protein with prominent nucleolar
localization. This gene is thought to be involved in several dif-
ferent oncogenic processes, including the ARF–p53 pathway
(Verhaak et al. 2005; Thiede et al. 2006). In particular, mutations
in the NPM1 gene have been found in 25%–35% of primary tu-
mor cells from AML patients. The most common alteration
found is an insertion of 4 bp near positions 956 through 959 of
the mRNA reference sequence (GenBank accession number
NM_002520) in the protein-coding sequence of the last exon that
affects the C terminus of NPM1 and results in its cellular mislo-
calization. A simple repeat directly upstream of the last exon
causes difficulties in amplification and sequencing of this region.
Consequently, only sequence from the negative strand was of
sufficient quality for analysis in these samples. In addition to the
C-terminal alteration, a 1-bp deletion site having a frequency of

∼60% occurs in the 3� UTR, 187 bp downstream of the 4-bp
frameshift mutation. Altogether, there were 384 reads included
in this study, sequenced from 94 samples using two amplicons.
We believe that this data set is representative of the larger, more
comprehensive data sets that now are being produced by high-
throughput sequencing pipelines. The data include both high-
quality and low-quality traces, simple repetitive regions, and
closely located indel sites, all of which pose difficulties for both
sequencing and analysis.

The initial run of PolyScan G mode for this data set, using
default parameters, identified 38 of 39 (97.4%) 1-bp heterozy-
gous deletions and 24 of 31 (77.4%) 4-bp heterozygous inser-
tions, with 62 of 80 (77.5%) specificity. The integrated base re-
calling approach (see Methods) allows PolyScan to realize
enhanced sensitivity on normal-cell-contaminated samples by
appropriate adjustment of the parameters. For example, when we
reanalyzed these data by PolyScan, with the secondary/primary
peak ratio reduced from the default value of 0.15 to 0.10, the
sensitivity improved to 39 of 39 (100%) at the deletion site, and
27 of 31 (87.1%) at the insertion site, with 66 of 76 (86.8%)
specificity. Combining the results of these two PolyScan runs
gave an overall sensitivity of 39 of 39 (100%) at the deletion site
and 29 of 31 (93.5%) at the insertion site, with 68 of 89 (76.4%)
specificity. In our evaluation, the indels were tallied as being
correctly identified only if they had the exact sizes and were
located within 5 bp of the manual annotations.

For comparison, we ran Mutation Surveyor v3.0 (MS3) on
this data set, as well. MS3 is designed to directly identify muta-
tion patterns in each chromatogram without making explicit
base calls and quality estimations. MS3 detected 37 of 39 (94.9%)
indels at the deletion site and 27 of 31 (87.1%) at the insertion
site (including two instances that are >5 bp off the target), at a
threshold of 0. The indel sizes were all correctly identified, but
their locations varied around the true target locations due to
MS3’s trace-specific analysis.

Although MS3 did identify mutations that were overlooked
by both PolyScan runs on low-quality traces (Supplemental Fig.
2), it missed high-quality, low-level mutations that PolyScan de-
tected with enhanced sensitivity (Supplemental Fig. 3). The
specificity of MS3 on this data set is only 64 of 305 (21.0%) at a
threshold of 0, with most false positives predicted in low-quality
regions of the traces. At a threshold of 10, specificity improved to
62 of 152 (40.8%) while sensitivity dropped to 36 of 39 (92.3%)
at the deletion site and 26 of 31 (83.9%) at the insertion site.

Figure 1. Heterozygous indel detection sensitivity vs. specificity for
PolyScan v2.0 G mode, PolyScan v2.0 S mode, and PolyPhred v6.0b over
a data set of 13 genes for W = 50.

Figure 2. Percentage of sample sites detected within W bp of the
manually tagged locations.
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Because MS3 can process only 400 traces in a single project, we
were unable to expand our comparative study on larger data sets.

