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Autologous transplantation can be used to treat Hirschsprung’s
disease by implantation and proliferation of the crest-derived stem
cells in vitro

O
ne might think that
Hirschsprung’s disease (congeni-
tal megacolon) should be passé as

a medical problem. After all, many genes,
including RET, GDNF, NRTN, EDNRB,
EDN3, ECE1, PHOX2b, SOX10, PAX3 and
SMADIP1 (SIP1, ZBFX1B),1–7 have suc-
cessfully been linked to its pathogenesis.
Knowledge of the actions and interac-
tions of these genes and their products
has enabled the processes by which the
bowel is colonised to be, if not completely
understood, at least comprehended in
general terms.3 8–10 Effective treatment
for Hirschsprung’s disease, moreover,
exists in the surgical removal of the
aganglionic segment of bowel.11–13

Unfortunately, the medical problems
posed by Hirschsprung’s disease continue
despite the lengthy list of genes impli-
cated in its generation and the progress
that has recently been made in under-
standing enteric nervous system (ENS)
development. Unresolved medical pro-
blems continue because advances made
in comprehending genes and pathogen-
esis have not been translated into new
and improved methods of treatment;
moreover, although surgical techniques
are evolving and associated morbidity is
decreasing,12 13 the surgical treatment of
Hirschsprung’s disease essentially converts

an otherwise lethal defect into a chronic
condition with which many, if not most,
patients must learn to cope.14 15

Hirschsprung’s disease occurs when a
variable length of terminal bowel is
congenitally aganglionic. Because the
reflexes and behaviours mediated by the
ganglionated plexuses of the ENS are
essential for propulsive motility and
normal secretion,16 aganglionosis results
in a pseudoobstruction that, if left
untreated, is incompatible with life.
Reliable modern statistics on untreated
Hirschsprung’s disease are not available
because failure to treat it is immoral;
however, aganglionosis is lethal to ani-
mals with genetic defects that model the
condition.17–23 Because the aganglionic
region of the bowel lacks the inhibitory
neurotransmitter nitric oxide some
authors have speculated that the agan-
glionic zone goes into spasm and narrows
to become obstructive24; however, it is
more likely that motor patterns simply
fail to propel luminal contents through
the aganglionic zone so that the gang-
lionated bowel proximal to the aganglio-
nic segment dilates. Removal of the
aganglionic portion of the gut is thus
obviously necessary in the treatment of
Hirschsprung’s disease, but in many
patients it is not sufficient.

The greatest problems faced by patients
after the definitive surgical correction of
the aganglionosis of Hirschsprung’s dis-
ease include faecal soiling,15 constipation
and postoperative enterocolitis.25 Studies
vary in the reported incidence of these
complications, and the type of surgery
used to carry out the repair undoubtedly
matters; however, soiling has been
reported in as many as 76% of patients.15

A transanal one-stage pull-through
operation may be advantageous for rec-
tosigmoid aganglionosis13 even though it
carries a high risk of postoperative enter-
ocolitis because a single surgical proce-
dure is preferable to two12 25; however, a
modified Duhamel procedure has been
advocated as superior to any other for
total colonic aganglionosis.26 Whatever
procedure is used, faecal soiling is a
serious risk, which over the long term
causes surprisingly less psychiatric mor-
bidity than would be expected, given the
social stigma attached to that particular
defect; nevertheless, faecal soiling gives
rise to a great deal of concern in families
and is highly distressing to patients.15 The
outcomes of treatment are worse for
patients with total colonic aganglionosis
than for those with short-segment dis-
ease, and patients with total colonic
aganglionosis tend to perceive themselves
as less well adjusted than their matched
pairs with a shorter aganglionic region of
gut.27 Additional surgeries, including pos-
terior myotomy/myectomy, can be under-
taken to lessen the effect of persistent
soiling, but these procedures are not
invariably successful.28 Clearly, no treat-
ment that carries a high risk of faecal
soiling can be considered to be perfect,
and one has to examine what we know
about the pathogenesis of Hirschsprung’s
disease and the development of the ENS
to determine whether anything can be
done that is better than what is now
being done to treat Hirschsprung’s dis-
ease.

