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Large-scale cDNA sequencing projects and tiling array studies have revealed the presence of many unannotated
genes. For protein coding genes, small coding sequences may not be identified by gene finders because of the
conservative nature of prediction algorithms. In this study, we identified small open reading frames (sORFs) with
high coding potential by a simple gene finding method (Coding Index, CI) based on the nucleotide composition bias
found in most coding sequences. Applying this method to 18 Arabidopsis thaliana and 84 yeast sORF genes with
evidence of expression at the protein level gives 100% accurate prediction. In the A. thaliana genome, we identified
7159 sORFs that are likely coding sequences (coding sORFs) with the CI measure at the 1% false-positive rate. To
determine if these coding sORFs are parts of functional genes, we evaluated each coding sORF for evidence of
transcription or evolutionary conservation. At the 5% false-positive rate, we found that 2996 coding sORFs are
likely expressed in at least one experimental condition of the A. thaliana tiling array data. In addition, the
evolutionary conservation of each A. thaliana sORF was examined within A. thaliana or between A. thaliana and five
plants with complete or partial genome sequences. In 3997 coding sORFs with readily identifiable homologous
sequences, 2376 are subject to purifying selection at the 1% false-positive rate. After eliminating coding sORFs with
similarity to known transposable elements and those that are likely missing exons of known genes, the remaining
3241 coding sORFs with either evidence of transcription or purifying selection likely belong to novel coding genes in
the A. thaliana genome.

[Supplemental material is available online at www.genome.org. The replicated tiling array experiment data has been
deposited in Gene Expression Omnibus (GEO) with accession no. GSE6562.]

Transcriptome sequencing and whole genome tiling array studies
have revealed significant levels of expression in numerous inter-
genic regions in human (Kapranov et al. 2002; Rinn et al. 2003),
fly (Stolc et al. 2004; Manak et al. 2006), sea urchin (Samanta et
al. 2006), Arabidopsis thaliana (Yamada et al. 2003; Stolc et al.
2005b), and rice (Stolc et al. 2005a), suggesting the presence of
genic sequences in unannotated “intergenic” regions. However,
in most cases it remains an open question if these transcripts
represent unannotated protein coding or RNA genes. Some stud-
ies assumed that these sequences represent noncoding RNA
genes because the sequences had not been annotated as coding
regions (Stolc et al. 2005b; Yamada et al. 2003). In several other
cases, the designation of coding regions tends to be arbitrary with
an ad hoc length threshold without distinguishing coding from
noncoding sequences experimentally or computationally with
gene finders (Ota et al. 2004).

Most ab initio gene prediction programs distinguish coding
(CDS) and noncoding sequences (NCDS) with their differences in
nucleotide composition, intron splice sites, promoters, transla-

tional start/stop sites, and polyadenylation signals. These signals
are generally integrated for evaluating the coding likelihood of a
sequence (Brent and Guigo 2004). The integration of multiple
criteria decreases the chance that false exons are predicted as true
(low false-positive rate) but likely increases the chance that true
exons are not predicted (high false-negative rate) (Claverie 1997).
The issue of false-negative prediction is particularly serious for
smaller CDSs (�300 nucleotides) due to the difficulty in distin-
guishing the relatively few biologically meaningful sequences
from the very large pool of small ORFs (sORFs) (Basrai et al. 1997;
Wang et al. 2003). Despite the difficulties in their prediction,
proteins translated from sORFs include several classes of impor-
tant genes. In yeast, these small proteins include mating phero-
mones, proteins involved in energy metabolism, proteolipids,
chaperonins, stress proteins, transporters, transcriptional regula-
tors, nucleases, ribosomal proteins, thioredoxins, and metal ion
chelators (Basrai et al. 1997). In addition, many yeast sORF genes
missed by ab initio prediction methods but supported by evi-
dence of expression have been shown to be translated and func-
tional in many cases (Ghaemmaghami et al. 2003; Huh et al.
2003; Kastenmayer et al. 2006). In human, 997 known genes
from Ensembl (Hubbard et al. 2002) are coding sORFs, and 593 of
them are annotated in Refseq (Pruitt et al. 2005) or Swissprot
(Boeckmann et al. 2005). In A. thaliana, relatively little is known
about sORF genes, but a number of small, secreted proteins that
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likely act as receptor ligands are identified not by gene finding
programs but by similarity searches and/or functional studies
(Cock and McCormick 2001; Butenko et al. 2003).

Noting the relatively high false-negative rate of current gene
finding algorithms and the difficulty to identify small protein
genes, we developed the Coding Index (CI) measure for coding
sORF prediction based only on the hexamer composition bias,
which has been established as a general measure for distinguish-
ing CDS from NCDS (Farber et al. 1992; Fickett and Tung 1992).
After validating the CI measure using known small coding genes
from yeast and A. thaliana, it is applied to predict coding sORFs
ranging from 90 to 300 bp in the intergenic regions of the A.
thaliana genome. We then looked for evidence of expression with
the A. thaliana genome tiling array data. Finally, since most genes
are subject to purifying selection, a functional coding sORF is
expected to undergo stronger selective constraints on nonsyn-
onymous sites than for synonymous ones (Li 1997; Makalowski
and Boguski 1998). Therefore, we examined the signature of pu-
rifying selection among predicted coding sORFs. The analysis
procedures and findings are summarized in Figure 1.

