
IL-12 receptor b1 (IL12Rb1) subunit. IL-
23 promotes the development of a
pathogenic T lymphocyte population
described as TH-17, distinct from TH1
and TH2, which is characterized by IL-6,
IL-17, and TNF production.23 Therefore, it
is possible that antagonism of IFN-c
signalling may have a more restricted
effect compared with antagonism of IL-
12p40 (antagonising both IL-12 and IL-
23) and antagonism of TNF (fig 2). In
addition, blockade of IFN-c may enhance
the development of TH17 effector cells.
Chronic inflammation is a nexus of
pathways, and multipoint blockade may
be necessary to increase clinical efficacy.
Further clinical trial experience with
anti-IL-12p40 and anti-IFN-c is neces-
sary to determine which one of these
monoclonal antibodies prove to be more
effective in the treatment of inflamma-
tory bowel disease, including CD and UC.
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Human hepatic stellate cells are
resistant to apoptosis: implications for
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Resistance of hepatic stellate cells or myofibroblasts to
proapoptotic stimuli is different between rodent and human cells.
This may be important when looking for antifibrotic agents that
can be used in human liver fibrosis

H
epatic stellate cells (HSCs) are one
of the sinusoid constituent cells
that play multiple roles in liver

pathophysiology and, in particular, in
liver fibrosis. In the intact liver, HSCs
localise in the space between sinusoids
and hepatocytes, so called space of Disse,
embrace the sinusoids as liver specific
pericytes to regulate sinusoidal blood flow

by their contractility, and store lipid
droplets largely containing vitamin A.1

When the liver parenchyma suffers from
chronic injury caused by various disease
aetiologies, such as iron overload, alcohol
consumption, infection by hepatitis B
virus or hepatitis C virus (HCV), non-
alcoholic steatohepatitis, autoimmune
hepatitis, and bile duct obstruction,

elimination of damaged hepatocytes
causes HSCs to depart from the sinusoidal
wall and become activated. This process is
considered to be triggered by multiple
peptide, lipid, and gaseous mediators that
are released from hepatocytes, Kupffer
cells, endothelial cells, and infiltrating
inflammatory cells.2–5

HSC activation accompanies their
phenotypic transformation into myofi-
broblast (MFB)-like cells. The latter cell
type exhibits expression of a smooth
muscle actin and growth factor recep-
tors, such as platelet derived growth
factor receptor b (PDGF receptor b),
production of contractile mediators,
such as endothelin-1, and mitogenic
mediators, such as PDGF, insulin-like
growth factor, vascular endothelial
growth factor, and chemokines, and
production of extracellular matrix mater-
ials (that is, collagens, fibronectin, lami-
nin, and proteoglycans), thereby playing
major roles in the progression of fibrosis
in chronically damaged livers. HSC
activation is supported particularly by
transforming growth factor b (TGF-b).
Activated HSCs produce TGF-b1 which
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promotes and maintains their own col-
lagen gene expression in an autocrine
loop. TGF-b1 also upregulates tissue
inhibitor of metalloproteinases (TIMPs)
which inhibit metalloproteinases and
exhibit an antiapoptotic effect on HSC.6 7

Several recent reports have indicated
that hepatic fibrosis and even cirrhosis
may regress.8–10 These observations have
toppled the established theory that cir-
rhosis is an incurable liver disease, parti-
cularly from a pathological point of view,
and increased enthusiasm for developing
antifibrogenic therapies. In experimen-
tally induced liver fibrosis in rodents,
cessation of liver injury, for instance, by
stopping hepatotoxin administration,
results in fibrosis regression, usually
mediated by reduction of TIMP-1 and
apoptosis of the HSC lineage.11 In
humans, spontaneous resolution of liver
fibrosis can occur after successful treat-
ment of the underlying disease. In parti-
cular, chronic HCV infection has been
most extensively studied and interferon
therapy with viral eradication results in
fibrosis improvement although the pre-
cise cellular and molecular mechanisms
have remained unsolved.12 Mass level
regression of liver fibrosis is logically
supported by experimental evidence
showing that rodent HSCs/MFBs undergo
apoptosis in culture. Recent studies indi-
cate (in most cases using rat cells) that
HSCs in culture undergo apoptosis via
pentapeptide GRGDS (Gly-Arg-Gly-Asp-
Ser), recombinant matrix metalloprotei-
nase 9, an antibody against focal adhesion
kinase, Fas/Fas ligand, nerve growth
factor (NGF), tumour necrosis factor a
(TNF-a), insulin-like growth factor 1,
interferon c, selective ligands for periph-
eral benzodiazepine receptors, high dose
sphingosine-1-phosphate, gliotoxin, ade-
noviral overexpression of p53 or retino-
blastoma protein, and so on.13 14 However,
the apoptotic characteristics of human
activated HSCs/MFBs have not been fully
elucidated.

