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Cells must respond to environmental changes to remain viable, yet
the information they receive is often noisy. Through a biochemical
implementation of Bayes’s rule, we show that genetic networks
can act as inference modules, inferring from intracellular condi-
tions the likely state of the extracellular environment and regu-
lating gene expression appropriately. By considering a two-state
environment, either poor or rich in nutrients, we show that
promoter occupancy is proportional to the (posterior) probability
of the high nutrient state given current intracellular information.
We demonstrate that single-gene networks inferring and respond-
ing to a high environmental state infer best when negatively
controlled, and those inferring and responding to a low environ-
mental state infer best when positively controlled. Our interpre-
tation is supported by experimental data from the lac operon and
should provide a basis for both understanding more complex
cellular decision-making and designing synthetic inference circuits.

biochemical networks � systems biology � Bayesian inference

For cells to interact with their environment, the DNA and
regulatory machinery, which are intracellular, require infor-

mation from the cell surface. This information is conveyed
through gene and protein networks and is transferred via
biochemical reactions that are potentially significantly stochastic
(1–4). Stochastic f luctuations will undermine both signal detec-
tion and transduction. Cells are therefore confronted with the
task of predicting the state of the extracellular environment from
noisy and potentially unreliable intracellular signals. For exam-
ple, a bacterium must decide from intracellular levels of a
nutrient whether or not the nutrient is sufficiently abundant
extracellularly to express the appropriate catabolic enzymes.
Similarly, a smooth muscle cell must decide from concentrations
of second messengers whether or not extracellular hormone
levels are high enough to warrant contracting.

Here, we consider if, and how, it is possible for biochemical
networks to correctly infer properties of the extracellular envi-
ronment based on noisy, intracellular signals. Suppose that the
cell should respond under high concentrations of an extracellular
molecule. Suppose further that the concentration of an intra-
cellular signaling molecule is related to the concentration of the
extracellular molecule through a signal transduction mechanism.
A simple inference network could establish a concentration
threshold for the intracellular molecule. Only if the molecule is
above threshold is the extracellular concentration judged to be
high enough for a cellular response. This network performs
poorly, however, in fluctuating extracellular and intracellular
environments. First, f luctuations lead to input molecules cross-
ing threshold even when the state of the environment is un-
changed. Second, a threshold scheme cannot specify the degree
of certainty in the inference, which may be important for the
ultimate response. For example, a bacterium may express a
catabolic operon once the degree of certainty in high extracel-
lular levels of a particular nutrient reaches 40%, but it may only
shut down other catabolic operons once the degree of certainty
is larger, say 80%.

The method of Bayesian inference both accounts for fluctu-
ations and gives a degree of uncertainty in predictions (5). We
postulate that the cellular regulatory machinery may have
evolved to perform Bayesian inference on some intracellular
inputs. Typically, a cellular decision has two levels: first, pre-
dicting the state of the environment; second, choosing the
appropriate response. At this second level, the expected costs
must be compared with expected benefits (6). Although Bayes-
ian theory can handle both problems, we focus here on the first:
classification of the local environment.

As an example, consider a bacterium with a nutrient scaveng-
ing operon that encodes enzymes to import and catabolize a
sugar (Fig. 1 A and B). Suppose the environment can be in one
of two states: a high or a low sugar state, for example, the high-
and low-lactose environments of the small intestine (7). The
intracellular concentration of the sugar depends on the extra-
cellular state, although in a stochastic fashion. To optimize
growth, the bacterium must predict the extracellular state from
intracellular sugar because expressing the operon involves a
significant metabolic cost (6, 8). Let S be the intracellular sugar
level at a particular time. We denote the probability (i.e., the
fraction of time) that there are S intracellular sugar molecules
given that the environment is in the low sugar state as P(S�low).
Similarly, we denote the probability that there is S intracellular
sugar molecules given that the environment is in the high sugar
state by P(S�high). If f luctuations are negligible, these two
distributions will be sharply peaked functions of S, and they will
be broader as fluctuations become significant.