We also ran PolyPhred 6.0b on this data set using default
parameters. At a threshold of 50, it detected 28 of 39 (71.8%)
indels at the 1-bp deletion site, but only 5 of 31 (16.1%) at the
4-bp insertion site, with 33 of 45 (73.33%) specificity. Further
analysis revealed that eight of the 1-bp deletion sites that were
counted as false positives were actually detected 80 bp down-
stream of their correct locations. If these eight sites are consid-
ered to be correct, the sensitivity at the 1-bp site becomes 36 of 39
(92.3%), and the overall specificity is then 41 of 45 (91.1%). At a
threshold of 90, PolyPhred detected 23 of 39 (71.8%) indels at the
deletion site and found 0 of 31 (0%) at the insertion site with 23
of 29 (79.31%) specificity. Results for the entire assessment exer-
cise for NPM1 are summarized in Table 1.

SNP identification

The SNP discovery component of PolyScan was designed to pro-
vide additional confidence scores for SNPs and genotypes on the
basis of considering an extended set of trace characteristics. We
evaluated the SNP prediction performance of PolyScan using two
large-scale data sets. In both sets, PolyScan was used to combine
the SNP sites predicted by PolyPhred and SNPdetector (Zhang et
al. 2005) by rescoring the polymorphic sites tagged by either
program. PolyPhred v5.03 and SNPdetector v2 were run in these
tests with the default parameters.

Test using human resequencing data

The first data set was generated at the Washington University
Genome Sequencing Center and consists of 20,149 traces and 70
manually validated SNP sites from five genes (AKT3, ARAF,
ERBB4, FGFR2, and FGFR4). Overall, PolyPhred v5.03 achieved
the best sensitivity (Supplemental Fig. 4) on this data set. In
particular, 66 of 70 (94.29%) of validated SNPs were detected at
score 50. However, it showed a rather low specificity of ∼40%
over its scoring range (including 99). In comparison, SNPdetector
v2 showed an improved specificity for all of its six score catego-
ries (reject, low3, low2, low1, medium, and high), although at
the cost of lowered sensitivity (<80%). PolyScan achieved better
performance than either program in terms of specificity and sen-
sitivity. Specifically, PolyScan’s sensitivity was comparable to
that of PolyPhred, but it improved upon PolyPhred specificity by
∼15%, on average. Conversely, PolyScan achieved specificity
comparable to SNPdetector, but with 5%–10% higher sensitivity.
In this particular test, we found that SNPdetector identified the
same set of SNPs as did PolyPhred. It therefore appears that sim-

ply combining the results of SNPdetector and PolyPhred does not
necessarily improve overall sensitivity.

SNP identification in an ENCODE region

The second data set was obtained from the NCBI trace archive,
and includes sequence data from 48 individuals. It consists of
100,704 traces that encompass 1403 validated SNP sites across a
500-kb ENCODE region (ENm013) on human chromosome
7q21.13. The traces were produced by the Broad Institute, and
the same samples were subsequently genotyped by Perlegen as
part of the HapMap project (The International HapMap Consor-
tium 2005). These traces were base-called by phred and aligned
and assembled to the NCBI build 35 reference sequence using
cross-match. In order to make an objective comparison, identical
inputs were formulated for each of the programs, and consisted
of trace data, PHD files, and Consed ACE files. The predicted SNP
sites from each program were then compared with the Perlegen
genotype data for 39 individuals released by the HapMap Project
(www.hapmap.org). The entire evaluation was performed auto-
matically, without any manual intervention.

Results similar to the first test were obtained (Supplemental
Fig. 5). At high sensitivity, PolyScan achieved ∼3% higher
specificity than PolyPhred, with a slight loss of sensitivity (re-
duced from 88.7% to 88.1%). PolyScan also showed a better
combination of sensitivity and specificity than did SNPdetector.
Further analysis revealed that, out of 1403 confirmed SNP sites,
SNPdetector identified only four of the 62 SNP sites that were
missed by PolyPhred. This again suggests that the sensitivity of
SNP prediction cannot be improved simply by combining the
outputs from PolyPhred and SNPdetector.