The gut is colonised by precursors that
migrate to it from the neural crest. The
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premigratory crest is a heterogeneous
structure, in that it seems to contain both
pluripotent and fate-restricted precursor
cells.29–34 The population of postmigratory
cells that colonises the gut is multipotent
when it arrives in the bowel,35–37 although
individual cells within this population
may already be committed to a single
fate. The observation that a subset of the
serotonergic neurones of the mouse
bowel are born as early as embryonic
day 8.5, which precedes the migration of
any crest-derived cells into the gut,
strongly suggests that some cells of the
colonising population of crest-derived
cells are committed and even postmitotic
when they enter the bowel.38 Despite the
fact that the crest-derived cell population
that colonises the gut contains members
that are postmitotic, the group also
contains cells that are self-renewing,
multipotent stem cells. In fact, it is of
particular interest that stem cells are still
present in the postnatal bowel.39–41 Both
hope and logic suggest that these neural
crest-derived stem cells may ultimately
provide a solution to the unsatisfactory
current status of treatment for
Hirschsprung’s disease.

Major problems must be overcome
before enteric neural crest-derived stem
cells can be successfully used to treat
Hirschsprung’s disease, and at least some
of these problems have successfully been
dealt by Almond et al42 (see page 489).
First, the crest-derived stem cells have to
be isolated and then expanded to obtain
enough cells for autologous transplanta-
tion, which would be the goal. Once
instilled into the bowel wall, moreover,
these cells would have to migrate to the
correct destinations and form appropriate
connections with one another so that
they can reconstitute the reflexes and
integrative neural activity of the normal
ENS. It is obviously not enough just to get
neurones to form, or even to migrate to
correct destinations in the bowel wall;
neurones must be functional and in
sufficiently good control of effectors so
that reflexes are rescued and the pseudo-
obstruction of Hirschsprung’s disease can
be corrected. Almond et al42 have adapted
the technique of producing neurospheres
from single-cell suspensions to obtain
enriched populations of crest-derived
stem cells43–45 and they have been able to
expand the size of the original population
by maintaining the proliferation of stem
cells in vitro. The investigators, further-
more, succeeded in implanting crest-
derived stem cells into an aganglionic
mouse gut and, after doing so, they
observed that the cells fortunately migrate
along pathways that are appropriate for
cells derived from the neural crest.
Strikingly, the implanted crest-derived

stem cells differentiate within the agan-
glionic zone to give rise to end-stage cells
that express phenotypic markers identify-
ing them as enteric glia and neurones. The
neurones, furthermore, express some of the
molecules that characterise the chemical
code used for identifying enteric neu-
rones,46 such as vasoactive intestinal pep-
tide and nitric oxide synthase.

This report is undoubtedly a major step
forward, which, for the first time, implies
that autologous transplantation of neural
crest-derived enteric stem cells is realistic
as a prospective treatment for the agan-
glionosis of Hirschsprung’s disease. Of
course, one must be cognizant, as are
Almond et al,42 of the enormity of the
remaining problems that must still be
overcome before autologous transplanta-
tion replaces pull-through operations as
routine treatment for Hirschsprung’s dis-
ease. Although Almond et al demonstrate
that some of the correct markers are
expressed by the neurones that develop
from grafts of neural crest-derived stem
cells, they have not shown that the full
chemical code46 is acquired. The mini-
mum number of neurotransmitters and
neuromodulators necessary for function
is unknown, because it is unclear as to
whether or not a serviceable ENS might
be formed if some of the elements of the
normal chemical code failed to develop.
More importantly, Almond et al were not
yet able to determine whether synaptic
connections developed between enteric
neurones, and between these neurones
and their effectors. In the absence of that
information, one can only speculate about
whether the newly formed neurones
fashion themselves into the complex
microcircuits responsible for regulating
propulsive and secretory activity. The
bottom line restoration of function and
clearing of the pseudo-obstruction,
furthermore, are still to be demonstrated.
There are, however, always many hurdles
in the path that leads from scientific
discoveries to successful treatment.
Although Almond et al have not cleared
all of them in showing that autologous
transplantation can be used to treat
Hirschsprung’s disease, they have leaped
across some daunting hurdles and have
thus started the race to the cure.
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In vivo single-photon emission computed
tomography imaging of apoptosis in
Crohn’s disease and anti-tumour
necrosis factor therapy
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I
t has long been known that apoptosis
of T cells is an important mechanism
for terminating inflammatory reac-

