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SUMMARY
Chemoprevention has been considered as a possible approach for cancer prevention. A significant

effort has been made in the development of novel drugs for both cancer prevention and treatment

over the past decade. Recent epidemiological studies and clinical trials indicate that long term use

of aspirin and similar agents, also called non-steroidal anti-inflammatory drugs (NSAIDs), can

decrease the incidence of certain malignancies, including colorectal, oesophageal, breast, lung,

and bladder cancers. The best known targets of NSAIDs are cyclooxygenase (COX) enzymes,

which convert arachidonic acid to prostaglandins (PGs) and thromboxane. COX-2 derived

prostaglandin E2 (PGE2) can promote tumour growth by binding its receptors and activating

signalling pathways which control cell proliferation, migration, apoptosis, and/or angiogenesis.

However, the prolonged use of high dosages of COX-2 selective inhibitors (COXIBs) is associated

with unacceptable cardiovascular side effects. Thus it is crucial to develop more effective

chemopreventive agents with minimal toxicity. Recent efforts to identify the molecular

mechanisms by which PGE2 promotes tumour growth and metastasis may provide opportunities

for the development of safer strategies for cancer prevention and treatment.

INTRODUCTIONc
The most effective treatments for cancer, including various combinations of surgical resection,

radiation, and/or chemotherapy, depend on the detection of cancer at a very early stage.

Unfortunately, it has not been possible to identify all individuals who are at the highest risk for

developing cancer. Most patients present to their physician with advanced cancer when standard

treatment regimens for solid malignancies result in a much lower five year survival. It is generally

agreed that an effective way to control cancer is to find better ways of preventing it.

Chemopreventive approaches are definitely worth considering for healthy persons who have a

strong family history of cancer or those who are particularly susceptible for other reasons. One

promising group of compounds with cancer preventive activity includes NSAIDS.

A large body of evidence from population based studies, case control studies, and clinical trials

indicate that regular use of NSAIDs over a 10–15 year period reduces the relative risk of

developing colorectal cancer by 40–50%.1 Furthermore, use of NSAIDs leads to regression of pre-

existing adenomas in patients with familial adenomatous polyposis (FAP).2 As many other

human cancers are reported to have elevated levels of COX-2 and overproduce PGs, there is great

interest in evaluating the role of NSAIDs for prevention and treatment strategies for other cancers

such as breast, stomach, pancreas, urinary tract, lung, and prostate. However, the prolonged use

of NSAIDs is associated with side effects such as nausea, dyspepsia, gastritis, abdominal pain,

peptic ulcer, gastrointestinal bleeding, and/or perforation of gastroduodenal ulcers.3 It was

hypothesised that NSAIDs exert their anti-inflammatory and antitumour effects through

inhibition of the inducible COX-2,4 5 while unwanted side effects of these drugs such as damage

to the gastric mucosa and gastrointestinal bleeding are thought to arise from the inhibition of the

constitutive COX-1.6 This hypothesis led to the development of COXIBs, such as celecoxib,

rofecoxib, and valdecoxib. Indeed, highly selective COX-2 inhibitors retain the anti-inflammatory

and antitumour effects of the NSAIDs while not interfering with COX-1 responsible for protection

of the gastroduodenal mucosa from the effects of acid from the stomach.5 7–9 Therefore, these

drugs were approved by the FDA, and as novel anti-inflammatory agents their use is associated

with about a 50% reduction in gastrointestinal toxicity. Moreover, these agents have some

potential for use as chemopreventives.10–12 One of them, celecoxib, was approved in December

1999 by the FDA for use in the prevention of colorectal polyp formation of patients with FAP.

Unexpectedly, the prolonged use of higher doses of COX-2 selective inhibitors is associated with

increased thrombotic events in humans.13–15 We know that this original hypothesis was overly

simplistic because of our lack of knowledge of the importance of signalling pathways which are
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affected downstream of COX-2. Thus it has become essential

for us to understand how NSAIDs interfere with COX-2

mediated cellular functions in both normal physiology and

pathological conditions.