Results

The CI measure

We first derived the posterior probability (pp) that a particular
reading frame is coding according to the hexamer composition of
CDS and NCDS, using Bayes’ theorem applied along a Markov
Chain (see Methods). We conducted simulation studies with
various sequence lengths and found 75 bp to be the shortest
length providing acceptable statistical power for distinguishing
between CDS and NCDS (the Kolmogorov-Smirnov [K-S] test,
P < 2 � 10�16; Fig. 2). Since 95% of the NCDS-like random se-
quences have pp < 0.2239, any 75-bp sequence window with a
pp � 0.2239 is regarded as coding. We examined the pp values of
75-bp windows within the exons and introns of A. thaliana with
3-bp steps. In average, 84.95% of the windows in exons and only
2.30% of windows in introns are above the threshold.

In addition to annotated genes, many intergenic regions in
the genome contain windows with high pp values. An example
(discussed in a later section) is shown in Figure 3. These tracks
with high pp values differ in widths and shorter tracks are more
likely to be spurious than longer ones. Two measures are neces-
sary for evaluating the coding likelihood of these high pp regions:
(1) a summary statistic describing the coding potential of the
region and (2) a threshold definition that takes region lengths
into account. We devised the CI measure that is the averaged pp
values over all windows (75-bp window with 3-bp increments) in
a given sequence. The regions we examined contain at least six
windows since we focused on sORFs from 90 to 300 bp. Simula-
tion studies were conducted to determine the CI thresholds at
different NCDS (random sequences generated according to in-
tron hexamer compositions) lengths ranging from 90 to 300 bp.
Although the median CI values of different sequence lengths are
similar, the distributions of shorter sequences are significantly
skewed toward higher CI values compared with longer sequences
(Supplement A). We have also calculated CI values of exon CDS,
intronic ORFs, and intergenic ORFs at different sequence lengths.
In contrast to simulated sequences, the distribution of longer
NCDS sequences is skewed toward higher CI values (Fig. 4). Since
longer ORFs are less likely to be expected randomly compared to

shorter ORFs, longer ORFs from intergenic regions and introns
are more likely to be true coding sequences. In addition, the
thresholds defined with simulated sequences are more conserva-
tive (with higher CI threshold values) than thresholds defined
based on intronic or intergenic ORFs regardless of sequence
length. Therefore, a threshold curve was generated by fitting the
99 percentile CI values of simulated sequence at various lengths
with power law (r2 = 0.989) and the fitted line was used to infer
the CI thresholds at the 1% false-positive rate.

Figure 1. Analysis procedures and summary of results The overall pro-
cedures for identifying sORFs (between 90 and 300 bp) that have quali-
fying Coding Index (CI) values, above background tiling array hybridiza-
tion intensities, evidence of purifying selection, and cognate cDNA/ESTs.
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Performance of the CI measure

To evaluate the performance of CI and the thresholds defined,
first we calculated and compared the CI values of exons and
introns from genes with full-length cDNAs from A. thaliana. Of
the 34,275 exons in the length range 90–300 bp, 27,936 (81.50%)
have above-threshold CI values (Table 1). For the same size range,
only 3% of the sORFs in introns were called as CDSs. Although
the CI measure is strongly influenced by ORF sizes, the CI distri-
butions of exon CDSs are always clearly separated from inter-
genic and intronic sequences (Fig. 4). To further evaluate the
feasibility of using the CI measure to identify novel small protein
genes, we applied our method to two small protein gene data
sets. The first is a collection of 18 A. thaliana genes that code for
small, secreted proteins (90–300 bp). These genes were not an-
notated in the original release of the A. thaliana genome but were
identified by similarity searches and/or functional studies (Cock
and McCormick 2001; Butenko et al. 2003). The CDSs of these
small protein-coding genes are located in regions with high pp
values (e.g., IDA shown in Fig. 3). Most importantly, the CI val-
ues of all 18 A. thaliana small protein-coding genes are above the
CI thresholds (Supplement B). It should be noted that the train-
ing data are based on sequences without substantial low com-
plexity regions. Most of the 18 A. thaliana small proteins, how-
ever, would have been excluded after filtering for low complexity
regions. This finding indicates that there is likely coding sORFs
with substantial low complexity sequences that we failed to iden-
tify.

The second small protein gene data set is a collection of

yeast small coding genes with evidence of expression at the pro-
tein level based on genome-wide TAP- and GFP-tagging experi-
ments (Ghaemmaghami et al. 2003; Huh et al. 2003). Again,
many of these small coding genes are discovered through expres-
sion-based analysis instead of ab initio gene finding (Kasten-
mayer et al. 2006). Using the same procedure applied to the A.
thaliana genome, a CI threshold curve was generated based on
yeast intron sequences (Supplement A). After eliminating those
with significant low complexity regions, the CI values for 84
small coding genes were determined, and all 84 genes have
above-threshold CIs (Supplement B). Taken together, our
method can predict correctly all the small protein benchmark
data sets from A. thaliana and yeast. Therefore, the CI measure is
a good predictor of coding regions and is suitable for predicting
small protein coding genes in the A. thaliana and yeast genome.

