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Abstract
A finite number of transcription factors constitute a combinatorial code that orchestrates cardiac
development and the specification and differentiation of myocytes. Many, if not all of these same
transcription factors are re-employed in the adult heart in response to disease stimuli that promote
hypertrophic enlargement and/or dilated cardiomyopathy, as part of the so called “fetal gene
program”. This review will discuss the transcription factors that regulate the hypertrophic growth
response of the adult heart, with a special emphasis on those regulators that participate in cardiac
development.
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1. Introduction
Development of the embryonic heart involves early specification of cardiac myocytes from
uncommitted mesodermal progenitors, their differentiation and ability to contract and function
in synchrony, and their integrated growth and proliferation as the organ becomes
morphologically mature. The past decade of genetic-based approaches in the mouse has
uncovered a select group of transcriptional regulators that directly program these various
aspects of cardiac cell lineage commitment and/or heart morphogenesis. Transcriptional
regulators such as myocyte enhancer factor 2 (MEF2), GATA4, nuclear factor of activated T
cells (NFAT), serum response factor (SRF), Nkx2.5, nuclear factor κB (NFκB), Hand1/2, Smad
transcription factors, and chromatin remodeling factors participate in a combinatorial code that
regulates differentiation-specific gene expression and growth of the developing myocardium
[reviewed in [1]]. Interestingly, many of these transcription factors are re-employed in the adult
heart in response to disease states, where they are thought to mediate the re-expression of the
“fetal program” and genes involved in growth. In most cases, these transcription factors are
activated by signal transduction pathways initiated by membrane bound receptors in response
to neural-humoral agonists. Here we will review data implicating a select group of cardiac
expressed transcription factors in controlling the hypertrophic growth of the adult myocardium
or its transition to dilated cardiomyopathy.
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Adult heart disease can arise from either congenital abnormalities associated with a defect in
one or more cardiac developmental process, or due to acquired disorders such as longstanding
hypertension, ischemia/myocardial infarction associated with coronary artery disease, valvular
insufficiency, myocarditis due to an infectious agent, essential hypertrophic and dilated
cardiomyopathies, and diabetic cardiomyopathy [2,3]. The majority of these disease
predisposing stimuli first induce a phase of cardiac hypertrophy in which individual myocytes
grow without proliferation as a means of augmenting cardiac pump function and decreasing
ventricular wall tension [4,5]. However, long-term myocardial hypertrophy predisposes to
heart failure, arrhythmia, and sudden death [5].

The heart senses many of the disease-inducing stimuli listed above either directly through
biomechanical stretch sensitive receptors or indirectly through an array of membrane bound
G protein-coupled receptors and receptors with intracellular tyrosine kinase domains that bind
hormones, cytokines, chemokines, and peptide growth factors in the circulation or the
extracellular milieu of the heart [6–8]. These initiating stimuli converge on a finite array of
intracellular signal transduction pathways to mediate the cardiac growth/disease response.
Many of the transcription factors that will be discussed here receive activating signals through
phosphorylation and dephosphorylation events mediated by mitogen-activated protein kinase
(MAPK), calcineurin, and insulin-like growth factor-I (IGF-I)-phosphatidylinositol 3-kinase
(PI3K)-Akt, as well as through kinase-regulated shuttling of class II histone deacetylases
(HDACs) [6–9]. While some of these signaling relationships that alter transcription factor
activity were described in cultured neonatal rat primary cardiomyocytes, this review will focus
on recent studies in genetically modified mouse models that provide additional understanding
of the complexities surrounding the cardiac growth response and the transition to heart failure.

2. GATA4
Six GATA transcription factors have been identified in vertebrates and parsed into two
subclasses based on their expression patterns. GATA-1, -2, and -3 are prominently expressed
in hematopoietic cell lineages while GATA-4, -5, and -6 are expressed in various mesoderm
and endoderm derived tissues such as heart, liver, lung, gonad, and gut [10]. GATA factors
contain a highly conserved DNA binding domain consisting of two zinc fingers that direct
binding to the nucleotide sequence element (A/T)GATA(A/G), as well as a potent
transcriptional activation domain and domains that mediate interaction with transcriptional co-
factors [10]. One of these family members, GATA4, has been extensively characterized as an
essential regulator of cardiac development and differentiation, as well as in regulating survival
and hypertrophic growth of the adult heart [10,11].

Traditional germline disruption of Gata4 in the entire mouse resulted in early embryonic
lethality between embryonic (E) day 7.0 and 9.5 due to defects in endoderm and ventral
morphogenesis, although these embryos still generated cardiac tissue that expressed heart-
specific structural genes [12,13]. To gain further insight into the role that GATA4 plays in
heart development tetraploid embryo complementation was employed using Gata4−/−
embryonic stem cells, which generated embryos that progressed further in development and
showed hypoplastic ventricles and a loss of the proepicardium, resulting in lethality [14].
Gata4 was also deleted specifically in the heart using a Cre-loxP-based approach and a Nkx2.5-
Cre knock-in allele, which showed embryonic lethality and hypoplastic ventricles [15,16].
More recently, a heterozygous mutation in Gata4 was associated with congenital abnormalities
in cardiac septation in humans, further supporting the developmental importance of this factor
[17]. Collectively, these studies underscore the importance of GATA4 in regulating
development and differentiated gene expression in the heart.
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GATA4 is also expressed in the adult heart where it is thought to function as a key
transcriptional regulator of numerous cardiac genes including atrial natriuretic factor (ANF),
b-type natriuretic peptide (BNP), α-myosin heavy chain (α-MHC), β-myosin heavy chain (β-
MHC), and many others [10,11]. A direct transcriptional regulatory role for GATA4 is further
supported by the observation that anti-sense GATA4 mRNA expression inhibited the basal
expression of certain cardiac-expressed genes in cardiomyocyte cultures [18]. In addition to
its hypothesized role in maintaining differentiated gene expression in the post-natal/adult heart,
GATA4 also mediates inducible gene expression in response to hypertrophic stimuli, including
pressure overload, isoproterenol, phenylephrine, and endothelin-1 [19–22]. For example,
overexpression of GATA4 in culture by adenoviral gene transfer induced cardiomyocyte
hypertrophy indicating the sufficiency of GATA4 in this process [22]. More significantly,
expression of dominant negative GATA4 (engrailed fusion) or antisense GATA4 mRNA each
blocked GATA4-directed transcriptional responses and features of cardiomyocyte hypertrophy
induced by phenylephrine and endothelin-1 in culture [22,23]. In vivo, mild overexpression of
GATA4 in the mouse heart by transgenesis induced a progressive hypertrophic response (Table
1) [22].