Discussion

Whole-genome association studies are quickly becoming critical
in the quest to understand complex genetic diseases. There is
now an urgent demand for software that can automatically and
accurately identify DNA polymorphisms or mutations in ge-
nomic regions of interest. The diploid-based indel detection
problem remains unsolved, largely due to the absence of a math-
ematical formulation that integrates sequence evidence over a
large genomic region (typically hundreds of base pairs) charac-
terized by multiple traces. The algorithm we propose here repre-
sents a considerable advance for heterozygous indel detection
and genotyping. The Bayesian probabilistic approach enables in-
tegration of various kinds of evidence into a single confidence
score through an elegant probabilistic framework. As a result,

Table 1. Heterozygous indel detection sensitivity (%) and specificity (%) of PolyScan v2.0, Mutation Surveyor v3.0, and PolyPhred v6.0b
run under various parameters on the NPM1 data set

NPM1 Condition

1-bp deletion site 4-bp insertion site Overall

Sensitivity Sensitivity Specificity

PolyScan 2.0 Default 38/39 (97.4%) 24/31 (77.4%) 62/80 (77.5%)
PolyScan 2.0 pr0.10 39/39 (100%) 27/31 (87.1%) 66/76 (86.8%)
PolyScan 2.0 Default + pr0.10 39/39 (100%) 29/31 (93.5%) 68/89 (76.4%)
Mutation Surveyor 3.0 Threshold 0 37/39 (94.9%) 27/31 (87.1%) 64/305 (21.0%)
Mutation Surveyor 3.0 Threshold 10 36/39 (92.3%) 26/31 (83.9%) 62/152 (40.8%)
PolyPhred 6.0b Threshold 50 28/39 (71.8%) 5/31 (16.1%) 33/45 (73.33%)
PolyPhred 6.0b Relaxed loc. 36/39 (92.3%) 5/31 (16.1%) 41/45 (91.1%)
PolyPhred 6.0b Threshold 90 23/39 (71.8%) 0/31 (0%) 23/29 (79.31%)

In this analysis, predicted indel sites are required to be within 5 bp of the target sites to be counted as correct.

Chen et al.

662 Genome Research
www.genome.org



PolyScan can group sequence reads according to indel patterns,
analyzing them as a population. Moreover, it exploits known
reference sequences and polymorphism sites to calculate prior
probabilities. Finally, it can be expanded to include enhanced
quality measures of the four-channel diploid traces and can in-
clude additional evidence from homozygous indels detected at
the same location. Such integration allows PolyScan to achieve
enhanced statistical power and good tradeoffs between sensitiv-
ity and specificity.

Like the other programs we evaluated, PolyScan’s perfor-
mance varies by project and depends strongly on the quality of
the data. The ∼90% sensitivity associated with the 13-gene data
set (Stephens et al. 2006) probably represents the average perfor-
mance one could expect. This result is acceptable for polymor-
phism discovery, given that most of the overlooked sites in our
data are singletons or rare variants (MAF <0.1) that are not par-
ticularly informative. We anticipated special difficulties with tu-
mor samples because they are frequently “contaminated” by
normal adjacent stroma. Consequently, we incorporated a base
re-calling component that allows tracking of low-intensity sig-
nals in all four fluorescent channels. This feature provides en-
hanced sensitivity over phred in analyzing tumor samples, as was
demonstrated in our NPM1 assessment. The sensitivity and speci-
ficity tradeoff compares favorably to other programs, especially
on larger data sets generated by high-throughput sequencing
pipelines. Such data are the focus of PolyScan. This is in contrast
to tools such as Mutation Surveyor and InSNP (Manaster et al.
2005), which are designed to analyze small sets of traces with
extensive manual intervention.