tions.1 It was proposed over 10 years ago
that defective apoptosis could play a role
in the pathogenesis of inflammatory
bowel disease.2 There is now substantial
experimental and clinical evidence sup-
porting this hypothesis.3

In Crohn’s disease there is an expan-
sion in CD4 T-cell populations mediated
by tumour necrosis factor (TNF) and c-
interferon (IFN-c), which activate macro-
phages to release interleukin-6, interleu-
kin-12 and TNF.4 5 These cytokines act to
perpetuate the inflammatory reaction by
reducing the susceptibility of T cells to die
by apoptosis.3 In the uninflammed state,
lamina propria T cells have a higher
susceptibility to apoptosis than unstimu-
lated T cells from the peripheral blood
because of high expression of the apop-
tosis-inducing receptor Fas.6 In contrast
to this, lamina propria T cells from

patients with Crohn’s disease are resis-
tant to apoptotic stimuli.7 These observa-
tions suggest that apoptosis limits the
number of CD4 T cells in healthy indivi-
duals whereas in Crohn’s disease expan-
sion of T-cell populations can occur
without the restriction of apoptosis.

This resistance to induction of apopto-
sis is mediated by interleukin-12, the
interleukin-6 receptor and TNF.
Interleukin-12 is one of the most impor-
tant cytokines in Crohn’s disease promot-
ing Th1 T-cell differentiation. It also
renders T cells resistant to Fas-induced
apoptosis, possibly through inhibition of
caspase 3 and 9, thereby prolonging T-cell
survival.8 Early clinical studies have
shown that antibodies that block the
action of interleukin-12 reduce the sever-
ity of Crohn’s disease.9 Such antibodies
also increase apoptosis in lamina propria
T cells and reduce the severity of trini-
trobenzene sulphonic acid experimental
colitis.5

Interleukin-6 secreted by lamina pro-
pria macrophages and T cells also pro-
motes the survival of T cells by inhibiting
apoptosis. Complexes of interleukin-6/
interleukin-6 receptor activate lamina
propria T cells expressing the cytokine
receptor gp130 on their surface. This
activates a signal transduction pathway
involving the phosphorylation, by JAK
kinases, of the transcription factor STAT3.
STAT3 increases the expression of the
anti-apoptotic protein Bcl-xL thereby
increasing the resistance of T cells to
apoptosis.4

Perhaps the most compelling evidence
for the importance of apoptosis in
Crohn’s disease has come from analysis
of the mechanism of action of anti-TNF
therapy. Though complex, a full under-
standing of the biology of TNF is essential
for an appreciation of its role in the
treatment of Crohn’s disease. TNF is a
cytokine that has many proinflammatory
effects. A precursor form called trans-
membrane TNF-a (mTNF) is expressed
on the surface of activated lymphocytes
and macrophages. The extracellular 157
amino acids can be cleaved off mTNF and
secreted. Both the secreted and trans-
membrane forms can induce apoptosis.
Secreted TNF can bind either of the two
TNF receptors, TNF-R1 (p55) or TNF-RII
(p75), and activate the extrinsic apoptosis
pathway through caspase 8.10 The trans-
membrane form can also activate the
extrinsic apoptosis pathway by binding
to TNF-RII.11

However, a third mechanism of indu-
cing apoptosis may be the most relevant
for the treatment of Crohn’s disease with
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