More recently, GATA4’s necessity in mediating cardiac hypertrophy in vivo was demonstrated
using a conditionally targeted Gata4-loxP allele in conjunction with two different heart-
specific Cre-expressing transgenic lines that reduced GATA4 expression by 70 or 95% within
myocytes. Both approaches generated mice that were viable into young adulthood, although
as these mice aged they eventually developed cardiac dilation and heart failure associated with
myocyte apoptosis [16]. Indeed, germline heterozygous targeted Gata4 mice showed greater
apoptosis in the heart following doxorubicin treatment [24]. With respect to cardiac
hypertrophy, mice with conditional deletion of Gata4 in the heart showed attenuated growth
following 2 or 4 weeks of pressure overload or following exercise stimulation [16]. However,
loss of Gata4 did not affect post-natal growth of the heart, also referred to as developmental
hypertrophy, suggesting that GATA4 function in the adult heart is specialized to regulate
adaptive and maladaptive growth.

A number of stimuli that induce cardiac hypertrophy and/or heart failure are known to enhance
GATA4 transcriptional activity through phosphorylation. For example, pressure overload,
isoproterenol, phenylephrine, endothelin-1, angiotensin II and phorbol esters each induced
phosphorylation of GATA4 resulting in enhanced DNA binding and/or transactivating activity
[19,21,25–29]. We have observed that agonist stimulation of cultured cardiomyocytes or hearts
results in phosphorylation of GATA4 at serine 105 through the direct action of extracellular
signal-regulated kinase 1/2 (ERK1/2) and p38 MAPK [23,26]. Phosphorylation of serine 105
in GATA4 enhanced DNA binding activity and transcriptional potency, while mutation of
serine 105 to alanine attenuated activity [26]. Since both ERK1/2 and p38 MAPK receive input
from diverse upstream signaling pathways it suggests that serine 105 in GATA4 can serve as
a key convergence point in regulating the cardiac hypertrophic response. GATA4 is also subject
to negative regulation by glycogen synthase kinase 3β (GSK3β)-mediated phosphorylation,
which reduced both basal and isoproterenol-induced nuclear expression of GATA4 and
suppress transcriptional activity [27]. Interestingly, while overexpression of GATA6 also
induced cardiac hypertrophy in cultured cardiac myocytes, GATA6 mRNA and protein are not
regulated by hypertrophic signals, suggesting that GATA4 may be more highly specialized for
controlling this process compared with GATA6 [22,26]. In conclusion, these various reports
underscore the hypothesis that GATA4 functions as a transcriptional convergence point in the
adult heart whereby multiple stress-signals alter its function as a means of modifying the cardiac
hypertrophic response or the survival of individual myocytes.
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3. NFAT
The calcium/calmodulin-activated protein phosphatase calcineurin (PP2B) and its downstream
transcriptional effector NFAT have been implicated as critical transducers of the cardiac
hypertrophic response. In response to elevated intracellular calcium, calcineurin becomes
activated in the cytoplasm where it binds to NFAT and directly dephosphorylates the N-
terminal regulatory domains, exposing a nuclear localization signal permitting its translocation
to the nucleus and interaction with GATA4 as a means of inducing hypertrophic gene
expression [30]. There are four calcineurin-regulated NFAT transcription factors, NFATc1-
c4, each of which is expressed in the myocardium and exclusively localized to the cytoplasm
in the unstimulated state [30,31]. Once translocated to the nucleus, NFAT family members
bind a loose consensus site consisting of (G/A)GAAA, either alone or as part of an associated
site that also binds AP-1 or GATA4 [30,31]. NFATc1-c4 are members of the extended cRel/
NFκB super family that bind DNA through a Rel homology domain. The N-terminus of
NFATc1-c4 contains a domain with multiple serine/threonine residues that is subject to
phosphorylation by a diverse group of signaling kinases, resulting in cytoplasmic sequestration
and inhibition of NFAT. Thus, similar to GATA4, NFAT factors function as a signaling
convergence point whereby multiple stress/mitogen-activated pathways modulate
transcriptional activity.

NFAT factors are important regulators of cardiac and vascular development [32]. For example,
loss of Nfatc1 in gene-targeted mice results in defective cardiac valve formation and fetal
lethality [33,34]. By comparison, embryos lacking Nfatc2/c3/c4 (triple nulls) showed defective
endocardial cushion development, reduced cells in the atrioventricular canal, and thinned
myocardium [35]. Double null embryos lacking Nfatc3/c4 showed defects in vessel formation
throughout the embryo [36], as well as selective defects in cardiac development characterized
by thinning of the myocardium, reduced myocyte proliferation, and metabolic dysfunction
[37]. Consistent with these data, expression of a dominant negative NFAT mutant in the heart
using conditional transgenesis resulted in thinning of the atria and reduced expression of
cardiac structural genes [38]. Thus, NFAT factors are critical regulators of several aspects of
cardiac development and myocyte maturation.