The bacterium must determine the probability that its extra-
cellular environment is in a high sugar state based on levels of
intracellular sugar. This probability is denoted P(high�S). A
Bayesian approach assumes that some information about the
long-term probable states of the environment is known. This
information could be simply that the environment is expected to
be in one of two states, either a low or a high sugar state, and that
each state is a priori equally likely. In one particular environment
(for example, the soil), though, a low sugar state may occur more
often on the long term. The a priori probability for this state will
then be higher. Such a priori, or prior, probabilities are denoted
P(high) and P(low). Once sugar enters the cell, the a priori
probabilities are updated based on the levels of sugar detected.
The more intracellular sugar, the larger the predicted probability
of the environment being in the high sugar state (and the smaller
the corresponding probability of the low sugar state). This a
posteriori probability of the high state is P(high�S). It is referred
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to as the posterior (predicted) probability of the high state given
intracellular sugar S.

Bayes’s rule states explicitly how the prior probabilities are
correctly updated to their posterior values for the levels of sugar
detected (9) (see Materials and Methods):

P(high�S) �
P(S �high) P(high)

P(S �low) P(low) � P(S �high) P(high)
. [1]

Intuitively, the more likely a particular intracellular S is in the
high extracellular state compared with the low extracellular state
[the greater P(S�high) is compared with P(S�low)], the higher the
posterior probability of a high state environment. For simplicity,
we will assume that the environment is a priori equally likely to
be in either state: P(high) � P(low) � 1/2. The prior probabilities
then play no mathematical role in Eq. 1. Often the posterior
distribution, P(high�S), is a sigmoidal curve. Fig. 1C shows two
distributions for numbers of sugar molecules: a distribution for
a low extracellular sugar state (in blue) and a distribution for a
high extracellular sugar state (in red). The corresponding pos-
terior probability curve is shown in green in Fig. 1C. If the
intracellular sugar level, S, is low, there is a high predicted
probability that the extracellular state is low, with the converse
holding for high intracellular sugar levels. In an intermediate
range of S, lying in the overlap between the two state distribu-
tions, P(high�S) switches from low probability to high probabil-
ity. When fluctuations are more significant and the overlap
between the two distributions is greater, the transition is more
gradual (Fig. 1D). The posterior probability need not always be
sigmoidal: Fig. 1E shows a long-tailed distribution for the low
sugar state that results in a nonmonotonic posterior curve.

We will argue that a single gene can make probabilistic
inferences about extracellular states through a biochemical
implementation of Bayes’s rule. By tuning the kinetic rates of the
system, the promoter efficacy, the fraction of time the promoter
is capable of initiating transcription, can match the posterior
probability of high extracellular sugar. Consider a negatively
controlled operon. We view the repressors controlling the gene

as detectors that monitor intracellular sugar levels. Repressors
thermally flip back and forth between two allosteric forms (10):
one DNA binding and the other non-DNA binding. As each
repressor diffuses in the cytosol, it samples intracellular sugar. At
low sugar levels, the DNA binding form of the repressor is stable,
and the operon is not expressed. At high sugar levels, the
non-DNA binding form is stable, leading to expression. Repres-
sor binding sites on the promoter ‘‘read’’ the allosteric form of
cytosolic repressors and control transcription. Promoter efficacy
is therefore a readout of the number of non-DNA binding
repressors, which, in turn, are a readout of sugar levels.

Cis-Regulatory Regions as Inference Modules
We tested the ability of different regulatory mechanisms to
classify a two-state environment. We considered 18 different
networks (Fig. 2 A–C): regulation can be positive or negative,
transcription factor can allosterically bind either one, two, or
four sugar molecules, and promoters can be one of three
different types. Network input is the number of sugar molecules,
which range from zero to �2,000 times the number of transcrip-
tion factors. Network output is promoter efficacy (i.e., promoter
bound by an activator for positive control and free of repressor
for negative control). Rather than specialize to particular sugar
distributions for the high and the low states, we generated 50
different pairs of lognormal distributions for S. Each pair
corresponded to a different inference problem and had a dif-
ferent, but always sigmoidal, posterior probability. We fit the
kinetic rates of each network to minimize the squared error
between promoter efficacy and P(high�S) as a function of S for
each of the 50 posteriors (see Materials and Methods). A network
that fits this collection of posterior curves well has a network
architecture able to solve a variety of (two state) inference
problems; it is an inference module.