Identification of novel coding sORFs in intergenic regions
of A. thaliana genome

To uncover novel coding sORFs in the A. thaliana genome,
we first retrieved ORF sequences 90–300 bp started with ATG in
the intergenic regions. After removing ORFs that overlap with
or are similar to annotated A. thaliana genes, pseudogenes, trans-
posons, simple sequence repeats, and sequences with low
complexity (see Methods), the CI values for the remaining
133,091 sORFs were determined and the 7442 sORFs were
predicted to be coding sORFs at the 1% false-positive rate
(Supplement A). These 7442 coding sORFs form 7159 non-
overlapping clusters, representing 7159 regions that belong to
potential novel coding genes. From this point on, coding sORFs
are referred to as the sORFs with the highest qualifying CI value
in each cluster.

Since there are 133,091 sORFs meeting the filtering criteria,
the false-positive rate of 3% based on introns derived from full-
length cDNAs (Table 1) indicates there could be ∼4000 false posi-

Figure 3. Sliding window calculation of pp in genomic sequences sur-
rounding IDA. The pp values were determined in 75-bp windows with
3-bp steps for A. thaliana chromosome sequences. The pp values in a
region containing the small protein gene IDA and flanking sequences are
shown. The diagram on top indicates the locations of exons (white box,
untranslated regions; black box, CDS), introns (bent lines), transcriptional
starts (small arrows), and intergenic sequences (thick gray lines). The six
plots below the annotation diagram are the results of pp calculations in
six reading frames (forward, +; reverse, �). The dotted line indicates
pp = 0.2239, the threshold value for calling whether a 75-bp window is
likely a CDS or not. The shaded areas highlight the overlap between IDA
CDS and regions with a high pp. The arrow indicates the correct frame for
the IDA CDS.

Figure 2. Frequency distributions of posterior probabilities for simu-
lated coding and noncoding sequences. (A) Distribution of posterior
probability (pp) of sequences resembling noncoding sequence (NCDS).
Ten-thousand random sequences were generated based on the hexamer
and pentamer frequencies of intronic ORFs. The great majority of simu-
lated sequences have very small pp, and only 5% of the pp values are
>0.2239. (B) The pp distribution of sequences resembling coding se-
quences (CDSs). Random sequences were generated according to cDNA
CDSs. Approximately 10% of the CDS-like random sequences have pp
values <0.2239.
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tives. However, many introns we looked into may contain coding
sequences that elevated the CI values of introns. Using introns
defined based on cDNA evidence to search the A. thaliana protein
annotation, we defined any intron after translation as alterna-
tively spliced if it has �80% amino acid identity to any protein
sequence and the alignment spans �80% intron length. We
found 480 alternatively spliced introns that meet these criteria,
and 318 (66%) of these introns are above the threshold CI. This
finding indicates that some of the introns with the above-
threshold CIs may in fact contain CDSs. Nonetheless, we cannot
rule out the possibility that some of these coding sORFs are false
positives. Therefore, we further evaluated their functional signifi-
cance by searching for evidence of their transcription and/or pu-
rifying selection.

Transcription of novel coding sORFs

Since the CI measure is based solely on hexamer composition
bias, we expect the false-positive rate will be higher than that of
more complicated gene finders. To address this concern, we ap-
plied two independent criteria to uncover coding sORFs that are
likely functional. Assuming expressed sequences are more likely
to be functional, the first criterion is whether there is evidence
that the coding sORF is expressed. To assess which intergenic
regions have transcriptional activities, we isolated four indepen-
dent RNA samples from 3-d-old seedlings and hybridized cDNA
generated from these RNA samples to the A. thaliana genome
tiling array. Since exonic sequences are much more likely to be
represented in an mRNA pool than intronic sequences, we com-
pared the hybridization signal intensity distribution of features
in known exons, introns, and coding sORFs (Table 2; Fig. 5). We
found that the intensity distribution of coding sORF probes (Fig.
5C) was more similar to the exon probe intensity distribution
(Fig. 5A) than to the intron one (Fig. 5B), indicating that some of
coding sORFs are expressed. In addition to the replicated tiling
array experiments we have conducted, we analyzed publicly
available tiling array data in another four conditions (Yamada et
al. 2003) and reached the same conclusion (Table 2). We also
compared intensity distribution of coding sORFs and annotated
genes to those of tRNA and rRNA (Fig. 5D,E). It is known that
rRNAs are expressed constitutively at very high levels as reflected

by the skewed intensity distribution of rDNA probes toward
higher hybridization signals (Fig. 5E). On the other hand, tRNAs
have lower median intensity that is similar to that of coding
sORFs (Fig. 5C,D). Taken together, these findings indicate that a
substantial number of coding sORFs are expressed, although at
lower levels compared to annotated genes in general.