NSAID TARGETS
Inflammation and cancer
NSAIDs are chemically distinct compounds that share a

common therapeutic action. The best known of these are

aspirin, ibuprofen, piroxicam, indomethacin, and sulindac.

NSAIDs are generally prescribed to ameliorate symptoms

associated with acute pain and chronic inflammatory

diseases such as arthritis. Chronic inflammation caused by

infections or autoimmune diseases is clearly associated with

an increased cancer risk in a number of instances. For

example, it has long been known that patients with

persistent hepatitis B, Helicobacter pylori infections, or an

immune disorder such as ulcerative colitis have a higher risk

for the development of liver or gastrointestinal tract cancer. It

has been estimated that chronic inflammation contributes to

the development of approximately 15% of malignancies

worldwide.16 The connection between inflammation and

cancer further supports the concept that anti-inflammatory

drugs, NSAIDs, have antineoplastic activity.

COX dependent targets
NSAIDs were shown to exert their anti-inflammatory,

analgesic, and antipyretic effects mainly by inhibiting COX,

a key enzyme responsible for the biosynthesis of PGs from

arachidonic acid.6 Aspirin is an irreversible inhibitor of COX

through blocking the approach of arachidonic acid, while

indomethacin, piroxicam, ibuprofen, and sulindac are com-

petitive inhibitors for substrate binding. When COX converts

arachidonic acid to PGs, the key regulatory step in this

process is the enzymatic conversion of arachidonate to PGG2,

which is then reduced to an unstable endoperoxide inter-

mediate, PGH2. Specific PG synthases in turn metabolise

PGH2 to at least five structurally related bioactive lipid

molecules, including PGE2, PGD2, PGF2a, PGI2, and throm-

boxane A2 (TxA2)17 (fig 1).

COX exists in two isoforms commonly referred to as COX-1

and COX-2. Although both COX-1 and COX-2 are upregu-

lated in a variety of circumstances, normally COX-1 is

constitutively expressed in a broad range of cells and tissues.

COX-1 expression remains constant under most physiological

or pathological conditions and its constitutive enzymatic

activity is linked to renal function, gastric mucosal main-

tenance, stimulation of platelet aggregation, and vasocon-

striction. For example, COX-1 derived prostaglandins play a

central role in many normal physiological processes. In the

gut, COX-1 derived PGI2 (also called prostacyclin) produced

by epithelial and stromal cells in subepithelial tissues plays a

key role in the cytoprotection of gastric mucosal surfaces and

the normal vasculature.18 COX-1 has been shown to play an

essential role in gastrulation in zebrafish and a reduction in

COX-1 results in posterior mesodermal defects during

zebrafish development.19 20 In contrast, COX-2 is an immedi-

ate early response gene and its expression is normally absent

in most cells and tissues but it is highly induced in response

to proinflammatory cytokines, hormones, and tumour

promoters.21 Furthermore, COX-2 derived PGE2 is a proin-

flammatory bioactive lipid and is the major prostaglandin

produced in many human solid tumours, including cancer of

the colon,22 stomach,23 and breast.24 Recent research has

indicated that COX-2 derived PGE2 is a key mediator of acute

inflammatory responses,25 26 arthritis,27 28 and inflammatory

bowel disease.29 30 Direct evidence supporting the notion that

PGE2 promotes tumour growth comes from the following

observations. PGE2 reversed NSAID induced adenoma

regression in ApcMin mice.31 PGE2 significantly enhanced

colon carcinogen induced tumour incidence and multiplicity

in rats.32 Furthermore, our group recently reported that PGE2

accelerates intestinal adenoma growth in ApcMin mice.33

Although COX-2 selective inhibitors suppress PGE2 produc-

tion, the potential inhibition of endothelial cell derived COX-2

activity and subsequent PGI2 production may promote platelet

aggregation and lead to an increased risk of coronary

thrombosis and stroke.34 As PGI2 antagonises thromboxane

produced by platelets, inhibition of PGI2 may shift the

homeostatic balance towards more TXA2 effects. In addition,

PGI2 appears to be important in protecting cardiomyocytes from

oxidative stress.35 Therefore, it will be important to develop

chemopreventive agents that do not inhibit production of other

prostanoids, such as the antithrombotic PGI2. Given that only

PGE2 appears to be procarcinogenic, more selective pharmaco-

logical inhibition of PGE2 production downstream of COX-2

may be superior and result in fewer side effects. To achieve this

goal, researchers have been investigating precisely how PGE2

promotes tumour growth and its signalling pathways.