Consistent with their role in regulating myocyte maturation during development, NFATs are
also important regulators of myocyte growth in the adult heart. For example, cardiac
overexpression of the constitutively-active calcineurin catalytic subunit or a constitutively
nuclear NFATc4 mutant protein each induced massive cardiac hypertrophy that quickly
transitioned to heart failure [39]. After this initial description in 1998, a series of papers
emerged that essentially solidified the centrality of calcineurin as a necessary mediator of
pathologic cardiac hypertrophy [30]. However, it was not immediately clear if NFATs were
the critical downstream mediators of calcineurin-dependent cardiac hypertrophy, despite the
fact that NFATc1–c4 are only activated by calcineurin, and the amount and timing of nuclear
translocation are directly proportional to the degree of calcineurin activation in vivo [31]. To
explore this question we generated and characterized transgenic mice containing an NFAT-
dependent luciferase reporter, which showed specific induction in the heart by activated
calcineurin, and repression by the calcineurin inhibitor cyclosporine [40]. Using these reporter
mice, calcineurin-NFAT signaling was shown to be constitutively upregulated throughout a
time course of pressure overload hypertrophy, as well as in the failing mouse heart following
myocardial infarction [40]. Thus, NFAT activity is regulated during the cardiac hypertrophic
response.

To directly examine the necessity of NFATs as hypertrophic mediators both dominant-negative
inhibitory strategies and gene-targeted mice have been analyzed. For example, while targeted
disruption of NFATc4 did not diminish the magnitude of calcineurin transgene-dependent
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hypertrophy or pressure overload hypertrophy, NFATc3 null mice showed a significant and
long-standing reduction in calcineurin-induced hypertrophy at multiple time points up to ten
weeks of age. NFATc3 gene-targeted mice were also compromised in their ability to mount an
efficient hypertrophic response following aortic banding or angiotensin II infusion [41]. These
results establish NFATc3 as a critical downstream mediator of calcineurin-regulated
hypertrophy in the adult heart. Similarly, overexpression of a dominant negative NFAT mutant
in cultured cardiomyocytes also antagonized agonist- or activated calcineurin-induced
hypertrophy [42], while infusion of a cell permeable NFAT inhibitory peptide reduced pressure
overload hypertrophy in rats [43]. These reports are supported by the observations that cardiac
myocyte hypertrophic growth is reduced by overexpression of GSK3ß in cultured
cardiomyocytes and in the hearts of transgenic mice [44–46]. GSK3ß was previously shown
to directly phosphorylate the N-terminal regulatory domain of NFATc1, thus antagonizing the
action of calcineurin and inhibiting nuclear shuttling of NFAT [47]. Analogous to the function
of GSK3β as an NFAT kinase (inhibitor), p38 MAPK and c-Jun N-terminal kinase activity
also regulated cardiac hypertrophy through an NFAT-dependent mechanism [48,49], further
supporting the centrality of NFATs as integrators of the cardiac hypertrophic response by
coordinating input from multiple upstream signaling pathways.

4. NFκB
Nuclear Factor κB (NFκB) is a transcription factor that can regulate the expression of
immediate early and stress-response genes in diverse cell types. Five mammalian members of
the NFκB/Rel family have been cloned: NFκB1 (p50 and its precursor p105), NFκB2 (p52 and
its precursor p100), c-Rel, RelA (p65), and RelB [50,51]. NFκB is regulated by a cytoplasmic
inhibitory protein known as IκB, which is phosphorylated by IκB kinase-α (IKKα) and/or β
leading to the ubiquitination and degradation of IκB, permitting NFκB nuclear translocation
[51]. Upstream, IKK activity is regulated by NF-κB-inducing kinase (NIK), which itself is
stimulated by a complex that is located within the tumor necrosis factor-α (TNFα) receptor.

While very little is known regarding a role for NFκB in regulating cardiac development or
cardiac differentiation-specific gene expression, a fair amount is understood of its role in
mediating adult myocardial disease responses. For example, NFκB is involved in cardiac
inflammation associated with myocarditis or sepsis, such that blockade of endotoxin- and burn
trauma-induced NFκB activation through IκB overexpression prevented cardiac dysfunction
[52,53]. Consistent with these observations, repression of NFκB signaling rescues cardiac
function and improves survival in a transgenic model of cardiac inflammation due to TNFα
overexpression [54]. Cardiac protection observed in these models has been largely attributed
to an anti-apoptosis effect, an interpretation that is consistent with some studies showing
decreased myocyte death following ischemia-reperfusion injury in transgenic mice with
inhibited NFκB [55].

NFκB has also been implicated as a necessary and sufficient regulator of cardiac hypertrophy.
For example, inhibition of NFκB in cultured cardiomyocytes by expressing select dominant-
negative mutants reduced cardiac hypertrophy induced by reactive oxygen species, TNFα,
myotrophin, phenylephrine, endothelin-1, and angiotensin II [56–59]. The potential
importance of NFκB as a hypertrophic mediator in the adult heart was also recently
demonstrated. Gene-targeted mice lacking p50 protein showed reduced heart growth in
response to chronic angiotensin II infusion [60]. Moreover, transgenic mice that express a
NFκB “super-repressor” mutant showed attenuated hypertrophy following angiotensin II or
isoproterenol infusion [61]. This same super-repressor mutant also attenuated hypertrophy in
aortic-banded rats after adenoviral-mediated gene transfer [62]. Thus, NFκB is an important
central regulator of cardiac hypertrophy, although the downstream transcriptional targets
underlying this growth effect remains to be elucidated.
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5. MEF2
MEF2 was first identified as a muscle-enriched DNA binding activity from differentiated
myotubes [63]. MEF2 DNA binding activity consists of homo- and heterodimers of four
separate gene products in vertebrates, referred to as Mef2a-d [64,65]. MEF2 dimers bind to the
consensus sequence CTA(A/T)4TAG present in the 5' transcriptional regulatory regions of
most skeletal and cardiac muscle structural genes characterized to date [64,65]. In general,
Mef2a-d genes are widely expressed in the adult vertebrate organism, although a number of
specific regulatory functions have been identified in immune, skeletal muscle, cardiac muscle,
and neuronal cells [66–69]. MEF2 factors are related to another MADS-box containing
transcription factor known as SRF (SRF will be discussed separately) [70]. Similar to SRF,
members of the MEF2 family have been implicated in regulating inducible gene expression in
response to mitogen and/or stress stimulation.

