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Amprenavir is a protease inhibitor that has been shown to have secondary peaks postulated to be due to
enterohepatic recycling. We propose a model to describe the pharmacokinetics of amprenavir which accom-
modates the secondary peak(s). A total of 82 healthy human immunodeficiency virus (HIV)-seronegative
subjects were administered a single 600-mg dose of amprenavir as part of adult AIDS Clinical Trials Group
protocol A5043. Serial blood samples were obtained over 24 h. Samples were analyzed for amprenavir and fit
to a compartmental model using ADAPT II software, with all relevant parameters conditional with respect to
bioavailability. The model accommodated secondary peaks by incorporating clearance out of the central
compartment with delayed instantaneous release back into the gut compartment. The data were weighted by
the inverse of the estimated measurement error variance; model discrimination was determined using Akaike’s
Information Criteria. A total of 76 subjects were evaluable in the study analysis. The data were best fit by a
two-compartment model, with 98.7% of the subjects demonstrating a secondary peak. Amprenavir had a mean
total clearance of 1.163 liters/h/kg of body weight (0.7), a central volume of distribution of 1.208 liters/kg (0.8),
a peripheral volume of distribution of 8.2 liters/kg (0.81), and distributional clearance of 0.04 liters/h/kg (0.81).
The time to the secondary peak was 7.86 h (0.17), and clearance into a recycling compartment was 0.111
liters/kg/h (0.74). Amprenavir pharmacokinetics has been well described using a two-compartment model with
clearance to a recycling compartment and release back into the gut. The nature of the secondary peaks may be
an important consideration for the interpretation of amprenavir plasma concentrations during therapeutic
drug monitoring.

Many potent antiretroviral therapy regimens utilize human
immunodeficiency virus type 1 (HIV-1) protease inhibitors as a
backbone of HIV therapy. Amprenavir (APV) is a protease
inhibitor approved in 2001 for the treatment of HIV-infected
patients in combination with other antiretroviral therapies.
With the increasing incidence of resistance, many steps have
been taken to optimize antiretroviral systemic exposure such as
adaptive feedback control (also known as therapeutic drug
monitoring) for high-risk patients as well as patients who fail
therapy, the study of relationships between plasma concentra-
tions and intracellular concentrations in order to relate these
to pharmacodynamic effects, and the study of drug-drug, drug-
food, or drug-disease interactions. These strategies have in
common a quest for better ways to optimize drug exposure by
understanding the pharmacokinetics (PK) of individual anti-
retrovirals within combination regimens.

Published PK characterizations of amprenavir have mainly
used noncompartmental methods. In addition, valid pharma-
cokinetic models and parameters are required to design PK-

pharmacodynamic trials using tools such as optimal sampling
theory and the development of maximum a posteriori Bayesian
estimators or for Monte Carlo simulations. Amprenavir was
also reported by Sadler et al. as exhibiting secondary peaks
approximately 6 to 12 h after dosing (14), and these peaks have
not been subsequently analyzed or characterized using a phar-
macokinetic model. The phenomenon known as enterohepatic
recycling has been observed with other drugs, and multiple
approaches to pharmacokinetic analysis have been reported
previously (2, 8, 11–13, 19, 22).

The purpose of this study was to use compartmental models
to describe amprenavir data obtained from healthy volunteers,
and among those models, one in particular that will accommo-
date secondary peaks, characterize the pharmacokinetic pa-
rameters associated with the drug, and determine the apparent
amount of drug responsible for the secondary peaks.

MATERIALS AND METHODS

The AIDS Clinical Trials Group (ACTG) A5043 protocol was used for an
open-label pharmacokinetic study that involved, in part, the administration of a
single oral dose of APV (600 mg). An intravenous catheter was placed, and blood
samples were collected prior to dosing and at 1, 2, 3, 4, 5, 6, 8, 10, 12, and 24 h
after dosing.