To determine whether a coding sORF is expressed or not, we
devised the Expression Index (EI) (see Supplement A-3) that is the
average intensity over all probes in a given sequence. Since cod-
ing sORFs have variable numbers of probes, simulation studies
were conducted to determine the EI threshold at different probe
numbers according to the intensities and numbers of probes lo-
cated in introns (Supplement A-4). At the 5% false-positive rate,
the EI values of 2996 coding sORFs are significant higher than EIs
of introns in at least one experimental condition (Supplement
C), consistent with the notion that a substantial number of A.
thaliana sORFs are expressed. We refer to these sORFs as tran-
scribed coding sORFs.

Conservation across species and signature
of purifying selection

The second independent criterion for assessing the functionality
of coding sORF is signature of purifying selection. For a CDS, a
significantly lower nonsynonymous substitution rate than the
synonymous substitution rate indicates the sequences have ex-
perienced purifying selection or functional constraint. To assess
the degree of functional constraints on coding sORFs, we first
identified sequences that are likely homologous to coding sORFs
within A. thaliana or between A. thaliana and five other plants
including Brassica oleracea (Ayele et al. 2005), Oryza sativa var.
japanica (IRGSP 2005), Medicago truncatula (Bell et al. 2001), Lotus
japonicus (Sato et al. 2001; Nakamura et al. 2002; Kaneko et al.
2003; Asamizu et al. 2003), and Populus trichocarpa (Tuskan et al.
2006). Among 7159 coding sORFs, 3997 have �1 matches with
�30% identity to the plant genomes. Applying a likelihood ratio
test (Nekrutenko et al. 2002) to these 3997 coding sORFs, we
found that 2376 of them show signature of purifying selection
(referred to as constrained coding sORFs, Supplement C).

Taken together, we found 4282 coding sORFs with the evi-
dence of either transcription or purifying selection. After elimi-
nating repetitive sequences including transposons with Repeat-
Masker, 3652 coding sORFs are defined to be small coding re-
gions. Among these 3652 coding sORFs, 941 coding sORFs have
evidence both of purifying selection and transcription. The num-
ber of transcribed sORFs with purifying selection is significantly
larger than that of nontranscribed sORFs with purifying selection
(Table 3, �2 test, P < 0.01), indicating that coding sORFs that are

Figure 4. Distributions of CI values of CDS and NCDS The CI value
distributions are shown as box plots with the solid horizontal line indi-
cating the median CI value, the box representing the inter quartile range
(25%–75%), and the dotted line indicating the first to the 99th percen-
tile. CDS refers to the exon coding sequences derived from full-length
cDNAs. sORFs of NCDSs are obtained from two types of sequences: (1)
annotated intergenic regions and (2) intron sequences derived from full-
length cDNAs.

Table 1. Assessment of the performance of CI using annotated
exons and intron sequences between 90–300 bp

Exonic ORFsa Intronic ORFsa

CI above thresholdb 27,936 822
CI below thresholdb 6,339 26,833
Total 34,275 27,655

aExon and intron sequences are defined based on full-length cDNA se-
quences (see Methods). For each exon, the ORF in the correct frame is
evaluated. For each intron, it is regarded as having a CI value above the
threshold if the longest ORF in an intron has a qualifying CI.
bThresholds were defined according to sequence sizes with a false-
positive rate of 1% (Supplement A).
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transcribed tend to be subject to purifying selection as well.
Many transcribed sORFs, however, do not have evidence of pu-
rifying selection.

To determine how many of these transcribed and/or con-
strained sORFs may belong to gene families, we generated simi-
larity clusters of these sORFs and found 1903 clusters and 936
singletons (Supplement C). Therefore, approximately two thirds
of small coding genes have potential paralogs, indicating that
these sORFs may belong to novel gene families.

Number of novel coding genes represented by transcribed
and/or constrained coding sORFs

The transcribed and/or constrained sORFs may be missing exons
of known genes or exons of novel genes. To estimate the number
of sORFs belong to truly novel transcription units, we deter-
mined the number of sORF-matching ESTs that are part of anno-
tated genes. The assumption is that if an sORF S has an EST match
X, which is matched to a known gene G, then S and G likely
belong to the same gene. Among 169 transcribed and/or con-
strained sORFs with �97% identity to full-length cDNA/ESTs, 19
were associated with neighboring annotated genes via cDNA/
ESTs (>80% identity between the annotated genes and cognate
ESTs of sORFs; Supplement C). These 19 sORFs are regarded as
potentially missing exons of annotated genes. A less stringent
identity threshold (80%) between cDNA/EST and known genes is

chosen since we intend to reduce the false-positive prediction of
novel small protein genes that are in fact part of annotated genes.
The ESTs of the rest 150 predicted sORFs (88.7%, 150/169) seems
to belong to truly novel transcription units. Under the assump-
tion that predicted sORFs with cDNA/ESTs that do not overlap
with annotated genes are parts of novel genes, the 3652 predicted
sORFs with evidence of expression or purifying selection likely
belong to 3241[3652 � (150/169)] novel protein coding genes in
the A. thaliana genome.