A distinct advantage of PolyScan’s ability to detect hetero-
zygous indels from diploid PCR-based traces is the high degree of
accuracy with which indel sizes can be determined. The long
stretches of overlapping fluorescent peaks serve as physical land-
marks, delimiting relative frame shifts between two alleles. The
Sanger sequencing reaction is especially suited for this purpose
because of its comparatively long (∼800 bp) read lengths. In other
words, the resulting continuity allows medium-sized indels, i.e.,
those up to several hundred base pairs, to be resolved. This ob-
servation also implies that newer sequencing methods, e.g., pyro-
sequencing, which is expected to facilitate more sensitive and
accurate mutation analysis, may have limitations due to both
shorter read lengths (Brenner et al. 2000) and decreased accuracy
in base-calling monomers (Margulies et al. 2005).

Despite the encouraging results shown here, some limita-
tions remain. The lack of accurate quality measures in phase-
shifted signals has restricted our ability to accurately distinguish
low-quality traces from high-quality ones in regions that may
contain heterozygous indels. Visual inspection of PolyScan re-
sults in Consed indicates that a large percentage of false positives
are caused by low-quality traces having irregularly shaped peaks
with poor resolution. In principle, future versions of PolyScan
will likely address this problem via a learned quality function,
similar to what phred uses, to estimate independent quality scores
in each of the channels. Such a function can be calibrated using
sequence data that are genotyped and validated by multiple in-
dependent platforms (e.g., the ENCODE project). Applying heu-
ristics may help improve the specificity as well. For example, we
found that the specificity of PolyScan can be improved to 49.09%
on the 13-gene data set by simply not reporting indels identified
in the downstream of poly tracks of eight or more repeats with
only 3.52% loss of sensitivity. The Bayesian probabilistic frame-
work we applied could be further extended to include multiple

base-calling possibilities at each position, and might implement
allele-based analysis in each fluorescence channel. This will even-
tually allow us to explore the full potential of mutation detection
based on Sanger sequencing.

Methods

Materials
A subset of 26 genes used by Stephens et al. (2006) was also used
here for indel analysis. These were obtained from http://droog.
mbt.washington.edu/poly_data.html (Supplemental Table 1).
Data for the ENCODE region Enm013 were generated by the
Broad Institute and were procured from the NCBI trace archive.
All remaining data, including traces for the NPM1 region, were
produced by PCR amplification of either native or phi-29 (�-29)
amplified genomic DNA using primers tailed with universal for-
ward and reverse sequences. In particular, the NPM1 data set was
derived from 94 AML tumor samples and provided 359 reads.
PCR products were sequenced following treatment with Exo/SAP
using BigDye v3.1 dye terminators and either forward or reverse
universal primers. Sequence data were initially aligned to the
NCBI Human Build 35 reference sequence using cross-match
(http://www.phrap.org). Traces having tailed PCR primers were
clipped to exclude primer sequences, but no further attempts
were made to discard low-quality sequences from analysis. For
NPM1, analysis focused specifically on the last exon and the 3�

UTR. Prediction errors in the form of true positives and false
positives are determined from manual review by expert techni-
cians of a variety of redundant, context-specific information
within individual reads, the reference sequence, and from com-
parable reads. The latter are those reads acquired either from the
same samples or from the same PCR products and obtained un-
der similar experimental conditions. In addition, known variant
sites from the public domain such as dbSNP (http://www.
ncbi.nlm.nih.gov/projects/SNP/) are also annotated in the as-
sembled sample reads.

Algorithmic methods
PolyScan takes an integrated approach, combining base calling,
alignment, statistical sequence analysis, and indel and SNP iden-
tification into a single program. Figure 3 shows a schematic view
of the PolyScan algorithm. Each of these programmatical aspects
is described in greater detail, as follows.