The MEF2 family of transcription factors also function as essential regulators of cardiac
development. For example, targeted disruption of Mef2c in the mouse led to early embryonic
lethality associated with a cardiac looping defect, a general absence of the right ventricle, and
downregulation of a subset of cardiac-specific genes [69,71]. Loss of Mef2a by gene targeting
in the mouse led to myofiber disorganization at the cellular level coupled with right ventricular
dilation at the organ level. A majority of Mef2a null mice die between postnatal day 2 and 10,
possibly due to the disruption in cyto-skeleton architecture and/or conduction system defects
[72]. The small portion of Mef2a null mice that survive into adulthood show a mitochondrial
deficiency and possible conduction system defects [72]. While Mef2a and Mef2c nullizygous
mutations presented with a cardiovascular phenotype, final examination of MEF2’s function
in determining the cardiac cell lineage or its differentiation may be impossible given that all 4
MEF2 family members are expressed in the early heart and each would have to be inactivated
simultaneously. However, to partially address the issue of redundancy, transgenic mice were
generated that expressed a dominant-negative MEF2 mutant in the heart, which resulted in
early postnatal lethality associated with cardiomyocyte hypoplasia, ventricular wall thinning,
and chamber dilation [73]. Collectively, these various lines of evidence suggest that MEF2
function is likely required for the proper differentiation and postnatal development of the heart.

Many lines of evidence have also implicated MEF2 as an important regulator of hypertrophic
growth of the adult heart. For example, MEF2 DNA-binding activity is enhanced by pressure
and volume overload-induced cardiac hypertrophy [74,75]. Similarly, stretching of neonatal
cardiomyocytes in culture also increased MEF2 DNA-binding activity [76,77]. However, it
was not until recently that the ability of MEF2 to promote cardiac hypertrophy in vivo was
directly examined. Mild overexpression of MEF2A or MEF2C in the hearts of transgenic mice
(α-MHC promoter) induced ventricular chamber dilation and contractile dysfunction, and
predisposed the heart to greater hypertrophic growth following pressure overload stimulation.
However, isolated adult cardiomyocytes from MEF2A transgenic mice showed a predominant
increase in length as opposed to an increase in cross-sectional area, suggesting a phenotype of
cardiac dilation and addition of sarcomeres in series, suggesting that MEF2 overexpression did
not primarily drive “classic” hypertrophy [78]. Indeed, adenoviral-mediated overexpression of
MEF2A or MEF2C (or MEF2VP16) in cultured neonatal cardiomyocytes induced sarcomere
degeneration and focal elongation, further suggesting that MEF2 primarily promotes cardiac
dilation [78]. In conclusion, data from overexpression approaches indicate that MEF2 does not
directly program the adult hypertrophic growth program, but instead appears to regulate cardiac
dilation and the addition of sarcomeres in series.

A number of lines of indirect evidence further implicate MEF2 as an important regulator of
adult heart disease, and possibly the pathologic hypertrophic response. As will be discussed in
a subsequent section, class II HDACs are important regulators of gene expression that function
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in coordination with MEF2 in the regulation of muscle gene expression [79–82]. Indeed,
disruption of the genes encoding Hdac9 or Hdac5 predispose mice to pathological hypertrophy
[83,84]. One mechanism whereby MEF2 is regulated through class II HDACs involves
calcium/calmodulin-dependent protein kinase (CaMK) [79,85–87]. CaMK activation leads to
direct phosphorylation of select class II HDACs, facilitating their nuclear extrusion and
permitting MEF2 to activate muscle- or hypertrophic-specific gene expression [79,85]. In
support of this mechanism, overexpression of either CaMKIV or CaMKIIδ in the heart by
transgenesis produced a phenotype of hypertrophic cardiomyopathy, while genetic inhibition
of CaMKII reduced hypertrophy and improved cardiac function during infusion of
isoproterenol [88–90]. MEF2 was suggested to be a primary mediator of both class II HDAC-
and CaMK-dependent cardiac growth through the use of a MEF2-dependent reporter transgene
in the mouse. Use of this reporter suggested that MEF2 directly responded to activated
calcineurin, CaMK, and loss of Hdac9 in the heart, all conditions that promote cardiac
hypertrophy [84,88]. However, these results rely on the specificity of the MEF2-dependent
reporter, which harbors concatomers of an AT-rich element from the desmin regulatory region
placed upstream of a minimal heat shock promoter [91]. Unexpectedly, the same sequence was
shown to bind another transcription factor, transcription enhancer factor 1 (TEF1) [92], which
shows a similar expression pattern as MEF2 in the mouse embryo and becomes activated upon
hypertrophic stimulation [92–95]. Thus, while an intriguing hypothesis, it remains to be
determined if MEF2 functions as a primary downstream effector of class II HDAC- and CaMK-
dependent cardiac hypertrophy in vivo.

