
Models of human visual attention should consider trial-by-trial
variability in preparatory neural signals.

Chad M. Sylvester1,2, Giovanni d’Avossa2, and Maurizio Corbetta1,2,3

1 Department of Radiology, Washington University School of Medicine

2 Department of Neurology, Washington University School of Medicine

3 Department of Anatomy & Neurobiology, Washington University School of Medicine

Several models of attention explain how a priori knowledge about stimulus characteristics
results in modulations of neural activity at the time of stimulus presentation and, in turn,
enhanced perception of the stimulus (e.g., Desimone & Duncan, 1995; Tsotsos et al., 1995).
There has been little focus, however, on how neural signals preceding stimulus presentation
encode this a priori information and how these signals affect perception. We argue that a
significant portion of behavioral variability on psychophysical tasks may be explained by
variability in the neural signals preceding, rather than following, the sensory target. Modelers
should consider this important source of behavioral variability.

Currently, variability in the observer 's percept of a visual stimulus is thought to reflect
variability in the neural signals evoked by that stimulus – due to either noise in the stimulus
itself (‘external noise’) or noise inherent to the evoked neural signals (‘internal noise’). Many
single unit studies have addressed the statistical nature of the internal noise affecting visually
evoked responses and how it affects the clarity of the internal representation of the stimulus
(e.g., Britten, Shadlen, Newsome, & Movshon, 1992; Newsome, Britten, & Movshon, 1989).
Because of the Poisson-like distribution of spike counts over repeated presentations of the same
stimulus, the information present in neural signals is proportional to the mean neural signal.
In Figure 1A, we re-plot data from Heuer and Britten (2004) illustrating the relation between
average modulations and information content of stimulus-triggered spike trains. The blue line
represents average spike rates in a single MST neuron following presentation of a motion
stimulus, while the red line portrays the ability of an ideal observer to discriminate the direction
of motion at each time point from the activity of the MST neuron. Clearly, the timecourse of
signals carrying sensory information follows the mean signal under conditions in which internal
noise limits perception. It has been suggested that attention can reduce the effects of internal
noise by increasing the gain of the mean neural response (Hillyard, Vogel, & Luck, 1998;
Reynolds, Pasternak, & Desimone, 2000).

Another source of behavioral variability, less commonly considered, may arise from
preparatory processes preceding target presentation. Under conditions of low stimulus
visibility, for example, human subjects generate preparatory signals in visual cortex, and
variability in these preparatory signals at the time of target presentation predicts accuracy of
stimulus detection (Ress, Backus, & Heeger, 2000)1. Preparatory signals also seem to be
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modulated by spatial attention (Corbetta, Kincade, & Shulman, 2002; Jack, Shulman, Snyder,
McAvoy, & Corbetta, 2006; Kastner, Pinsk, De Weerd, Desimone, & Ungerleider, 1999;
Serences, Yantis, Culberson, & Awh, 2004). Preliminary evidence suggests that one function
of preparatory signals may be to reduce external noise (Serences et al., 2004). These
observations raise the intriguing possibility that variability in preparatory processes may be
related to variability in stimulus-evoked signals.

To understand how preparatory signals influence perception, we highlight specific results from
recent neuroimaging studies (Pessoa, Gutierrez, Bandettini, & Ungerleider, 2002; Sapir,
d'Avossa, McAvoy, Shulman, & Corbetta, 2005; Weissman, Roberts, Visscher, & Woldorff,
2006). In each case, the timecourse of preparatory signals affecting behavioral performance
did not follow the mean preparatory response, suggesting that performance related variability
in preparatory signals does not resemble the variability of stimulus-evoked responses. In Figure
1, we re-plot data from two neuroimaging studies during epochs between the presentation of
a sample stimulus or an attentional cue and visual targets. Each panel displays the pre-stimulus
mean BOLD response timecourse (blue lines), and the timecourse that is predictive of
behavioral performance (red lines). Pessoa et al. (2002) (Figure 1B) showed that variability in
preparatory activity in a right intraparietal sulcus region predicted, trial-by-trial, whether
subjects would correctly match a memorized sample to an upcoming test display. Sapir et al.
(2005) (Figure 1C) showed that preparatory activity in MT following a spatial foveal cue
predicted on a trial-by-trial basis whether subjects would correctly identify the direction of
motion of a test stimulus at an attended or unattended location. Finally, Weissman et al.
(2006) showed that variability in pre-trial neural signals in the anterior cingulate cortex,
predicted subjects’ reaction time on a letter discrimination task.