Networks with higher cooperativity, either through the ability
of transcription factor to allosterically bind sugar or cooperative
binding of transcription factors to DNA, perform best (Fig. 2 D
and E). A genetic inference system with low cooperativity is
unable to generate a promoter efficacy curve that switches

Fig. 1. A two-state classifier problem and its Bayesian solution, the posterior probability. A cell must infer from intracellular concentrations of a nutrient or
signaling molecule (green circles) whether the molecule is in high or low concentrations in the extracellular environment. (A and B) Fluctuations in the
environment and molecule detection and transport can lead to similar intracellular concentrations of the molecule for different extracellular conditions. The
cellular decision-making machinery, shown as a simple genetic network, must decide from intracellular information the probable state of the extracellular
environment. (C) Two distributions for intracellular numbers of a sugar molecule: the low sugar state is in blue, the high sugar state is in red. For an intracellular
sugar level S, the green curve is the posterior (predicted) probability that the extracellular state is the high sugar state, P(high�S). (D) For two intracellular
distributions that overlap substantially, the posterior probability for the high sugar state transitions gradually from low to high values. (E) The posterior
probability, P(high�S), need not be monotonic. The low sugar state is more probable at both low and high intracellular sugar, and P(high�S) goes through a
maximum.
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sharply with S (10). These models thus perform poorly on those
inference problems with distinct sugar distributions and there-
fore strongly sigmoidal posterior probabilities (compare the
posterior probabilities for Fig. 1 C and D).

Less intuitively, negatively controlled inference systems per-
form significantly better than positively controlled systems (Fig.
2F). Positively controlled systems are less able to exploit coop-
erativity. Activators should bind DNA as sugar levels rise.
Consequently, Kb �� Kn in Fig. 2 A. For low sugar, the posterior
probability is close to zero (Fig. 1 C and D), and no activators at
all should bind DNA. Therefore Kb must be small, and the more
activators present, the smaller Kb must be. As Kb �� Kn, both Kb

and Kn are small: there is weak sugar binding, and cooperative
binding occurs only at high sugar levels. Contrarily, in a nega-
tively controlled system, Kn �� Kb, so that sugar lifts repressor
off DNA. For low sugar, just one repressor must bind DNA to
maintain a low promoter efficacy. More repressors allow Kb to
be smaller, giving greater, not less, f lexibility in Kn. Altering Kt,
the equilibrium between the DNA and non-DNA binding forms
in the absence of sugar and can partly offset the inherent
frustration in the activator system, but not completely (Fig. 2F).
Therefore, negatively controlled promoters are best able to tune
promoter efficacy to track P(high�S).

Although negatively controlled systems can better match their
promoter efficacy to P(high�S) than positively controlled sys-
tems, the opposite holds for matching P(low�S). This posterior
probability satisfies P(low�S) � 1 � P(high�S) and so has the
opposite behavior to P(high�S). The argument given above is
reversed. Thus, for systems that respond to a low state of the
environment, positive control gives the best inference.

Fig. 2 demonstrates that model genetic networks can perform
inference, with equilibrium promoter efficacy tracking posterior
probability; Fig. 3 shows that inference can occur in real time in
noisy environments. For the two sugar distributions in Fig. 1C,
we chose the activator and repressor networks that best fit the
posterior probability of the high sugar state. We performed a
stochastic simulation of each of these networks by using the
best-fit parameters, and let the environment change from a low
to a high and back to a low sugar state. In each state, we sampled
from the appropriate sugar distribution, mimicking intracellular
fluctuations, and producing a time series of intracellular sugar
(Fig. 3A). For each sugar level, there is a different posterior
probability of the high extracellular sugar state (Fig. 1C). This
instantaneous posterior probability is shown in Fig. 3B. Most
often, P(high�S) is very low (near zero) or very high (near one).
It should be compared with the response of each network,
measured by their promoter efficacies (Fig. 3 C and D). The
promoter efficacy of the repressor network (Fig. 3C) and the
activator network (Fig. 3D) closely follow the instantaneous
posterior probability, although the activator network underesti-
mates the probability of the high sugar state. A quantitative
measure of the goodness of fit of each promoter efficacy to
P(high�S) shows that repressor performs more than twice as well
as activator [see supporting information (SI) Appendix].