Apoptosis is triggered by intrinsic and
extrinsic stimuli and is mediated by the
caspase cascade.15 16 There are 13 caspases
in humans. Caspases 3, 6, 7, 8, 9, and 10
are involved in cellular apoptosis. They are
further divided into initiator caspase
(caspases 8 and 9) and executor caspase
(caspases 3, 6, and 7). Initiator caspases 8
and 9 are activated by the intrinsic path-
way triggered by anticancer drugs, anti-
oxidants, and deprivation of growth
factors or serum, and can be blocked by
the oncogene Bcl-2. Bcl-2 homologue 3
only proteins, such as Puma, Noxa, and
Bad, stimulate mitochondria to release
cytochrome c, leading to activation of
caspase 9 together with apoptotic protease
activating factor 1. The extrinsic pathway
of apoptosis is triggered by death factors,
such as Fas ligand (CD95 ligand), TNF,

and TNF related apoptosis inducing
ligand.17 18 The death inducing signalling
complex, consisting of a receptor, adaptor,
and procaspase 8, is formed downstream
of the death receptor, where procaspase 8
is autocatalytically processed and then
directly activates caspase 3. Caspases 3, 6,
and 7 cleave several nuclear and cyto-
plasmic proteins, resulting in cell death by
inducing morphological and biochemical
changes characteristic of apoptosis.
Caspases 1, 4, 5, 11, 12, and 14 are known
to be involved in the inflammatory reac-
tion.

In this issue of Gut, Novo and collea-
gues19 demonstrated that fully activated
human HSCs/MFBs do not undergo
spontaneous apoptosis and survive to
prolonged serum deprivation, exposure
to Fas ligand, NGF, TNF-a, doxorubicin,
etoposide, and oxidative stress mediators
such as hydrogen peroxide, superoxide
anion, and 4-hydroxynonenal (see page
1174). Induction of caspase dependent,
mitochondria driven apoptosis in human
HSCs/MFBs was observed only when
actinomycin D or cyclohexamide was
added to the culture, indicating some
protein expression contributes to the
HSC/MFB resistance to apoptotic stimuli.
The authors showed evidence that Bcl-2
leads to human HSC/MFB resistant to
apoptotic stimuli as Bcl-2 is overexpressed
in them. This did not occur in freshly
isolated human HSCs, and Bcl-2 silenced
cells (using the siRNA technique) became
susceptible to TNF-a induced apoptosis.
Furthermore, the authors demonstrated,
using immunohistochemistry, that Bcl-2
staining was present in myofibroblast-like
cells in areas localised at the interface
between fibrotic septa and the parench-
yma of cirrhotic nodules.

The results presented here raise an
important clinical concern. As described
above, liver fibrosis is reversible after
eradication of pathogens and hepato-
toxin, presumably through apoptosis of
HSCs and MFBs in rodents. However, this
article provides evidence that human liver
fibrosis/cirrhosis would resist regression
compared with rodent experimental liver
fibrosis as human MFBs become fully
resistant to apoptotic stimuli after a long
inflammatory reaction and repeated cell
replication. In this respect, in order to
achieve complete resolution of human
liver fibrosis, in particular cirrhosis, a
novel strategy is required for induction
of apoptosis of activated HSCs/MFBs in
humans. Drugs that suppress Bcl-2
expression solely in human MFBs are
eagerly awaited for this purpose.

In conclusion, resistance of HSCs or
MFBs to proapoptotic stimuli is differ-
ent between rodent and human cells.
This is important to bear in mind when
searching for antifibrotic agents that
can be used in human liver fibrosis.

Bcl-2 could be one of the targets leading
to HSC/MFB sensitivity to apoptosis.
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