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A better understanding of the pathophysiological processes of
Giardia may lead to understanding the diseases it causes and to
identifying new therapeutic agents

I
nfection with the ubiquitous intestinal
parasite Giardia lamblia (synonymous G
duodenalis or G intestinalis) may cause

acute or chronic diarrhoea, dehydration,
abdominal discomfort and weight loss.1–4

Despite the prevalence of this disease, the
pathophysiological features underlying
intestinal disturbances in giardiasis remain
incompletely understood. Giardia causes
disease without penetrating the epithelium,
invading the surrounding tissues or enter-
ing the blood stream. Interestingly, the
epithelial abnormalities responsible for
intestinal malabsorption and diarrhoea in
giardiasis seem to share similarities with
those observed in other enteric disorders,
such as bacterial enteritis, chronic food
anaphylaxis, Crohn’s disease and coeliac
disease.5–9 Therefore, a better understand-
ing of these pathophysiological processes
may help identify new therapeutic targets
for a variety of gastrointestinal diseases. In
an attempt to unravel the mechanisms by
which Giardia exerts its clinical effects,
researchers have relied on a variety of cell
systems and animal models. This issue of
Gut presents data from an elegant human
clinical study by Troeger et al10 (see page
328) that sheds new light on these pro-
cesses. In view of the limited space avail-
able, this commentary only highlights
selected mechanisms whereby Giardia-
induced epithelial dysfunction may con-
tribute to disease development.

ELECTROLYTE TRANSPORT
ABNORMALITIES
Previous studies using models in vivo and
in vitro have established that Giardia causes

malabsorption of glucose, sodium and
water, and reduced disaccharidase activity,
due to loss of epithelial absorptive surface
area.1 3 4 11–13 Observations from humans
infected with this parasite now confirm
these findings.10 Recent reports have sug-
gested that this parasite may also alter
chloride secretory responses in human
colonic cells in vitro, as well as in murine
models.14 15 The findings of Troeger et al10

show for the first time that, in addition to
malabsorption, chronic giardiasis may
cause hypersecretion of chloride in
humans. Therefore, a combination of
malabsorption and secretion of electrolytes
seems to be responsible for fluid accumula-
tion in the intestinal lumen during this
infection. The cascade of events ultimately
responsible for these epithelial abnormal-
ities remains incompletely understood.
Findings to date imply that parasite pro-
ducts may break the epithelial barrier, after
which activated T lymphocytes cause the
brush border to retract, which in turn
causes the disaccharidase deficiencies and
epithelial malabsorption responsible for
diarrhoea.1 3 4 Epithelial brush-border
injury and disaccharidase deficiencies in
giardiasis seem to be mediated by CD8+ T
cells, whereas CD4+ T cell activation con-
tributes to parasite clearance.2 16 17

Consistent with these observations, micro-
villus brush-border abnormalities and
parasite clearance do not occur in hosts
devoid of functional T lymphocytes.2 17 18

The findings that athymic mice infected
with Giardia do not exhibit microvillous
injury and dysfunction despite the presence
of live parasites refutes the hypothesis that

intestinal malfunction solely results from
trophozoite attachment or parasite viru-
lence factors. In this issue of Gut, Troeger et
al10 confirm that increased numbers of
intraepithelial lymphocytes are associated
with the sodium/glucose malabsorption
detected in their Giardia-infected patients.

ENTEROCYTE APOPTOSIS AND
LOSS OF EPITHELIAL BARRIER
FUNCTION
Observations from models in vitro and in
vivo have established that Giardia parasites
increase intestinal permeability.19 20