Inference in the lac Operon
Viewing networks as inference modules gives additional interpre-
tations of in vivo behavior. For example, Setty et al. (11) measured
the transcription rate of the lac operon in Escherichia coli as a
function of two inputs: isopropyl �-D-thiogalactoside (IPTG), an
analogue of lactose, and cAMP. Traditionally, transcription of the

A B C

D E F

Fig. 2. A comparison of different regulatory mechanisms for solving the two-state discrimination problem; highly cooperative, negatively controlled genetic
networks perform the most accurate inference. (A) The Monod–Changeux–Wyman model of an allosteric transcription factor. Association constants are denoted
by Ks. The protein flips between DNA binding (red circles) and non-DNA binding forms (blue triangles). If Kb �� Kn, sugar stabilizes the DNA binding state.
Conversely, if Kn �� Kb, the non-DNA binding state is stabilized. Two sugar binding sites are shown, but we also test models with one and four binding sites. (B)
We consider three different promoters: type A, one active operator site (Top); type B, two active operator sites, but with no cooperative binding between
transcription factors (Middle); and type C, one active and one inactive operator with cooperative transcription factor binding (Bottom). (C) Transcription can by
regulated either negatively, via repressors that obstruct RNA polymerase (RNAP) binding, or positively, via activators that help stabilize RNAP binding. The RNAP
binding site (sigma site) is shown in gray, operators in red. (D) Mean residuals (a high residual implies a poor fit) from fits to 50 different posterior probabilities
for the models grouped by the numbers of sugars bound by transcription factor. Models with four transcription binding sites perform the best inference (P value
for one model type consistently performing better than the other is given; see SI Appendix). (E) Mean residuals for models grouped by promoter type. Cooperative
promoters perform best (type C). (F) Mean residuals for models grouped by their mode of transcriptional control. Repressors perform better than activators (for
�70% of the fits, corresponding to a P value substantially �10�4).
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lac operon is described as being ‘‘on’’ in the presence of sufficient
cAMP and sufficient lactose, i.e., its cis-regulatory region performs
a logical “AND” on the two inputs (12). Setty et al. found more
complex behavior: with enough IPTG, there is significant tran-
scription at low cAMP, and transcription increases smoothly, rather
than in a switch-like fashion, as cAMP increases (Fig. 4A). The
shape of this surface can be explained if the lac operon has evolved
to solve a two-state inference problem. The high state corresponds
to a state where the lac operon should be expressed, an extracellular
environment rich in lactose and poor in glucose, resulting in both
high intracellular lactose and cAMP [cAMP concentrations are
inversely proportional to glucose levels (13)]. The low state, where
the lac operon should not be repressed, corresponds to an extra-
cellular environment poor in lactose and rich in glucose. We
interpret S in Eq. 1 as the set of two variables: intracellular IPTG
and cAMP concentrations (see Materials and Methods). Assuming
bivariate lognormal distributions for IPTG and cAMP in each state,
we fit the parameters of the distributions so that the posterior
probability, P(high�S), matches the data of Fig. 4A (Fig. 4B). Two
lognormal distributions that generate this posterior are shown in
Fig. 4C. [Note that the axes represent measured extracellular levels,
which are assumed to be proportional to intracellular levels (11).]
The lac transcription rate is explained well by a two-state model in
which mean intracellular levels of IPTG are approximately three

times higher in the high state than in the low state and cAMP levels
are 10 times higher.

Discussion
We have argued that a single gene through allosteric control and
its cis-regulatory region can statistically infer the state of the
extracellular environment from intracellular inputs. Cis-
regulatory regions are often considered to perform logical
operations on their input, allowing gene expression only under
a particular combination of inputs (14, 15). Such a view has been
especially successful in understanding development (16), where
gene expression occurs in an ordered manner. Cell behavior
need not, however, follow a predetermined pattern, and in these
cases a cell that infers the state of its environment may have an
evolutionary advantage. A genetic network, or more generally a
biochemical network, that performs inference allows the cell to