MEF2 factors are also activated by cardiac hypertrophic signaling effectors such as calcineurin
[96–99] and big-MAPK-1 (BMK1) [100,101]. For example, MEF2 is directly phosphorylated
by BMK1, which is downstream of and activated by MEK5 [100,101]. Expression of activated
MEK5 induced elongation of cardiac myocytes in culture, while activated MEK5 transgenic
mice showed addition of sarcomeres in series with a loss in myocyte cross-sectional area
[102]. Activated MEK5 transgenic mice also showed profound ventricular dilation, reduced
fractional shortening, and activation of hypertrophic gene expression. This overall phenotype
is remarkably similar to MEF2A/C transgenic mice and adMEF2A/C infected neonatal
myocytes, suggesting that the MEK5-BMK1 stress-activated signaling pathway may function,
in part, through MEF2 [100,101]. The conclusion that calcineurin functions upstream of MEF2
in striated muscle is another interesting hypothesis, although genetic intercrosses between
MEF2A/C transgenic mice with activated calcineurin transgenic mice did not reveal enhanced
cardiac hypertrophy or greater functional decompensation, suggesting an independent function
of each effector [78]. In conclusion, MEF2 is likely to function as an important modulator of
the cardiac disease response, especially dilated cardiomyopathy, but is probably not a direct
inducer of adult hypertrophy per se.

6. SRF
SRF was first identified as a transcriptional regulator that associated with the serum response
element (SRE) in the c-fos gene promoter to confer serum inducibility [103]. SRF is the
founding member of a diverse family of proteins that dimerize to bind DNA through a MADs
box domain, similar to MEF2 discussed above [70,104]. SRF binds to the consensus site CC
(AT)6GG, also known as CArG box, which is found in the promoters of numerous skeletal,
cardiac, and smooth muscle expressed genes, as well as immediate-early response genes [70,
105]. SRF mRNA is first detected in vertebrate embryos in cardiac, smooth, and skeletal muscle
lineages prior to neurulation, yet becomes more ubiquitously expressed thereafter [106,107].
Srf deficient mouse embryos show impaired gastrulation and lethality before mesoderm
formation, preventing elucidation of SRF function as a potential regulator of muscle lineage
specification or differentiation [108]. Subsequent studies with cardiac conditional gene-
targeted mice demonstrated that SRF was required for the proper embryonic development of
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the heart by regulating differentiation-specific gene expression involved in sarcomerogenesis
and cell survival [109,110]. Interestingly, tissue-specific deletion of Srf in skeletal muscle
resulted in perinatal lethality associated with severe tissue hypoplasia [111], collectively
suggesting that SRF is critical for regulating striated muscle-specific gene expression during
development.

Recent evidence has also emerged implicating SRF as a regulator of the hypertrophic growth
response in the adult heart. For example, cardiac-specific overexpression of SRF in transgenic
mice induced cardiac hypertrophy with collagen deposition [112]. In contrast, expression of a
SRF mutant protein in the heart caused severe postnatal chamber dilation, wall thinning and
premature death, suggesting a role in developmental hypertrophy [113]. Similarly, deletion of
Srf in the adult heart using a tamoxifen-inducible cardiac-specific Cre strategy promoted
progressive heart failure with reduced contractility [114]. At the cellular level, deletion of
Srf specifically in cardiomyocytes led to disorganization in the contractile apparatus, stress
fiber formation, and mislocalization and attenuated expression of sarcomeric proteins [114,
115]. Indeed, mRNA array analysis of Srf null cardiomyocytes revealed downregulation of
genes encoding sarcomeric proteins and other cardiac transcription factors [115]. Hence, SRF
expression is necessary for maintaining the basal “trophic” state of the heart, and likely for
inducing heart growth in response to stimulation. Consistent with this interpretation, SRF
activity was shown to be inhibited in the failing adult heart, which is typically characterized
by a loss of myocyte vigor [116,117].

SRF is a highly interactive transcription factor that associates with other known hypertrophic
regulatory factors that influence cellular growth. For example, SRF interacts with SMAD1/3,
Nkx2–5, and GATA4 to synergistically activate muscle gene expression [118–124]. All three
of these factors are discussed in different sections of this review as likely regulators of the
cardiac growth response. Myocardin, a SAP domain-containing nuclear factor, was also
recently identified as an important and highly potent SRF interacting partner in muscle [125,
126]. Myocardin-related transcription factors (MRTF) A and B have also been shown to
interact with SRF and stimulate transcriptional activity similar to myocardin [127].
Interestingly, myocardin expression is induced in cardiac hypertrophy, and its overexpression
in neonatal rat cardiomyocytes induces hypertrophy whereas a dominant-negative mutant of
myocardin blocks agonist-induced growth [128]. Lastly, SRF activity is also regulated by Hop,
a homeodomain-only protein that directly binds SRF where it functions as a repressor by
recruiting HDACs, thereby influencing cardiac growth and/or cellular proliferation [129–
131]. Taken together, SRF likely serves as a “platform’ for integrating the activity of multiple
co-factors in ultimately regulating or fine-tuning the transcriptional program for postnatal and
adult hypertrophic growth, as well as remodeling of the heart.