These studies suggest that variations in endogenous signals (memory, attention) affect trial-
by-trial perceptual performance. From where is this variability arising? Since the timecourses
of endogenous signals predictive of behavior and mean signals are not identical, the possibility
that variability is a by-product of noisy neural transmission of information seems unlikely. We
offer three possible explanations. First, given its low spatial resolution, the BOLD signal may
reflect several processes (neural populations), of which only a subset is relevant to behavior.
Hence, the predictive components of the BOLD signal would reflect only behaviorally relevant
processes (neural signals), whereas the mean signal would represent all task processes.
Interestingly, Sapir et al. (2005) found that predictive and mean BOLD signals tend to segregate
spatially across the brain (Figure 1D), buttressing the notion of independence between mean
and predictive signals.

Second, variability may result from patterned ongoing neural signals unrelated to the specific
task periods, which nevertheless affect task behavior. Ongoing intrinsic activity in visual cortex
has been shown to re-play patterns of activity evoked by previously seen stimuli (Kenet,
Bibitchkov, Tsodyks, Grinvald, & Arieli, 2003); it is plausible that the state of this activity
immediately preceding stimulus presentation could affect behavior. Recently, coherent
intrinsic BOLD activity across brain regions has been found to recapitulate patterns of task-
evoked activation (Biswal, Yetkin, Haughton, & Hyde, 1995; Fox et al., 2005). Others have
speculated that this intrinsic synchrony may be partly responsible for the behavioral and neural
variability observed during active tasks (Fox, Snyder, Zacks, & Raichle, 2006).

A third possibility is that this variability reflects the result of subjects changing strategy, trial-
by-trial, to optimize performance. Sapir et al. (2005), in fact, argued that preparatory signals

1In this experiment preparatory signals were isolated presenting targets only some trials. However, as preparatory and target-related
signals were not temporally separated, it is still possible that the observed neural variability reflects accumulation of sensory information
at the time of target detection.
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related to performance reflected the variable use of a probabilistic cue. It should be noted that
ideal performance in tasks whose demands are constant would be achieved by using a strategy
that does not change from trial to trial. The presence of variable signals would suggest that
humans, under some circumstances, use sub-optimal strategies. Variable preparatory signals
may accordingly provide insights into how observers update internal representations of a priori
information.

In conclusion, we reviewed recent evidence that variability in preparatory neural signals may
significantly influence trial-by-trial behavioral performance on visual psychophysical tasks.
The evidence suggests a departure from the standard view that perception is limited exclusively
by variability in neural signals following stimulus presentation. Rather processes preceding
stimulus presentation may make a substantial contribution to trial-to-trial variability and
therefore accuracy of perception. Models of human visual attention should consider the reasons
why preparatory signals are variable.
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Figure 1.
Timecourses of mean activity and the component of mean activity that varies with behavior
(A-C). In each panel, blue lines represent average activity modulation over all trials (A) or over
all correct trials (B,C) in the epoch of interest. Red lines indicate the component of this signal
that varied with performance, as measured by the ability of the signal at each time point to
predict trial accuracy. All data were normalized to allow mean and predictive timecourses to
be drawn on the same plots. (A) Single-unit recordings from MST following presentation of a
motion stimulus (Heuer & Britten, 2004). Note that in this stimulus-evoked activity, the
predictive component closely follows the mean signal. (B) BOLD activity in the right
intraparietal sulcus following presentation of a visual stimulus to be held in working memory
(Pessoa et al., 2002). (C) BOLD activity in MT following a spatial cue indicating the probable
location of an upcoming motion stimulus (Sapir et al., 2005). Note that in these preparatory
signals (B,C) the predictive component of the signal differs from the mean signal. Panel D
displays a map highlighting brain regions with consistent preparatory signals averaged over
trials (blue) and regions whose preparatory activity was most predictive of performance (red)
(Sapir et al., 2005). Purple indicates overlap. Note the spatial segregation between these signals.
Figure 1A modified, with permission, from figures 5A and 9 from Heuer and Britten (2005).
Figure 1B modified, with permission, from figures 3B and 4 from Pessoa et al. (2002). Figure
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1C modified, with permission, from figure 5A from Sapir et al. (2005). Figure 1D modified,
with permission, from figure 2C from Sapir et al. (2005).
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