Study subjects. Healthy HIV-1-seronegative adults who met the inclusion
criteria were enrolled in the study after signing an informed consent form.
Subjects were admitted to a General Clinical Research Center on the morning of
the PK day in a state of having fasted since midnight of the prior evening. A
standard protocol-specified breakfast was given 1/2 h before the dose was ad-
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ministered at 8:00 a.m. Subjects were then given a single dose of APV (600 mg)
in the clinic followed by a 24-h sampling period. Additional meals were sched-
uled at noon and 6 p.m. but were not standardized among the subjects.

APV assay. Plasma amprenavir concentrations were measured in the Univer-
sity at Buffalo ACTG Pharmacology Specialty Laboratory in an assay that also
detects efavirenz, nelfinavir, M8, indinavir, ritonavir, and saquinavir with a val-
idated liquid chromatography/mass spectrometry/mass spectrometry assay
method (5, 10). Limits of detection and interassay variation were determined
during method validation and were 16.3 ng/ml for amprenavir, with interassay
variations of 12%, 12%, 10%, and 8% at 48 ng/ml, 240 ng/ml, 1,200 ng/ml, and
6,000 ng/ml, respectively.

Pharmacokinetic model. The individual plasma concentrations were initially fit
to candidate pharmacokinetic models using the maximum likelihood procedure
available in ADAPT II software (3, 4). The maximum likelihood results were
then used to compute maximum a posteriori Bayesian priors. The plasma con-
centrations were then fit by iterative two-stage analysis, a population analysis
technique based on the methods described by Steimer et al. (20), and developed
using the maximum a posteriori-Bayesian value estimator in ADAPT II.

Weighting was by the fitted inverse of the residual (error) variance. The
observed standard deviation (SD) was described as linear with the fitted value
(ˇy) as follows: SD � SDslope · ˇy � SDintercept, where SDslope and SDintercept are
the variance parameters initially empirically estimated based on assay error
patterns and later fitted based on the data. The amount of drug in individual
compartments and the area under the concentration-time curve were computed
by numerically integrating the fitted model. Clearances and volumes were con-
ditional based on systemic bioavailability (F) and were normalized by weight.
Model discrimination was consistent with the rule of parsimony (9) based on
Akaike’s Information Criterion (AIC) (1).

RESULTS

A total of 82 subjects were enrolled, and 76 were evaluable
for this analysis. Demographics for these subjects are pre-
sented in Table 1. The median age was 29. Nine subjects were
excluded from the pharmacokinetic analysis due to dosing ad-
ministration inconsistencies. The study medication was gener-
ally well tolerated. The final pharmacokinetic model was a
linear, two-compartment model with a first-order input follow-
ing a fitted lag time (Fig. 1). The final model accommodated
secondary peaks with clearance into a recycling compartment
and instantaneous release back into the gut after a fitted recy-
cling time as shown in the following series of differential equa-
tions:

dXc
dt � ka � Xg � CLd�Xc

Vc �
Xp
Vp� � CLb �

Xc
Vc (1)

dXp
dt � CLd � �Xc

Vc �
Xp
Vp� (2)

kb � 0.0 (3)

If time � recycle time, then

kb � 500 � e�10 � �t � recycle time� (4)

dXg
dt � � ka � Xg � kb � Xr (5)

dXr
dt � � kb � Xr � CLb�Xc

Vc� (6)

A secondary peak was required by AIC for 98.7% of the sub-
jects studied. The plasma concentration versus time curve data
for a typical subject are shown in Fig. 2. The fit of the model to
the data was excellent, with an overall r2 of 0.989 (observed �
0.989 · fitted � 0.00) and with the line of best fit not different from
the line of identity (Fig. 3). The fitted SDslope and SDintercept

terms were 0.1123 and 0.0124, respectively. The results of the
pharmacokinetic analysis are shown in Table 2. The fraction of
drug recycled was computed by obtaining the fraction of drug
in the recycling compartment, before input back into the gut,
relative to the administered dose. The “recycling time” was the
fitted time (postdose) in which the recycling compartment
emptied into the apparent absorptive site.