7. Smads
Smad transcription factors primarily function as inducible regulators of transforming growth
factor-β (TGF-β) superfamily member signals. Ligands within the TGF-β family induce
assembly of type I and type II receptors on the plasma membrane, which activate the type I
receptor causing direct phosphorylation of Smad proteins in the cytoplasm, leading to their
nuclear accumulation [132,133]. Smad transcription factors are divided into three subfamilies
based on their structure and function: (1) Receptor-Smads (R-Smad), which includes Smad1,
2, 3, 5 and 8, (2) Cofactor-Smad (Co-Smad), which includes Smad4 that associates with R-
Smads to facilitate transcriptional activation, and (3) Inhibitory-Smads (I-Smad), which
includes Smad6 and 7 that inhibit activation of R-Smad/Co-Smad at multiple levels [132,
133]. In general, Smad2/3 are direct substrates of TGF-β through the TGF-β and activin
receptors (TβRI and ActRIB), while Smad1/5/8 are effectors of bone morphogenic protein
(BMP) and related ligands through the ALK receptors [132,133].
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Smad activation downstream of TGF-β/activin/BMPs (and related ligands) regulate
transcription during nearly all stages of vertebrate development, including the specification,
differentiation and morphogenesis of diverse tissues [134]. During cardiac development,
Smads have been shown to regulate endocardial cushion formation, valve morphogenesis and
outflow tract formation downstream of TGF-β and BMP [135,136]. BMPs are also important
inducers of the cardiac cell lineage, consistent with its role in inducing expression of the
transcription factor Nkx2–5 [137]. For example, cardiomyocyte differentiation in P19CL6
embryonic “stem-like” cells was mediated by Smad1/4 [138]. Gene targeting of Smad6 in mice
revealed several abnormalities in the heart including hyperplasia of cells in the endocardial
cushions and valves, as well as outflow tract septation defects [139]. Finally, Smad proteins
were further implicated in regulating the cardiac cell lineage by the observation that GATA4
and Smad proteins regulate expression of the Nkx2–5 cardiac enhancer in vivo [140]

In the adult, Smad proteins are critically involved in multiple aspects of pathophysiology,
including the regulation of cardiac fibrosis. Elevated expression of TGF-β and Smad2, 3 and
4 in the heart was reported after myocardial infarction and in response to cardiomyopathy
[141–146]. Phosphorylation of Smad2 in cardiac fibroblasts was associated with fibrosis and
scar formation, an observation that is consistent with the ability of Smad7 (I-Smad) to inhibit
collagen synthesis in the same cells when overexpressed [142,146,147]. Moreover, reduction
in TGF-β levels and Smad2 activity correlated with decreased fibrosis after angiotensin II
receptor stimulation [142]. Finally, repression of TGF-β activity through decoy receptor over-
expression, or loss of one Tgf-β1 allele (heterozygous mice), decreased interstitial fibrosis after
myocardial infarction and aging associated fibrosis, respectively [148,149]. Collectively, TGF-
β-Smad activity positively regulates cardiac fibrosis, which is a major contributing factor in
adult heart disease and functional impairment.

In addition to the fibrotic effects associated with TGF-β-Smad signaling in the heart, recent
studies have suggested that Smad proteins can directly regulate the development of
cardiomyocyte hypertrophy and progression to heart failure. Indeed, Smad4 deficient mice
developed basal cardiac hypertrophy that progressed to heart failure, manifested by contractile
dysfunction, adverse remodeling and death [150]. These results suggest that Smad activation
normally serves an anti-hypertropic regulatory function in the adult heart. In support of this
hypothesis, the TGF-β family member growth-differentiation factor 15 (GDF-15) was shown
to also function as an anti-hypertrophic regulatory factor in the adult heart in association with
Smad2/3 activation [151]. Indeed, overexpression of Smad2 antagonized agonist-induced
cardiomyocyte hypertrophy in culture [151]. While these results support an anti-hypertrophic
role for Smad activation in cardiac myocytes, TGF-β itself is thought to be a pro-hypertrophic
cytokine in the heart. For example, deletion of Tgf-β1 in the mouse reduced angiotensin II-
induced hypertrophy, although the dependency of Smads as transducers of this effect was not
analyzed [152]. Transgenic mice overexpressing TGF-β1 also showed cardiac hypertrophy,
supporting a prohypertrophic role, but once again, this effect was not correlated with Smad
activation and may likely occur through Smad independent pathways [153]. Independent of
Smad proteins, TGF-β can also elicit signals through the MAPK cascade that includes TGF-
β activated kinase 1 (TAK1). Interestingly, TAK1 transgenic mice show cardiac hypertrophy
[154]. Thus, diverse members of the TGF-β superfamily elicit different signaling responses in
the adult myocardium, although activation of Smad proteins downstream of specific ligands
appears to function in an anti-hypertrophic capacity.

8. Nkx2–5
The homeobox transcription factor Nkx2–5 (also known as Csx), which binds the DNA
consensus sites 5′-TNAAGTG-3′ and 5′-TTAATT-3′, is a critical regulator of cardiac gene
expression and heart development [155,156]. Nkx2–5 is highly expressed in early heart
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progenitor cells as they commit to the cardiac lineage during embryogenesis, where it continues
to be expressed in the heart throughout adulthood [155–158]. Three independent Nkx2–5-
deficient mouse models were generated that showed a phenotype of uniform lethality between
E9–10 associated with arrested heart tube looping morphogenesis and growth retardation
[159–161]. While Nkx2–5-deficient embryos contained committed and differentiated
cardiomyocytes, the expression of several prominent cardiac structural and transcriptional
regulatory genes was downregulated [130,159,160,162–164]. Nkx2–5 expression is also
critical for the proper development of the conduction system, as heterozygous gene-targeted
mice or mice with a heart-specific deletion showed prominent defects [165,166]. Indeed,
humans with mutations in Nkx2–5 have congenital abnormalities characterized by aberrant
ventricular septation and atrioventricular node and conduction anomalies [167].