Discussion

Using the CI measure based on CDS nucleotide composition bias,
we found a large number of sORFs with significantly higher than
expected coding potential in the intergenic regions of the A.
thaliana genome. Based on cognate cDNA/EST of coding sORFs,
we estimated that >3000 coding sORFs with either evidence of
transcription or purifying selection likely belong to novel coding
genes in the A. thaliana genome. In addition to the cDNA/EST-
based estimate, 2341 sORFs >850 bp away from their neighboring
genes likely belong to novel protein coding genes since 95% of
introns are �850 bp in A. thaliana. The CI measure performed
well in distinguishing most CDSs in exons from NCDSs derived
from introns. In addition, two benchmark small protein data sets
from A. thaliana and yeast were correctly identified as coding

Figure 5. Distributions of hybridization intensities values for probes in intron, coding sORFs and exons. The distribution of intensities values from the
7-d-old seeding tiling array expression data for probes in exons (A), introns (B), coding sORFs (C), tRNA genes (D), and rRNA genes (E). X-axis and Y-axis
indicate logarithmically transformed intensity values (base 10) of expression and frequency of probes in different intensity bins, respectively.

Table 2. Summary statistics of tiling array intensity values for probes in introns, exons, and predicted sORFs

This study Yamada1a Yamada2a Yamada3a Yamada4a

Median IQRb Median IQRb Median IQRb Median IQRb Median IQRb

Intron 4.9 1.9–20.1 120.5 98.0–157.3 89.0 74.5–108.5 70.8 53.0–106.0 99.5 76.3–152.0
Exon 55.5 17.2–149.3 171.3 123.5–283.8 113.5 90.0–157.0 130.0 130.0–264.0 130.0 103.5–306.3
Coding sORF 14.2 3.4–42.2 139.3 109.3–191.5 99.3 82.0–125.0 88.0 61.3–144.0 120.0 88.0–194.3

aThe four data sets are from Yamada et al. (2003).
bIQR indicates inter-quartile range; between the first quartile (at 25%) to the third quartile (at 75%).
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sORF by the CI measure. These findings indicate that the CI
measure can be applied to find coding sORFs in eukaryotes. Ap-
plication of the CI measure led to the identification of 7159 cod-
ing sORFs in the intergenic regions of the A. thaliana genome,
4282 of which had evidence of either expression or purifying
selection. Based on a detailed comparison between the A.
thaliana and B. oleracea genomes for nucleotide sequence conser-
vation (Ayele et al. 2005), it is predicted that thousands of pro-
tein coding or RNA genes remain unannotated in A. thaliana
although our prediction does not overlap significantly with the
Brassica–Arabidopsis conservation data (Supplement C). Nonethe-
less, with completely different approaches and goals, our find-
ings similarly indicate the presence of many unannotated small
protein genes in the A. thaliana genome.

It should be noted that the CI measure assumes coding re-
gions should be similar to the training CDS but different from the
training NCDS in sequence composition. Since we use exons and
introns of genes with full-length cDNAs as the training sets for
CDS and NCDS, it is likely that we miss true CDS with very
different nucleotide composition from CDS in full-length cDNAs.
This compositional difference can be affected by both expression
level and amino acid composition. It is well established that gene
expression level correlates with codon usage bias in prokaryotes
and in a number of eukaryotes (Grantham et al. 1981; Bennetzen
and Hall 1982; Gouy and Gautier 1982; Grosjean and Fiers 1982;
Duret and Mouchiroud 1999). Since genes with higher expres-
sion levels have a better chance to be present in the cDNA pool,
the CI measure is likely biased toward a codon usage pattern of
genes with relatively higher expression levels. However it has
been shown that such correlation is not pronounced in A.
thaliana (Mathe et al. 1999). Therefore, it is unclear how much
expression level will affect our predictions. Nucleotide composi-
tion is also affected by codon compositions. In particular, regions
with low amino acid complexity, such as signal sequences and
trans-membrane regions, seem to have different codon composi-
tion and reduced CI (in Fig. 1, for example, the region corre-
sponding to IDA signal peptide has low pp). Nearly all of the 18
A. thaliana small secreted protein genes used for verifying the
effectiveness of CI would have been excluded because signal pep-
tides occupy a major fraction of their sequence lengths. In our
analysis of A. thaliana genome, we excluded sequences with low
amino acid complexity and likely leave a number of truly novel
sORF genes out from our predictions.

Many coding sORFs are likely transcribed, and some of them
in fact have cDNAs and/or ESTs. However, relatively much fewer
of our predictions have cognate ESTs compared to annotated
genes. This is likely due to the fact that coding sORFs tend to
have significantly lower expression levels than genes with cDNA/
EST evidence (Fig. 5; Table 2). There are >4000 coding sORFs
without expression evidence. One explanation is that some may
be expressed under conditions not covered. Another potential
reason is because the EI thresholds are too conservative. Quite a
few introns are alternatively sliced and expressed (supported by

the long tail of intron probe intensity distribution in Fig. 5B).
Since we estimated EI thresholds using intron probe intensities
that include those from expressed sequences, the false-negative
rate will be higher than the expected 5%, leading to the under-
estimation of the number of expressed coding sORFs. Another
question regarding sORF transcription is whether transcription of
a sequence necessarily lends support to their functionality. Since
a true sORF gene has to be transcribed, coding sORFs with evi-
dence of transcription is more likely to be functional sORF genes
than those without transcriptional evidence. Nonetheless, evi-
dence of expression is not itself evidence of protein coding po-
tential. We cannot rule out the possibility that some of the tran-
scribed coding sORFs are RNA genes. However, the training mod-
els for CI determination explicitly incorporate both CDS and
NCDS information. The coding sORFs therefore have to be dis-
similar from intron NCDS but similar to CDS, reducing their
likelihood to be RNA genes.