COX independent targets
Another explanation for the antitumour effects of NSAIDs

recently emerged, based on studies showing that high doses

of NSAIDs inhibit tumour cell growth and induce apoptosis

through COX independent mechanisms by regulating several

different targets,36 such as 15-LOX-1,37 a proapoptotic gene

Par-4,38 antiapoptotic gene Bcl-XL,39 and nuclear factor kB

(NFkB) signalling.40 41 In the above studies, higher NSAID

concentrations may be impossible to achieve in vivo without

significant toxicity. For example, the proapoptotic effects of

NSAIDs seen at concentrations above 50 mM are most likely

modulated through COX-2 independent pathways. However,

the best characterised biochemical target of NSAIDs at

therapeutic concentrations remains the COX enzymes. It is

likely that many of the chemopreventive effects of NSAIDs

are carried out via inhibition of COX-2.

PGE2 AND CANCER
PGE2 and its receptors play a predominant role in promoting

cancer progression. The only other COX-2 derived prosta-

glandin implicated in oncogenesis is TxA2, which was

reported to promote angiogenesis.42 NSAIDs have been

shown to inhibit PGE2 mediated processes that play essential

roles in tumour progression, such as tumour cell prolifera-

tion, invasion, angiogenesis, and immunosuppression.

Therefore, we will focus on modulation of PGE2 and its

downstream targets that control these processes.

PGE2 regulation and its receptors
Steady state cellular levels of PGE2 depend on the relative

rates of COX-2/PGE synthase dependent biosynthesis and

15-hydroxyprostaglandin dehydrogenase (15-PGDH) depen-

dent degradation (fig 1). For example, cytosolic or micro-

somal PGE2 synthases can convert PGH2 to PGE2. Two

cytosolic PGE2 synthases called cytosolic glutathione trans-

ferases (GSTM2-2 and GSTM3-3) catalyse the conversion of

PGH2 to PGE2 in the human brain.43 The two microsomal

PGE2 synthases characterised to date are mPGES1 and
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mPGES2. mPGES1 exhibits a higher catalytic activity than

other PGES isomerases, indicating that it probably plays a

key role in the synthesis of PGE2 from PGH2.44 45

15-PGDH, a prostaglandin degrading enzyme, catalyses

oxidisation of the 15(S)-hydroxyl group of PGE2 to yield an

inactive 15-keto PGE2.46 Genetic deletion of 15-Pgdh in mice

leads to increased tissue levels of PGE2.47 Although 15-PGDH

may promote certain androgen sensitive prostate cancers,48

we and others recently reported that loss of expression of

15-PGDH correlates with tumour formation, including color-

ectal cancer,49 50 lung,51 and transitional bladder cancer.52

Interestingly, NSAIDs have been shown to upregulate

15-PGDH expression in colorectal and medullary thyroid

cancers.49 53 Taken together, these studies suggest that loss

expression of 15-PGDH may contribute to tumour progres-

sion. The functional role of 15-PDGH in promoting tumour

growth is currently under investigation in several laboratories.

PGE2 exerts its cellular effects by binding to its cognate

receptors (EP1-4) that belong to the family of seven

transmembrane G protein coupled rhodopsin-type receptors.

The central role of PGE2 in tumorigenesis has been further

confirmed through homozygous deletion of its receptors.