In contrast to the well-established role that Nkx2–5 plays during embryogenesis, its functional
role in the postnatal and adult heart is only partially understood. Nkx2–5 has been hypothesized
to participate in the cardiac hypertrophic response given the observation that its expression is
upregulated during pressure overload or stress stimulation. For example, banding of the
pulmonary artery in a feline model of right-ventricular pressure overload, or phenylephrine-
and isoproterenol-mediated hypertrophic growth each upregulated Nkx2–5 expression [168,
169]. In contrast to these associative data, transgenic mice overexpressing Nkx2–5 under the
control of the cytomegalovirus enhancer/chicken β-actin promoter (which expresses in the
heart, among other tissues) exhibited normal-sized hearts, despite increased expression of
hypertrophic marker genes [170]. The simplest interpretation of these data is that Nkx2–5 can
regulate a subset of hypertrophic marker and differentiation-specific genes in the heart, but
such selective regulation is not sufficient to induce bona fide hypertrophic growth. Despite this
conclusion, Nkx2–5 could still function as a modulator of the cardiac hypertrophic response
through its known ability to interact with other cardiac transcription factors such as GATA4
[120,171–173] and SRF [119]. Indeed, Nkx2–5 interacts with the newly identified cofactor
calmodulin binding transactivator (CAMTA), which itself promotes cardiomyocyte
hypertrophy and activates ANF gene expression [174]. Collectively, these various reports
support the hypothesis that Nkx2–5 is a critical regulator of cardiac-specific gene expression,
although it may only function as a modulator of the adult cardiac hypertrophic response.

Evidence has also emerged that Nkx2–5 can function as a survival factor in the heart. For
example, expression of a dominant-negative human Nkx2–5 mutant in the heart under the
control of α-MHC promoter, induced cardiac dysfunction and degeneration [175].
Furthermore, injection of doxorubicin promoted more severe cardiac dysfunction and increased
cardiomyocyte apoptosis in the presence of the dominant negative Nkx2–5-encoding transgene
compared with control mice, suggesting that Nkx2–5 expression is cardioprotective [175].
However, the putative cardioprotective function of Nkx2–5 was disputed by the observation
that simple overexpression of wildtype murine Nkx2–5 in the heart (α-MHC promoter) led to
organ failure by 4 months of age with conduction abnormalities, suggesting that too much
Nkx2–5 could also be of detriment [176]. Hence, too much or too little Nkx2–5 activity is
detrimental to the proper function of the heart, especially for establishing and maintaining
integrity of the conduction system, although likely for mechanistically distinct reasons.

9. Additional Transcriptional Regulators: Hand/Egr-1/CREB
Hand2 (dHAND) and Hand1 (eHAND) are basic helix-loop-helix transcription factors that
bind E-box DNA sequence elements (5′-CANNTG-3′) and have important roles in cardiac and
extraembryonic development [177,178]. The expression of Hand1 is predominantly expressed
in the left ventricle and is excluded from the right ventricle. Analysis of Hand1-null mice
defined an essential role in regulating myocardial differentiation of the left ventricle [179–
181]. In contrast, the expression of Hand2 is restricted to the right ventricle, and development
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of the right ventricle is selectively compromised in Hand2-null embryos [182]. With respect
to the adult heart, very little direct evidence exists to implicate a role for Hand1 or Hand2 in
acquired pathological conditions. Correlative evidence has shown that Hand1, but not Hand2,
is downregulated in cardiomyopathic hearts from human patients [183]. Likewise,
phenylephrine-induced hypertrophy in the mouse resulted in a chamber-specific
downregulation of Hand1 and Hand2 [184]. However, in a rat model of pressure overload,
Hand2 was reported to be upregulated in the right ventricle [185]. Thus, changes in myocardial
Hand activity may regulate/modulate adult heart disease responses, although direct
experimental evidence is needed to support or refute this possibility.

Early growth response-1 (Egr-1) is a Cys2-His2 zinc finger domain-containing transcription
factor that was identified as an immediate early response gene [186]. Depending on the tissue
or cell type, Egr-1 can function in a growth inhibitory [187,188] or promoting capacity [189].
Egr-1 can bind either a GC-rich element (TGCGGGGGCG) that overlaps with the binding site
for Sp1, or an element comprised of the sequence TCCTCCTCCTCC. These sequence
elements are present in more than 30 genes including angiotensin I converting enzyme, TNF-
α, α-MHC, and Egr-1 itself [190]. Egr-1 expression is highest in brain and heart tissue, and
Egr-1 overexpression can promote differentiation of P19 embryonic “stem-like” cells to the
cardiac and neuronal lineages in vitro [191]. With respect to the adult heart, Egr-1 has been
reported to regulate cardiac hypertrophy. Indeed, Egr-1−/− mice showed reduced cardiac
hypertrophy to isoproterenol and phenylephrine stimulation [192]. This result is supported by
the observation that NGF1-A binding protein 1 (Nab1) overexpressing transgenic mice showed
inhibited pathologic cardiac hypertrophy, where NGF1-A functions by directly inhibiting
Egr-1 [193]. Thus, Egr-1 functions as an important transcriptional mediator of cardiac
hypertrophy, adding yet another inducible factor to the array of adult cardiac growth regulators.

cAMP-response element (CRE) binding protein (CREB) is a 43 kDa basic leucine zipper (bZip)
transcription factor that binds to the consensus sequence of TGANNTCA in association with
other members of the CREB/ATF and AP-1 family [194–198]. CREB plays a critical role in
regulating gene expression in response to a variety of extracellular signals [199,200]. For
example, phosphorylation of CREB on Ser133 facilitates its interaction with the CREB-binding
protein (CBP), which in turn activates transcription [201–203]. CREB phosphorylation and
activation can be mediated by a variety of intracellular signaling pathways including protein
kinase A [204], calmodulin-dependent kinase [205], cyclic GMP signaling [206], and
ribosomal S6 kinase 2 in response to activation of Ras [207]. Previous studies have suggested
that CREB might be an important regulator of cardiac gene expression. The Ser133-
phosphorylated and transcriptionally active form of CREB is present in chicken [208], rat
[209], and human cardiomyocytes [210]. Recent studies have also suggested that the
transcriptional activity of CREB is important for myogenesis [211] and cardiomyocyte gene
regulation [212]. With respect to cardiac hypertrophy, expression of a dominant-negative
CREB mutant in the heart induced a severe dilated cardiomyopathy, suggesting a phenotype
of impaired cardiac hypertrophy [212]. Consistent with this interpretation, overexpression of
the related family member, CREM, in the hearts of transgenic mice directly induced cardiac
hypertrophy [213]. Thus, CREB and/or related family members may also function as important
signal-responsive transcriptional regulators of adult cardiac disease states.