Base re-calling
PolyScan currently takes a Consed-generated “ace” file as input,
along with the associated “phd” files containing the called bases,
positions, and quality scores. It first reanalyzes the chromato-
grams using the called base positions as initial conditions and
boundaries to search for additional peaks in each of the four
fluorescence channels. Peaks and valleys are located at positions
where the channel signal reaches local extrema and the first de-
rivative changes sign. The first derivatives using pixels on the
left and the right side of a peak are used to estimate the top angle
� in radians. The sharpness of a peak is calculated using
� = tanh(�/�). The pixels on the left of each identified peak are
folded over on top of the pixels on the right and a linear regres-
sion is performed to minimize the mean square fitting error. Four
statistics are stored for each of the peaks (Supplemental Fig. 6):
position, height, sharpness, and regularity (the regression coeffi-
cients R2). As compared with the “poly” files produced by phred,
these statistics provide a more accurate representation of the
trace signals and facilitate more accurate pattern recognition.
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Noise reduction
Noise reduction is the process of differentiating true peaks from
background noise. The program advances through each fluores-
cent channel using overlapping 30-bp windows, tracking height,
sharpness, and regularity of each peak. Two Gaussian mixture
models are integrated into a log-likelihood test statistic. This sta-
tistic asymptotically follows a �2 distribution, enabling standard
significance testing to be used (Supplemental materials). We cur-
rently assume that the sequencing traces under analysis are prod-
ucts of bi-allelic template mixtures and can therefore be ad-
equately represented as sequences of genotypes (two bases per
position). Therefore, maximally two peaks at each position are
extracted to form a genotype sequence representing the observed
sequence of chromatographic peaks.

Heterozygous indel signature identification
The non-reference sequence is now inferred from the deduced
genotype sequences by subtracting the reference sequence (Fig.
4A) from the genotype sequence. Ideally, if the base calls and the
alignments are perfect, the error rate in the non-reference se-
quence would not be higher than the SNP rate, i.e., roughly one
per 200 bp (Fig. 4B). However, errors can be substantially higher
in regions having miscalled, over-called, or under-called bases.
This is observed most often at positions where peak resolution is
low or where the alignment between the reference sequence and
the genotype sequence is ambiguous (Fig. 4C,D).

Computations based on such a subtraction algorithm can
only reliably detect heterozygous indels that are much shorter
than the amplicon size. We overcome this problem by using a
segmented alignment algorithm that is both independent of the
size of the amplicon and more tolerant of errors in the non-
reference sequence (Fig. 4E). Specifically, a set of overlapping
subsequences S� = {s1,s2, · · ·, sN} is selected from the non-
reference sequence, each 20 bp in length (adjustable) with an
average heterozygote rate of �0.3. The selected subsequences are
aligned to the reference sequence using a simplified Smith–
Waterman algorithm that uniformly penalizes gap openings and
gap extensions for computational reduction. The scoring matrix
is configured such that external gaps at the beginning or the end
of the subsequence are not penalized while internal gaps are

heavily penalized. Two statistics are saved for each of the N align-
ments: the alignment shift hi (relative to the original position of
subsequence si ) and the percent identity match mi. These statis-
tics are used to compute a score Qv for each uniquely observed
alignment shift v:

Qv = �
i=1

N

mi �hi,v
, �hi,v

= �0, hi � v

1, hi = v
. (1)

The highest scoring v* is selected:

v* = arg max
v

Qv . (2)

If v* is non-zero, the union of all subsequences whose align-
ment shifts equal to v* is registered as a putative indel signature
and is subjected to further analysis. Our tests show that this pro-
cedure is much less sensitive to base-calling and phase errors in
the non-reference sequence and significantly increases the sen-
sitivity of indel signature detection in low-quality traces.