Mice with homozygous deletions in EP1 and EP4 receptors,

but not EP3, were partially resistant to colon carcinogen

mediated induction of aberrant crypt foci.54 55 EP2 disruption

decreases the number and size of intestinal polyps in APCD716

knockout mice.56 Moreover, in carcinogen treated wild-type

mice, an EP1 receptor antagonist also decreased the incidence

of aberrant crypt foci whereas ApcMin mice treated with the

same EP1 receptor antagonist and an EP4 receptor antagonist

developed 57% and 69% fewer intestinal polyps, respectively,

than untreated mice.54 55 In addition to colorectal cancer, it

has been shown that EP1, 2, and 4 receptors were elevated

whereas EP3 receptor levels were decreased in mammary

tumours in COX-2-MMTV mice.57 Furthermore, an EP1

receptor antagonist was shown to reduce tumour burden in

a carcinogen induced rat mammary model.58 However,

Amano and colleagues recently reported that EP3 receptor

activation is required for lung tumour associated angiogen-

esis and tumour growth.59 In the future, it will be important to

carefully determine the EP receptor profile in human cancers

and to examine whether NSAIDs can modulate PGE2 receptor

expression. Taken together, these findings may provide a

rationale for the development of EP receptor antagonists which

may offer an alternative to COX-2 selective inhibitors.

PGE2 signalling pathways and its downstream targets
An increasingly large body of evidence indicates that PGE2

promotes tumour growth by stimulating EP receptor signal-

ling with subsequent enhancement of cellular proliferation,

promotion of angiogenesis, inhibition of apoptosis, stimula-

tion of invasion/motility, and suppression of immune

responses. These findings prompted research to elucidate

PGE2 signalling pathways and identify PGE2 downstream

targets that are involved in promoting tumour growth (fig 2).

EGFR pathway
Both COX-2 and epidermal growth factor receptor (EGFR)

pathways are activated in most human cancers.60 The

observation that forced expression of COX-2 in human

colorectal cancer (CRC) cells stimulates cellular proliferation

through induction of EGFR61 indicated the likelihood of

Figure 1 Overview of prostaglandin (PG) synthesis and main functions. Arachidonic acid can be metabolised through three major pathways. In the
cyclooxygenase (COX) pathway, each COX-2 derived prostaglandin (PGI2, PGE2, PGD2, PGF2a) or thromboxane A2 (TxA2) has its unique functions.
NSAIDs, non-steroidal anti-inflammatory drugs; COXIBs, COX-2 selective inhibitors.
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crosstalk between these two pathways. We and others have

demonstrated that PGE2 can transactivate EGFR, which

results in stimulation of cell migration through increased

PI3K-Akt signalling in CRC cells.62–64 As expression of EGFR

directly correlates with the ability of human CRC cells to

metastasise to the liver,65 it is possible that inhibiting both the

EGFR tyrosine kinase and COX-2 at lower doses could yield

additive effects, blocking the spread of metastatic disease.

Moreover, preclinical studies support the notion that com-

bined treatment of NSAIDs plus EGFR tyrosine kinase

inhibitors is more effective than either single agent alone in

several models. In colorectal carcinoma cells, blocking both

COX-2 and the HER-2/neu pathways synergistically reduced

tumour growth.66 In soft agar and xenograft assays, the

combination of a COX-2 selective inhibitor, an EGFR tyrosine

kinase inhibitor, and a protein kinase A antisense construct

markedly reduced proliferation and angiogenesis of human

colon and breast cancer cells.67 Similarly, combined treatment

with inhibitors of both pathways significantly decreases polyp

formation in ApcMin mice,68 as Apc deficiency is associated with

increased EGFR activity in the intestinal enterocytes.69 Hence

we feel that it will be essential to examine the use of COX-2

selective inhibitors as potential agents in combination with

EGFR tyrosine kinase inhibitors in clinical trials.