Approximately 55% of the coding sORFs have related se-
quences in five non–A. thaliana plant genomes and within the A.
thaliana genome. For those coding sORFs without detectable con-
servation, the possible explanations are (1) false-positive coding
sORFs, (2) incomplete plant genome sequences used, or (3) high
evolutionary rates. Although we have used stringent criteria for
identifying coding sORFs, we cannot rule out the possibility that
some of our predictions are false positives. We find ∼3% of an-
notated intronic sequence are above the threshold CI. Taking
this as a false-positive rate estimate for the CI measure, ∼4000
sORFs will have higher-than-threshold CI values by chance.
However, in A. thaliana, 3161 (∼12%) annotated genes have more
than one splice variants based on available cDNA/EST data. The
true number is likely higher since only ∼60% A. thaliana genes
have more than one full-length cDNAs. Therefore, some introns
will contain coding sequences that contribute to high CI values.
Importantly, our coding sORF prediction is significantly en-
riched in expressed sequences compared to all sORFs indicating
the nonrandom nature of our prediction. Three of the dicotyle-
don genomes used, L. japonicus, M. truncatula, and B. oleracea, are
incomplete. Based on the same criteria in establishing sORF-
genome translation pairs, we found that 38.8% (10,179/26207)
A. thaliana and 71.0% (41,132/57915) rice annotated genes do
not have cross-genome match (S.H. Shiu, unpubl.), although the
rice genome is 95% complete (IRGSP 2005). Therefore, some cod-
ing sORFs without cross-species matches may be the conse-
quences of incomplete coverage or fast evolving or novel se-
quences. There are also quite a few coding sORFs that have con-
servation to sequences in other plant genomes but without
evidence of purifying selection. Note that the false-positive rate
of the likelihood ratio test procedure for determining the depar-
ture of Ka/Ks from one is estimated to be ∼2.5% depending on the
sequence lengths and divergence (Nekrutenko et al. 2002). In
fact, the test tends to be more stringent for shorter sequences
such as sORFs. Therefore, we likely underestimated the number
of sORFs with signature of purifying selection. This lack of sen-
sitivity may explain why many transcribed sORFs do not have
evidence of purifying selection. In addition, some of these con-
served sequences may represent pseudogenes that still possess
the nucleotide composition of true CDS. We have filtered out
intergenic regions with similarity to annotated A. thaliana genes
with a very liberal criterion. If some of these sORFs were pseudo-
genes, they would mostly belong to single copy genes that be-
come pseudogenes recently.

More and more comparative and functional genomics stud-

Table 3. Enrichment of expressed and negatively selected sORFs

Ka/Ks << 1 Ka/Ks ≈ 1 P value

Transcribed 941 436
1.13 � 10�4Not transcribed 1036 645

Expressed sORFs are those with EI values >95% of introns (a false-positive
rate of 5%).
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ies reveal the importance of intergenic “dark matter” (Yamada et
al. 2003). Although various studies show that substantial inter-
genic regions are expressed in various genomes, it is not known
what the relative abundance of coding and noncoding RNA is.
Our method is the first step not only for identifying sequences
with a high coding potential in intergenic regions but also for
estimating how much intergenic transcription can be attributed
to protein coding genes. Further studies aimed at verifying the
translation of these predictions experimentally will be an impor-
tant next step.

Methods

Bayes’ estimation of coding likelihood
For a given sequence segment F, the pp that F appears in the
coding regions of a genome can be given by Bayes’ theorem as
follows:

P�codingi | F� =
P�F | codingi�P�codingi�

P�F�

=
P�F | codingi�P�codingi�

�
i=1

6

P�F | codingi�P�codingi� + P�F | noncoding�P�noncoding�

where i = 1∼6 is the six possible coding frames, P(F|codingi) and
P(F|noncoding) are the probabilities that F is derived from the
coding and noncoding regions in a genome, respectively.
P(F|codingi) and P(F|noncoding) are estimated using training
models of A. thaliana coding and noncoding (intron) sequences,
respectively, according to experimentally determined full-length
cDNA sequences (Yamada et al. 2003). Coding regions in cDNAs
were identified by similarity searches against the annotated CDS
of the A. thaliana TIGR v.5 annotation. cDNA sequences with
<100% identity to annotated CDS were excluded from further
analyses. The remaining CDS in cDNAs were then used to search
against the genome assembly to identify introns. The introns are
identified by searching the CDSs of full-length cDNAs against the
A. thaliana genome. The genomic sequences corresponding to
the alignment gaps in CDS were regarded as introns. The intron
data set was then used to search the A. thaliana CDSs. For model
training purpose, any intron sequence with 100% identity to
CDS of the same gene is regarded as an alternatively spliced in-
tron containing CDS. Training data of coding and noncoding
sequences for Saccharomyces cerevisiae were generated based on
annotation in NCBI (version 22-05-06).