Heterozygous indel identification
After the putative indel signatures are computed, PolyScan at-
tempts to group them according to similarity, as defined by ad-
justable parameters. In the single (S) mode, all indel signatures
are considered independent of one another. In the group model
(G), those from a common origin (e.g., the same sample or the
same amplicon) are grouped together if they contain similar
alignment shifts and are closely located in a genomic region. A
single indel hypothesis is predicted from each pool of indel sig-
natures through the following maximum a posteriori (MAP) pro-
cedure:

�l*,k*,b*� = arg max
l,k,b

� log P �l,k,b |R,A,N ��, (3)

where l, k, and b are the location, size, and type (het deletion or
insertion) of indel, respectively. The starred notation on these
variables represents the winning hypothesis that maximizes the
a posteriori probability score. Finally, R denotes the group of
reads in the pool, A the alignment of each read to the reference
sequence, and N the reference sequence. Assuming reads in each

Figure 3. Overview of PolyScan v2.0 calculation sequence. PolyScan
takes as input a set of chromatogram files, phd files created by base callers
such as phred, a Consed ace file containing first-pass assembly informa-
tion, and a set of candidate SNP positions predicted by other software or
extracted from public domain data. It outputs a set of putative hetero-
zygous indels and SNPs.

Figure 4. Illustration of heterozygous indel signature identification in
PolyScan. (A) The reference genomic DNA, (B) ideal genotype sequence
with no base-calling or phase inference errors, (C) actual deduced geno-
type sequence with various degrees of base-calling and phase inference
errors, (D) the inferred non-reference sequence, (E) alignment of the
non-reference and reference sequences using the segmented alignment
algorithm. The 4-bp deletion indel was concluded from multiple subse-
quence alignment.
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pool are independent from one another, Equation 3 can be ex-
panded as follows based on Bayes Theorem (Feller 1971):

�l*,k*,b*� = arg max
l,k,b

�
i=1

M

log
P �ri | l,k,b,N,di�P �l,k,b |N �

�
l,k,b

P �ri | l,k,b,N,di�P �l,k,b |N �
, (4)

where ri denotes the genotype sequences decoded from the ith

read in the pool and di the sequencing direction of ri. Also,
P(l,k,b|N) represents the prior probability of an indel hypothesis
(l,k,b), given N, and can be used to model various sequence mo-
tifs that are found to be overrepresented in the vicinity of indels.
Such would include, for example, the heptanucleotide CCCC
CTG that shares homology with the complement of the 8-bp
human minisatellite conserved sequence/chi-like element (GCW
GGWGG) (Ball et al. 2005).

The conditional probability P (ri| l,k,b,N,di) of each read given
the indel hypothesis (l,k,b), is computed using a first order
Markov Chain (MC) model in the current implementation:

P �ri | l,k,b,N,di� = �
j=0

L−1

P �ri,j | ri,j−1,	�l,k,b,N,di��, (5)

where j represents the position in the L-bp-long region, selected
to cover all indel signatures in the group, ri,j is the genotype at
position j in read i, and 	(l,k,b,N,di) denotes an expected MC
indel model. Parameters for this model can be estimated from the
expected genotype sequence constructed, based on knowledge of
the PCR amplicon and the known reference sequence N (Supple-
mental Fig. 7). Reads from opposite directions are differentially
modeled to account for the difference in their expected genotype
sequences and their alignments to the reference. Computational
efficiency is enhanced by modeling the 5� flanked indel signature
region as two segments: the expected normal homozygous se-
quence upstream of the indel signature and the expected frame-
shifted heterozygous sequence within the signature. Moreover,
computational reduction proportional to L can be achieved
by calculating P(ri| l,k,b,N) recursively from either P (ri | l �

1,k,b,N) or P(ri | l + 1,k,b,N). Note that the indel size k is limited
only by N, not by L.

SNP identification
The last step of PolyScan is SNP identification. Like PolyPhred,
SNPs are identified primarily as doublet peaks whose heights are
roughly half of those observed in the homozygous individuals.
Here, however, trace statistics extracted from the individual
channels via the integral base re-calling and noise-reduction
steps are used to conduct statistical analysis. Procedures called
Horizontal Scan and Vertical Scan are performed: The former
provides significance estimates of observed heterozygous trace
patterns based on computed distance metrics within given reads;
the latter furnishes information regarding heterozygous peak
height variation among individuals using Gaussian mixture
models and �2 significance testing. More algorithmic details are
described in the supplemental information.
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