Nuclear receptor pathways
Peroxisome proliferator activated receptors d (PPARd, also

referred to as PPARb) is a ligand activated nuclear transcrip-

tion factor that is a member of the nuclear hormone receptor

superfamily. Published data indicate that the PPARd/b is

important for regulating fat metabolism,70 inhibiting obesity

induced by either genetic or high-fat-diet,70 and decreasing

weight gain and insulin resistance in mice fed high fat diets.71

However, PPARd has been identified as a direct transcrip-

tional target of the APC/b-catenin/Tcf pathway.72 Our recent

findings show that PGE2 transactivates PPARd which in turn

promotes tumour cell survival.33 PGE2 activates PPARd via a

PI3K-Akt pathway. Most importantly, we demonstrated that

PGE2 promotes intestinal epithelial cell survival and color-

ectal adenoma growth in Apcmin mice, but not in PPARd-/-/

Apcmin mice,33 indicating that PPARd is a critical downstream

mediator in PGE2 stimulated tumour growth. Consistent with

this result, a selective PPARd agonist also accelerates

intestinal polyp growth in Apcmin mice via inhibition of

tumour cell apoptosis.73 These results support the rationale

for considering the development of PPARd antagonists for

use in cancer prevention and/or treatment and raise caution

for developing PPARd agonists for clinical use to treat

dyslipidaemia, obesity, and insulin resistance.

Figure 2 Prostaglandin (PG) E2 in carcinogenesis. PGE2 promotes tumour growth by stimulating EP receptor downstream signalling and subsequent
enhancement of cellular proliferation, promotion of angiogenesis, inhibition of apoptosis, stimulation of invasion/motility, and suppression of immune
responses. NSAIDs, non-steroidal anti-inflammatory drugs; COXIBs, COX-2 selective inhibitors; AA, arachidonic acid; EGFR, epidermal growth
factor receptor; IL-10, interleukin 10; DAF, decay accelerating factor; VEGF, vascular endothelial growth factor; bFGF, basic fibroblast growth factor;
PPARd, peroxisome proliferator activated receptor d.
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Ras-MAPK pathway
Ras is an oncogene and its activation is found in a wide

variety of human malignancies. Ras induces cell transforma-

tion, proliferation, and survival by triggering downstream

signalling pathways such as the Raf/MEK/ERKs and PI3K/

Akt pathways. The Ras-MAP kinase cascade is one of the

major intracellular signalling pathways responsible for cell

proliferation. Forced expression of constitutively active Ras

(mutant Ras) or MEK upregulates COX-2 expression and

enhances cell proliferation in a variety of cell culture models,

respectively.74–77 Non-selective NSAIDs and COX-2 selective

inhibitors inhibit cell proliferation and transformation by

blocking the Ras-MAPK signalling pathway.78–80 Our group

recently reported that PGE2 activates a Ras-MAPK pathway

which in turn upregulates COX-2 expression and stimulates

colorectal cancer cell proliferation.81 This finding supports a

novel mechanism by which COX-2 derived PGE2 promotes

human cancer cell growth by autoregulation of COX-2

expression, which depends primarily on PGE2 induced

activation of the Ras-MAPK pathway.

PGE2 downstream targets: angiogenic factors
Angiogenic factors are important for the growth and survival

of endothelial cells and to stimulate vascular endothelial cell

migration and capillary formation.82 Overexpression of COX-2

in CRC cells induces the production of angiogenic factors

such as vascular endothelial growth factor (VEGF) and basic

fibroblast growth factor (bFGF),83 and NSAIDs block the

production of these angiogenic factors leading to inhibition of

proliferation, migration, and vascular tube formation.83–86 The

observations that PGE2 can reverse the antiangiogenic

activity of NSAIDs87 and homozygous deletion of EP2

completely abrogated induction of VEGF in APCD716 mouse

polyps56 support the concept that PGE2 mediates the major

role of COX-2 in inducing expression of proangiogenic

factors. Several reports demonstrated that PGE2 upregulates

VEGF in cultured human fibroblasts88 and increases VEGF

and bFGF expression through stimulation of ERK2/JNK1

signalling pathways in endothelial cells.89 EP2/EP4 mediate

PGE2 induction of VEGF in ovarian cancer cells90 and human

airway smooth muscle cells.91 Interestingly, VEGF and bFGF

induce COX-2 and subsequent PG production in endothelial

cells, suggesting that the effects of PGE2 on regulation of

VEGF and bFGF are likely amplified through a positive

feedback loop.92 However, PGE2 induction of VEGF may

provide another explanation for the undesired side effect of

COX-2 selective inhibitors on cardiovascular complications.