CDS were translated into amino acid sequences, and low
complexity regions of the amino acid sequences were defined
with PSEG (Wootton and Federhan 1996). After excluding se-
quences with substantial low complexity regions, pentamer, and
hexamer composition frequency tables (CDS tables) were gener-
ated for six reading frames with the sense strand first frame as the
true reading frame. For introns, we first identified contiguous
translatable regions (intronic “ORFs”) in six frames. Intronic
ORFs were also subject to low-complexity filtering, and those
that passed were used to generate pentamer and hexamer fre-
quency tables (NCDS tables). With these frequency tables, we
modeled the sequences with fifth-order Markov chains.
P(F|coding) was calculated by multiplying the frequencies of the
first pentamer (taken as the initiation probability) and all subse-
quent hexamers (taken as the transition probabilities) in six dif-
ferent frames using the CDS tables. P(F|noncoding) was similarly
determined using the NCDS tables, but only the first reading
frame was calculated. P(coding) and P(noncoding) of prior prob-

abilities were set to be 0.3 and 0.7 in A. thaliana and as 0.5 and 0.5
in S. cerevisiae. These prior probabilities were defined based on
the proportion of total base pairs that are annotated coding se-
quences and noncoding portions of the respective genomes. The
prior probability of coding in each frame was P(coding)/6.

CI calculation and threshold determination
For each sequence, pp was calculated on consecutive windows of
75 bp with a step size of 3 nt. The CI for a given sequence is the
averaged posterior probabilities of all windows within a se-
quence. If the CI of a sequence is higher than the threshold value
determined by simulation, it is regarded as a coding sequence.
Since the predictive power drops with reduced sequence length,
a single CI threshold is not feasible. We generated 100,000 ran-
dom sequences based on the NCDS training data (intron se-
quences) for each sequence length class with 3-nt increments
from 90 to 300 nt. CI values were calculated for each sequence,
and the frequency distribution of CI values for each length class
was generated. For each size class (e.g., 90 nt), the CI value of
randomly generated NCDS of the same length at 99 percentile
was used as the threshold. After plotting the CI thresholds ac-
cording to their size classes, the data points were best fitted by
the power law (Supplement A). The threshold value for each size
class was determined based on this power law fit and used to
determine if a sequence is likely coding or not. Because the false-
positive rate increases dramatically as sequence length decreases,
the CI measure was applied only to sequences �90 bp (six win-
dows). The analysis procedures are illustrated in Supplement A.

ORF processing
The A. thaliana chromosome pseudo-molecule version 5 was ob-
tained from TIGR (http://www.tigr.org/tdb/e2k1/ath1/). The
chromosome sequences were translated in all six frames. An ORF
was analyzed further if (1) it started with methionine codon and
was between 30 and 100 amino acids (aa) long or (2) it was >100
aa with multiple ORF and the longest ORF was 30–100 aa long. In
case 2, the longest ones were used for further analysis. There were
570,948 such ORF sequences. Because we are interested in novel
coding sequences, an ORFs was excluded if it (1) overlapped at
least 1 bp with a known gene or pseudogene sequence according
to A. thaliana genome annotation version 5 from TIGR, (2) over-
lapped at least 1 bp with an unannotated region similar to a
known gene, (3) matched a known gene with >40% protein se-
quence identity over 80% length of ORFs, or (4) contained sub-
stantial low complexity regions. Regions in case 2 were defined
by using the A. thaliana predicted protein sequences as query to
search against A. thaliana chromosome sequences with BLAST
(Altschul et al. 1997) using default setting with E value threshold
of one. After linking contiguous regions of matches in the ge-
nome that are collinear with a query sequence, this genome se-
quence chain was regarded as a pseudogene if they do not over-
lap with known genes. Low complexity regions in case 4 were
defined with PSEG to filter the sequences and A. thaliana pre-
dicted protein sequences. Since 95% of predicted protein se-
quences have <26.11% of their lengths identified as low-
complexity region, ORFs with >26.11% low complexity region in
their sequences were excluded from further analysis.

Tiling array sample, hybridization, data acquisition,
and analysis
Four plants (lines) of A. thaliana accession Col-0 were grown, and
seeds from each line were collected independently. The seeds
from each line were stratified for 5 d and grown horizontally in
a growth chamber (Percival Scientific Inc., model E361) for 3 d.
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About 20 µg of total RNA was isolated from 120 seedlings from
each line using RNeasy plant mini kit (Qiagen). Poly(A) RNA was
further enriched from total RNA using Oligotex mRNA mini kit
(Qiagen). For first-strand cDNA synthesis, poly(A) RNA was
mixed with 166ng random hexamers, 8 µL of 5� first-strand
buffer, 4 µL of 0.1 M DTT, 2 µL of 10 mM dNTP mix, and 400
units of superscript II reverse transcriptase (Invitrogen) in a total
volume of 40 µL for 1 h at 42°C. For second-strand cDNA syn-
thesis, the 40 µL first-strand reaction was mixed with 60 µL of 5�

second-strand reaction buffer, 6 µL of 10 mM dNTP mix, 20 units
of Escherichia coli DNA ligase, 80 units of E. coli DNA polymerase
I (Invitrogen), and 4 units of E. coli RNase H (Epicentre) in a total
volume of 300 µL for 2 h at 16°C. Double-stranded cDNA was
further purified using Qiaquick PCR purification kit (Qiagen),
and then labeled using BioPrime DNA labeling system (Invitro-
gen) with conditions modified as previously described (Borevitz
et al. 2003); 95 µL labeling reaction from each of four cDNA
samples was subjected to hybridization to AtTILE1 forward chips
(Affymetrix), using hybridization protocol for eukaryotic cRNA
target (Affymetrix). Chips were scanned by an Affymetrix Scan-
ner 7G with GeneChip Operational System (Affymetrix).

The array intensities were processed using the Bioconductor
(http://www.bioconductor.org) affy package in the R software
environment (http://www.r-project.org). Specifically, the inten-
sities were adjusted to reduce background with the bg.adjust
function, and the normalize.quantiles function was used for be-
tween array normalization. The background corrected and nor-
malized intensities were used for further analysis. To reduce the
impacts of cross hybridization, the probe sequences were queried
against the TIGR A. thaliana genome v.5 assembly with BLAST.
Probes with no perfect match or with a second match that has an
identity �80% (potentially cross-hybridizing) were excluded
from further analysis. In addition to our tiling array data, addi-
tional array data in four experimental conditions (Yamada et al.
2003) was retrieved from Gene Expression Omnibus (GEO) (Bar-
rett et al. 2005). Since our tiling array data has four replicates in
each probe, the median of expression intensity in four replica-
tions was used as the representative intensity of each probe. Our
tiling array data were generated using cDNA and forward chip
only, so direction of transcription is unknown. On the other
hand, the publicly available tiling array data have only one data
point for each probe for each condition. But cRNA was used to
assess the directionality of transcription. Therefore, these two
data sets are complementary and were both used in our studies.

EI calculation and threshold determination
The EI for a given sORF is the averaged expression intensity of all
probes within the sORF. If the EI of the sORF is higher than the
threshold value determined by random sampling from probes of
introns, it is regarded as evidence of transcription of the sORF.
Since the predictive power drops with reduced number of probes,
we conducted simulation studies to determine the proper thresh-
olds for sequences with varying numbers of probes. We ran-
domly sampled intron sequences with one to 10 probes each for
10,000 times to generate intensity distributions of sequences that
are expected to be expressed. For each number of probes, the EI
>95% of the randomly sampled EIs was used as the threshold.
The analysis procedures are illustrated in Supplement A.

Estimation of purifying selection
In addition to the A. thaliana genome, the following genomes
were used to assess conservation of the putative novel genes: (1)
B. oleracea shotgun sequences (Ayele et al. 2005), (2) O. sativa
subsp. japonica chromosome pseudo-molecule version 3 from

TIGR (http://www.tigr.org/tdb/e2k1/osa1/), (3) P. trichocarpa
shotgun assembly from JGI (http://genome.jgi-psf.org/Poptr1/
Poptr1.home.html), (4) M. truncatula genomic sequences includ-
ing BACs from NCBI (http://www.ncbi.nlm.nih.gov/mapview/
map_search.cgi?taxid=3880), and (5) Lotus corniculatus var. ja-
ponicus genomic sequences including BACs from NCBI (http://
www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=34305).
Sequence pairs are regarded as conserved if they have (1) �30%
identity at the protein level, (2) alignments �20 codons, (3)
alignment �70% of the query putative sORFs, and (4) no stop
codon in the translated genomic sequence matches. These con-
served pairs were aligned, and the synonymous and nonsynony-
mous substitution rates (Ka and Ks) were calculated using PAML
(Yang 1997). To determine if the Ka/Ks values were significantly
smaller than one, a likelihood ratio-based procedure was applied
to sequence pairs with a proper Ks value range as described pre-
viously (Nekrutenko et al. 2002). For each pair, two maximum
likelihood values were calculated with the Ka/Ks ratio fixed at 1
and with the Ka/Ks ratio as a free parameter. The ratio of the
maximum likelihood values was then compared to the �2 distri-
bution.

Comparing sORFs and ESTs
ESTs of A. thaliana were obtained from GenBank as of April 1,
2006. The sORF-At nucleotide sequences were used to search
against the Brassicaceae ESTs. An EST is assigned to an sORF if (1)
its sequence identity is >97%, (2) the alignment covers >90% of
the sORF, and (3) the alignment covers the start position of the
sORF. For sORF that match to several regions of the same EST, the
different regions will be concatenated together if the gap size is
no more than 1 nt. The concatenated sequence will then be ex-
amined based on the above criteria. To determine if an sORF is
part of a transcriptional unit that includes a known gene, the
sORF-matching ESTs was used to search annotated CDS. The
matches between an annotated CDS and ESTs were concatenated
together with similar identity criteria used for establishing sORF-
EST matches but with a maximal gap of 10 kb.
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