Moreover, infection with G lamblia in
gerbils has been associated with increased
macromolecular uptake in the jejunum
during the period of peak trophozoite
colonisation, but not during the parasite
clearance phase.21 Using impedance spec-
troscopy, Troeger et al10 now demonstrate
that chronic giardiasis is also responsible
for a loss of epithelial barrier function in
human infections.10 Infection-associated
loss of epithelial barrier function allows
luminal antigens to activate host immune-
dependent pathological pathways.
Therefore, such events may be of great
clinical relevance. Not surprisingly, intense
research efforts are trying to identify the
molecular events regulating epithelial
tight-junctional function in gastrointestinal
health and disease.22 23 In giardiasis, dis-
ruptions of cellular F-actin and tight
junctional ZO-1, as well as the resulting
increase in transepithelial permeability,
seem to be modulated at least in part by
myosin-light-chain kinase and pro-apopto-
tic caspase-3.20 24 Using TUNEL labelling,
Troeger et al10 report that epithelial barrier
dysfunction in patients with chronic giar-
diasis is associated with increased rates of
enterocyte apoptosis. Consistent with these
observations, recent findings from micro-
array analyses on the effects of G duodenalis
on human CaCo2 cells found that the
parasite–host interactions lead to a pro-
nounced up-regulation of genes implicated
in the apoptotic cascade and the formation
of reactive oxygen species.25 Giardia can also
prevent the formation of nitric oxide, a
compound known to inhibit giardial
growth, by consuming local arginine,
which effectively removes the substrate
needed by enterocytes to produce nitric
oxide.26 This mechanism may contribute to
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Giardia-induced enterocyte apoptosis, as
arginine starvation in these cells is known
to cause programmed cell death.27 Other
studies also found that Giardia disrupts
enterocyte a-actinin, a component of the
actomyosin ring that regulates paracellular
flow across intestinal epithelia.28 In their
study of human giardiasis, Troeger et al10

demonstrate that the parasite may also
alter members of the claudin protein
family, a critical component of the sealing
properties of tight junctions. Together, the
findings indicate that in giardiasis, changes
in enterocyte ultrastructure and function
are associated with a loss of intestinal
epithelial barrier function, and ultimately
lead to diarrhoea. More research is needed
to establish whether or not epithelial
dysfunction in giardiasis also directly con-
tributes to the symptoms of irritable bowel
syndrome that may be elicited by the
infection.29

ROLE OF PARASITE VIRULENCE
FACTORS
Strain-dependent activation of enterocyte
apoptosis as well as loss of epithelial barrier
function induced by Giardia may occur in
the absence of any other cell type, and
small-intestinal permeability returns to
baseline on parasite clearance in murine
giardiasis.12 20 24 28 Giardia virulence pro-
ducts that may instigate these cascades of
events are topics of intensive research. In
addition to expressing surface glycopro-
teins able to induce fluid accumulation in
the intestine, Giardia is known to contain
and/or release a variety of potentially
‘‘toxic’’ substances, such as proteinases
and lectins that may be responsible for
direct epithelial injury.30–34 Recent findings
suggest that a 58 kDa Giardia ‘‘enterotoxin’’
may induce chloride secretion in a model of
murine giardiasis.30 35 Whether or not such
a product may be implicated in the
secretory response seen in humans 10 needs
to be clarified. Also, proteinases have long
been recognised as important virulence
factors in a variety of microbial pathogens,
including Giardia.36 37 Proteinase-Activated
Receptors are members of a unique class of
G-protein-coupled signalling receptors that
can modulate enterocyte apoptosis and
increase intestinal epithelial permeability
in a caspase-3-dependent fashion.38 Much
remains to be learnt of the ability of Giardia
proteinases to activate host proteinase-
activated receptors in the gastrointestinal
tract. Full characterisation of the Giardia
genome should facilitate the identification
of putative Giardia enterotoxins (see Giardia
genome project database at http://gmod.
mbl.edu/perl/site/giardia?page = intro for
updates).39 Such advances may help
identify novel pharmacological targets for
the treatment of giardiasis.

CONCLUSION
The article by Troeger et al offers important
confirmatory and new evidence on several
critical events implicated in the pathophy-
siology of giardiasis. As these data emanate
from humans with chronic infections, they
bear direct clinical relevance. A better
knowledge of how Giardia parasites alter
epithelial structure and function may
provide the key to understanding the
diseases caused by giardiasis, and possibly
a number of other gastrointestinal disorders.
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