VEGF is implicated in cardiovascular homeostasis. For

example, treatment with Avastin (bevacizumab), a human-

ised anti-VEGF antibody, has only marginal improvement in

survival for colorectal cancer patients and is also associated

with an increased risk of hypertension. Therefore, it is

important to identify new molecular targets that drive

colorectal tumour associated angiogenesis. Preliminary data

from our laboratory indicate that PGE2 induces a proangio-

genic chemokine expression in CRC cells (unpublished data).

PGE2 downstream targets: antiapoptotic factors
Overexpression of COX-2 in rat intestinal epithelial cells

increased their resistance to undergo apoptosis and resulted

in increased Bcl-2 protein expression.93 The role of COX-2 in

preventing apoptosis is likely mediated by COX-2 derived

PGE2, which attenuates cell death induced by the COX-2

selective inhibitor SC-58125.94 These findings have stimulated

great interest in identifying PGE2 downstream targets

responsible for modulating apoptosis. PGE2 induces anti-

apoptotic protein expression such as Bcl-294 and increases

NFkB transcriptional activity,95 which is a key antiapoptotic

mediator. As chemotherapeutic agents and radiation therapy

enhance COX-2 protein expression as well as PGE2 synthesis

in human cancer cells, elevated PGE2 production may

increase resistance to therapy by giving cells a survival

advantage. It will be important to determine whether

patients treated with combinations of chemotherapy or/and

radiation therapy with NSAIDs respond better than those not

treated with NSAIDs. Preliminary study suggests that COX-2

selective inhibitors may increase the beneficial effects of

radiotherapy.96

PGE2 downstream targets: chemokines and their
receptors
Although chemokines play a crucial role in immune and

inflammatory reactions, recent studies indicate that they

have an equally important role in the cancer.97 PGE2 has been

shown to inhibit production of CC chemokines, macrophage

inflammatory protein (MIP)-1a and MIP-1b, in dendritic

cells via binding to the EP2 receptor,98 99 and suppress CC

chemokine RANTES (regulated upon activation normal T cell

expressed and secreted) production in human macrophages

through the EP4 receptor.100 These CC chemokines are crucial

for macrophage and lymphocyte infiltration in human breast,

cervix, pancreas, and gliomas cancers.101 102 Moreover, a

recent study showed that PGE2 mediates VEGF and bFGF

induced CXCR4 dependent neovessel assembly in vivo.103 The

important role of CXCR4 for cancer pharmacology is based on

findings that activation of CXCR4 is involved in stimulating

cancer cell migration and increasing invasion in breast,

prostate, bladder, and pancreatic cancers.104–107 These pre-

clinical data indicate that chemokines and their receptors are

potential drug targets of PGE2 downstream signalling for

cancer prevention and treatment.

PGE2 downstream targets: immunosuppressive
mediators
The tumour microenvironment is predominantly shifted from

a Th1 to a Th2 dominant response (immunosuppressive

immune responses). COX-2 selective inhibitors restore the

tumour induced imbalance between Th1 and Th2 and

promote antineoplastic responses in lung cancer108 and

metastatic spread of colorectal cancer.109 These findings led

to extensive efforts to understand how PGE2 can regulate

immunosuppression. PGE2 has been shown to downregulate

Th1 cytokines (tumour necrosis factor a, interferon c, and

interleukin (IL)-2)110 and upregulate Th2 cytokines such as

IL-4, IL-10, and IL-6.111–113 IL-10 is an immunosuppressive

cytokine. Moreover, PGE2 can modulate immune function

through inhibiting dendritic cell differentiation and T cell

proliferation and suppressing the antitumour activity of

natural killer cells and macrophages.114 115 In addition, our

group showed that PGE2 upregulates the complement

regulatory protein decay accelerating factor which results in

blocking the complement C3 into two active compounds, C3a

and C3b in CRC cells.116 Thus the effects of PGE2 on the

immune system may allow neoplastic cells to evade attack.