10. Chromatin regulation: Acetylases and HDACs
Chromatin describes the packaging of DNA in eukaryotic cells whereby nucleosomes are
generated in a phased array consisting of 146 bp of DNA wrapped around an octamer of four
core histones, (H3/H4 tetramer and two H2A/H2B dimers), which in turn can be assembled
into a more compact configuration to limit DNA access to transcription factors, thus altering
gene expression [214]. Typically, inactive genetic loci are tightly compacted in histone arrays,
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whereas actively transcribed regions are loosely associated with histones in an unphased array,
a process that is directly regulated by postranslational modification of histone proteins [215].
Acetylation is probably the best characterized of these modifications and is catalyzed by histone
acetyl transferases (HATs), which tends to favor a loose chromatin configuration and enhanced
transcriptional activity [214,215]. In contrast, HDACs promote the condensation of chromatin
and the inactivation of transcription. Mechanistically, HDACs and HATs are indirectly tethered
to DNA promotor sites in target genes through transcription factor interactions. The HATs that
have been extensively studied with respect to cardiac gene expression regulation are p300 and
CBP (CREB binding protein), which bind and confer activation potential upon multiple
cardiac-expressed transcription factors [9,216]. HDACs are divided into three subclasses,
although class I or II have been the most extensively characterized in mammalian cells. Class
I HDACs (HDAC1, 2, 3 and 8) consist primarily of a catalytic domain, are ubiquitously
expressed and found almost exclusively in the nucleus. Class II HDACs (HDAC4, 5, 6, 7, 9,
10) are expressed in a more tissue specific manner and can be exported from the nucleus upon
phosphorylation by signal responsive HDAC kinases [215,217].

With respect to cardiac development, loss of the HAT p300 was associated with early
embryonic lethality and defective heart development with reduced structural gene expression
[218]. With respect to HDACs, mice homozygous null for Hdac5/9 have a high prevalence of
embryonic lethality associated with a thinned myocardium and ventricular septal defects [83].
Hdac4/7 double null embryos are also lethal, although the single nulls are viable [9]. Given
the importance of both HATs and HDACs in regulating cardiac development and differentiated
gene expression, it is not surprising that both also control cardiac hypertrophy in the adult heart.
For example, transgenic mice with p300 overexpression develop cardiac hypertrophy, or show
greater ventricular remodeling after injury [219,220]. In cultured cardiomyocytes,
overexpression of p300/CBP by transfection promoted cellular growth while antisense or
dominant negative p300/CBP attenuated agonist-induced growth [221]. Thus, p300/CBP
activity are not only important for regulating differentiated gene expression in the heart, but
they appear to function as necessary and sufficient regulators of hypertrophic growth itself,
likely by facilitating the functional potency of key cardiac-expressed transcription factors.

Chromatin remodeling events mediated by class II HDACs are equally important in regulating
cardiac hypertrophy, especially since many class II HDACs receive input from various signal
transduction pathways through phosphorylation. For example, protein kinase D, PKC and
CaMK have been identified as critical HDAC kinases that are activated by prohypertrophic
signals, resulting in phosphorylation and subsequent nuclear export of class II HDACs [217].
Mechanistically, class II HDACs are recruited to critical genes that are involved in the
regulation of muscle growth through physical interactions with transcription factors such as
MEF2 [79–81]. In vivo, hypertrophy induced by activated calcineurin or pressure overload was
associated with enhanced serine phosphorylation of HDAC5 and HDAC9 [84]. Moreover,
expression of constitutively nuclear mutants of HDAC5 and HDAC9 inhibited agonist-induced
hypertrophic growth in cultured neonatal cardiomyocytes [84]. Hdac5 and Hdac9 gene-deleted
mice also showed spontaneous cardiac hypertrophy with age and enhanced hypertrophy in
response to pathological stimuli [83,84].

Class I HDACs also appear to be critically important in regulating cardiac hypertrophy,
although through a different mechanism compared with class II HDACs. For example,
pharmacologic inhibition of class I HDACs significantly reduced cardiac hypertrophy after 2
weeks of pressure overload in the mouse [222]. Even the unselective HDAC inhibitors
(inhibiting class I and II) trichostatin A and valproic acid reduced myocardial hypertrophy after
angiotensin II or isoproterenol infusion, and in pressure overloaded mice and rats [222].
Although inhibition of class II HDACs should promote hypertrophy, the overall effect
associated with global inhibition likely reflects the fact that class I HDACs predominate
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compared with class II HDACs. Thus, both class I and II HDACs are critically tied to the
cardiac hypertrophic response in the adult.

11. Conclusions and future directions
The adult cardiac hypertrophic growth program is a complex biologic process that involves
the expression of many genes, a group of which represent genes with important developmental
functions. Thus, there is a partial conservation in function whereby genes that promote
embryonic and fetal heart growth are re-employed in the adult heart in response to disease
stimuli. This paradigm is perhaps best characterized with respect to the numerous cardiac-
expressed transcription factors that were discussed herein. Nearly all of the transcriptional
regulators/modulators that were reviewed have dichotomous functions as both developmental
control factors, as well as adaptive disease factors in the adult heart. In the future it will be
important to use such knowledge as a means of adopting new therapeutic treatment strategies
for adult heart disease, such as anti-hypertrophic agents directed at select cardiac transcription
factors, or gene therapeutic strategies in which combinations of cardiac transcriptional
regulators are used to regenerate areas of damaged human myocardium.
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