Fig. 3. Two-state inference by simulated genetic networks. (A) A time series
of intracellular sugar molecules as the extracellular environment moves from
a low to a high (shaded region) and back to a low sugar state. Histograms of
the intracellular sugar distributions are shown in Fig. 1C. Sugar was sampled
every 25 s. In the low state, mean sugar numbers are �103; in the high state,
mean sugar numbers are �105. (B) The instantaneous posterior probability of
the high sugar state, P(high�S), for the particular sugar level existing at the
current time point. Posterior probability points come from the green curve in
Fig. 1C. (C) The average promoter efficacy for the best repressor network of
Fig. 2, four sugar binding sites on the repressor and promoter type C. The
actual promoter efficacy is either zero (promoter bound by repressor) or one
(promoter not bound). An average over the 25-s period chosen to sample the
sugar is shown. (D) The average promoter efficacy for the best activator
network of Fig. 2, again four sugar binding sites on the activator and promoter
type C. Simulation details are in SI Appendix.
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Fig. 4. Inference by the lac operon in E. coli. (A) Observed transcriptional
output (transcription rate) as a function of extracellular concentrations of
IPTG and cAMP (both log-scaled), normalized to range from zero to one (data
from ref. 11). (B) Posterior probability, fit to the data in A, that the environ-
ment is in a high state given the concentrations of IPTG and cAMP. (C) A
possible two-state model for E. coli’s view of its extracellular environment. The
low state is in red (peak at approximately 3 �M IPTG and 0.2 mM cAMP), and
the high state is in black (peak at 8 �M IPTG and 1.2 mM cAMP). Both states
are described by bivariate lognormal distributions.
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optimally interpret f luctuating inputs. Expression of the lac
operon is a possible example, but inference is also likely to occur
in signal transduction networks. Although we have emphasized
the sigmoidal character of the posterior probability, networks
that perform Bayesian inference need not have a sigmoidal
output. Fig. 1E shows two sugar distributions that produce a
biphasic posterior probability. Such behavior has been reported,
for example, in the E. coli gal operon (17), and is hard to justify
within a logic gate description.

We predict that a positively controlled genetic inference module
is more likely to infer the probability of the environment being in
a low state and that a negatively controlled system is more likely to
infer the probability of the environment being in a high state. For
example, the cAMP receptor protein in E. coli is an activator and
promotes high promoter efficacy of the lac operon when glucose
levels are low; LacI is a repressor and promotes high promoter
efficacy when lactose levels are high (12). This bias is expected to
be stronger for networks with less cooperativity.

Although we have focused on a single estimate of the prob-
ability of the extracellular state, cells might be expected to
perform long-term integration of noisy signals. Such integration
could occur by changing the prior probabilities of the high and
low states. For example, an E. coli previously exposed to lactose
has a higher concentration of lactose permease in its cell
membrane than one not exposed (18). This greater permease
concentration may reflect an increase in the prior probability of
the high extracellular lactose state, i.e., P(high) � P(low). Eq. 1
then predicts a sigmoidal response that favors the high state: the
posterior probability curve is shifted toward lower sugar levels.
This change mimics the change expected in promoter efficacy of
the lac operon: higher permease concentrations lead to gene
expression (higher promoter efficacy) at lower extracellular
lactose levels because lactose more efficiently enters the cell.

In our framework, the output of different networks are distinct
functions of their input because each network is solving a
different inference problem. For example, if the intracellular
distributions of the two extracellular states strongly overlap, a
repressor may have a high allosteric constant (Kt in Fig. 2 A) to
give a more sigmoidal promoter efficacy curve, reflecting the
steep posterior probability. The promoter efficacy curve is most
sensitive, however, to the inducer binding affinity (Kn for re-
pressors and Kb for activators). Its sensitivity is more than three
times higher than the next most sensitive parameter (Kt) (see SI
Appendix). If the extracellular environment substantially
changes, leading to a new inference problem, the most efficient
way to evolve to the new posterior probability is to modify the
sugar binding affinity. This modification has the benefit of
preserving the connectivities of preexisting genetic networks.

Cellular inference need not follow the simple two-state classifier
model proposed here. Multistate classifiers and real-time averaging
methods are more appropriate for some problems. Nevertheless,
given the prevalence of sigmoidally responding biochemical net-
works (19), the two-state classifier, whose solution is often a
sigmoidal posterior probability, may be an essential component of
many inference and decision-making networks in cells. Interpreting
biochemical networks as inference modules may be an important
step for both unraveling cellular behavior and designing selective,
synthetic gene circuits.