CONCLUSIONS
Chemoprevention is being carefully evaluated on several

fronts as an effective measure to insure cancer control.
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NSAIDs and COX-2 selective inhibitors have been touted for

their possible use as chemopreventive agents. However,

concerns over the safety of COX-2 selective inhibitors have

prompted researchers to develop more effective chemopre-

ventive agents with minimal toxicity. Understanding the

molecular mechanisms of COX-2 and its downstream targets

will help to identify specific molecular targets for developing

more safe agents which target this pathway. Preclinical

studies provide evidence to demonstrate that non-selective

NSAIDs and COX-2 selective inhibitors decrease the risk of

colorectal cancer as well as other cancers through reduction

of COX-2 derived PGE2 synthesis. Significant progress has

been made in the elucidation of PGE2 downstream signalling

pathways which mediate the chemopreventive effect of

NSAIDs. These cumulative data indicate that the develop-

ment of agents that lower cellular levels of PGE2 or that

specifically inhibit the PGE2 downstream signalling pathway

might be useful for cancer prevention. PGE synthases,

15-PDGH, and/or PGE2 receptors may also serve as rational

targets for lowering cellular levels of PGE2 and EGFR, MAPK,

and chemokines, and chemokine receptors are molecular

targets for specific inhibition of PGE2 downstream signalling

pathways. Moreover, another approach for decreasing the

undesired side effects of COXIBs may be to lower the drug

dose used. The combined use of multiple agents may allow

for a lower dose of drug to be used. Taken together, efforts to

develop novel chemopreventive agents with minimal toxicity

and to design strategies for combinations of different agents

targeting multiple pathways may yield significant benefits for

cancer patients.
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Robin Spiller, Editor
Hypervascular pancreatic mass

Clinical presentation
A 58 year old man presented with mild cholestasis, with serum
alkaline phosphatase 155 U/l (normal 30–120 U/l), serum
gamma glutamyl transferase 75 U/l (normal 12–55 U/l), and
serum bilirubin 1.45 mg/dl (normal 0.2–1.3 mg/dl). During
the previous three months he had lost 2–3 kg in weight but his
general state was good with a body mass index of 26 kg/m2.

The patient underwent appendicectomy in his childhood
and cholecystectomy for gall bladder stone disease 12 years
previously. Eight years before being referred to our institu-
tion, he had been nephrectomised for renal cell cancer of the
right kidney. The tumour measured 5 cm and microscopically
did not infiltrate either the renal capsule or blood vessels
(stage T1b, N0, M0). No recurrence was detected during
regular follow ups. Five years later in the course of bacterial
pneumonia the patient developed acute renal failure which
required single haemodialysis. At presentation the patient
was not anaemic and his serum creatinine level was 1.36 mg/dl
(normal 0.7–1.2 mg/dl).

Ultrasound examination revealed a hypoechogenic mass of
the pancreatic head, measuring 4 cm in diameter. On
biphasic computed tomography (CT) the pancreatic mass
was clearly hypervascular in the arterial phase (fig 1) but in
the venous phase its contrast enhancement returned to
normal. Radiographically, no other masses were detected,
and the peripancreatic lymph nodes were not enlarged. The
duodenal wall and peripancreatic tissue were not infiltrated
by the tumour. The left kidney was intact on both CT and
intravenous urography. Serum concentrations of cancer
carcinoembryonic antigen, insulin, serotonin, and gastrin
were within the normal range. Fine needle biopsy from the
tumour was diagnostically not contributory, showing only
desmoplastic fibres and normal glandular cells.

Question
What is the presurgical diagnosis and what is the prognosis
in this case?
See page 141 for answer
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Figure 1 At computed tomography, the pancreatic mass showed
increased contrast enhancement in the arterial phase.
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