DISCUSSION

A number of recent reports have identified pharmacokinetic
approaches to analyzing enterohepatic recycling in human and
animal models (2, 8, 11–13, 19, 22). In this report, we utilized
compartmental analysis to characterize the pharmacokinetics
of amprenavir, in contrast to most published studies, which
have used noncompartmental approaches (7, 14, 21). The sec-
ondary peak was modeled as a “very fast” first-order rate

FIG. 1. Pharmacokinetic model. F, systemic bioavailability; Xc, Xp,
Xr, and Xg, amounts in the central, peripheral, “recycling,” and “gut”
compartments (Cmpt), respectively; Vc, apparent volume of central
compartment; Vp, apparent volume of the peripheral compartment;
CLd, distributional clearance; CLb, clearance to the recycling com-
partment; CLt, total APV clearance; Kb, first-order rate constant for
dispersion of the drug into the gut compartment at the time of recy-
cling; TLag, lag time.

TABLE 1. Enrollment and demographics

Characteristic
Value for treatment arm
(% value for data from

all arms combined)

Age at baseline (yr)
Median ............................................................................29
18 to 29 ...........................................................................44 (54)
30 to 39 ...........................................................................20 (24)
40 to 49 ...........................................................................15 (18)
�50 .................................................................................. 3 (4)

Gender
Male.................................................................................79 (96)
Female............................................................................. 3 (4)

Race/ethnicity
White non-Hispanic.......................................................61 (74)
Black non-Hispanic........................................................16 (20)
Hispanic (regardless of race) ....................................... 2 (2)
Asian (Pacific Islander)................................................. 3 (4)

Intravenous drug use at baseline
Never ...............................................................................82 (100)
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constant (essentially a bolus dose) after a fitted recycling time
followed by first-order absorption.

The resultant terminal half-life shown in this study differed
from reported values by 2.6-fold in spite of accounting for the
apparent recycling component of the drug. The difference in
half-life values may be due to inherent errors due to the use of
noncompartmental techniques, which are not precise and are
subjective. The presence of a secondary peak, also reported by
Sadler et al. for half of their individual profiles at 6 to 12 h after
the drug administration (16), is consistent with our finding of a
median (interquartile range) time to recycling of 7.89 h (range,

7.42 to 8.28 h). In considering our data, it would be interesting
to compare the amprenavir half-life values with and without
the recycling component in the model. However, because our
compartmental model has identified a prolonged terminal
elimination half-life (rather than a half-life calculated from a
noncompartmental approach), a follow-up study will be re-
quired to determine the influence of recycling on the terminal
half-life we have identified using a compartmental modeling
approach.

The relative size of the secondary peak for patients with
HIV on chronic therapy is still unknown, but the presence of

FIG. 2. Representative amprenavir plasma concentrations (in milligrams per liter) versus time (in hours).

FIG. 3. Observed amprenavir concentrations in plasma versus fitted concentrations in plasma. The diagonal is the line of best fit, which did not
differ from the line of identity (r2 � 0.989).
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the peak was detected by Sadler et al. (15, 17, 18, 23, 24).
Additional studies will have to be done to elucidate the cause
of the secondary peak, particularly since this phenomenon
might also be seen with fosamprenavir, as it is quickly hydro-
lyzed to amprenavir in the gut (6, 17, 18, 23, 24).

The apparent percentage of the dose that was recycled was
7.9% (4.2% to 10.3%), and the recycled amount was sufficient
to show a secondary peak for 98.7% of the subjects studied.
The clinical relevance of the secondary peak in patient data is
unclear with regard to therapy; however, with the increasing
utility of adaptive feedback control, the secondary peak may
have clinical implications, since some patients are now partic-
ipating in therapeutic drug monitoring studies and the second
peak may be needed as a part of the overall interpretation of
these plasma concentrations.

In summary, the development of a compartmental pharma-
cokinetic model for amprenavir accommodating secondary
peaks, although the data were obtained with healthy volun-
teers, is a first step that will facilitate the use of novel study
designs utilizing sparse drug sampling strategies and the devel-
opment of adaptive feedback control algorithms for therapeu-
tic drug monitoring.
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