Materials and Methods
Modeling Genetic Networks. We use the Monod–Wyman–
Changeux model (10) to describe allosteric transcription factors.
We assume that both the total amount of sugar and the total
amount of transcription factors are conserved. Given these
values, we numerically solve for the amount of free sugar and the
total amount of transcription factor in the DNA binding state,
irrespective of the number of sugars each individual transcription
factor has bound (see SI Appendix).

To calculate promoter efficacies, we follow a statistical
mechanics approach (20) to describe the equilibrium occu-
pancies of the different states of the promoters of Fig. 2B (see
SI Appendix).

Comparison of the Models as Bayesian Classifiers. To test the ability
of the models to implement a Bayesian classifier, we fit each
model to the posterior probabilities for 50 different two-state
classification problems. For each problem, we generated two
sugar distributions corresponding to a low and a high sugar
state. From these distributions, we calculated the posterior
probability of being in the high state for each concentration of
sugar S:

P(high�S) �
P(S �high) P(high)

P(S)
. [2]

We can rewrite the expression for the probability of a sugar
concentration as:

P�S	 � �
states

P�S �state	P�state	

� P�S �high	P�high	 � P�S �low	P� low	 [3]

to derive Eq. 1. For simplicity, we assume equal priors; allowing
unequal prior probabilities for the two states does not change our
results.

We considered two-state classification problems generated by
Poisson, normal, and lognormal distributions of sugar. The
results of Fig. 2 D–F are for lognormal distributions, but are
qualitatively the same independent of the distribution type
chosen. The probability P(S�state) in Eq. 1 is therefore:

P(S �statei) �
e

�(lnS � �i)2

2�i
2

�2��iS
, [4]

where i � 1 for the low state and i � 2 for the high state. Each
state has a different �i and �i, which define the mean and
standard deviation in log space of the distribution. We chose 50
posterior probability curves that best gave a range of different
inference problems (see SI Appendix).

We used a least-square fit to score how well a model matches
the posterior probability of the high state. To fit we use an
interior-reflective Newton method (lsqnonlin in Matlab, Math-
works, Natwick, MA). Each posterior probability curve gener-
ated has 100 points (evenly spaced in log space), and we fit all
18 models to each curve 500 times with different initial condi-
tions, for a total of 450,000 fits. The P values for the residual
comparisons were computed by using a Wilcoxon two-sided
signed rank test (signrank in Matlab). For each fit, we calculated
the difference in the residual for a particular pair of models. The
null hypothesis was that these differences came from a distri-
bution with median zero.

Stochastic Simulation. We simulated both a repressor and an acti-
vator model. We chose a posterior probability from the 50 used in
the fitting (the posterior of Fig. 1C) and the repressor and activator
model that fit it best (parameters are given in SI Appendix). The
selected repressor and activator models both have four sugar
binding sites and promoter type C in Fig. 2B. To generate a
relatively smooth time series of sugar levels, we used a Markov
chain Monte Carlo method (5) to produce fluctuating, dependent
samples of sugar from the appropriate distribution in Fig. 1C. For
each sugar sample, the cytosolic sugar levels were changed to the
new sampled value. A stochastic simulation of the genetic network
was then run for a fixed time interval of 25 s by using the Gillespie
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algorithm (21) (results for different time intervals are given in SI
Appendix). A new sugar sample was then taken and the simulation
of the genetic network run again. The average value of the promoter
efficacy during each simulation run is shown in Fig. 3 C and D.

Fitting a Posterior Probability to the Transcription Rate of the lac
Operon. We fit the data of Fig. 4A to Eq. 1 where each state is
characterized by two variables: s1 corresponding to the logarithm of
the IPTG concentration and s2 corresponding to the logarithm of
the cAMP concentration. P(S�high) is then a bivariate normal
distribution:

P�S�high	 �
1

�det��	
exp ��

1
2 �

i, j�1

2

�s i � � i	� ij
�1�s j � � j	�

[5]

with �1 the mean of s1, �2 the mean of s2, and � the covariance
matrix of s1 and s2, all for the high state. A similar set of
parameters is needed to describe the low state. The problem of
fitting Eq. 1 to a given posterior probability surface is degener-
ate: different sets of parameters can result in the same posterior
surface (see SI Appendix). However, we can identify a unique
posterior probability surface that best fits the lac operon data
(Fig. 4B) along with the family of two-state discrimination
problems that generate the posterior surface. Fig. 4C shows one
example of this family.
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