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IMMUNE ACTIVATION AND SUPPRESSION IN INFLAMMATORY BOWEL DISEASES
The intestinal immune system is in a constant state of controlled inflammation, and there is

substantial evidence that loss of control is an important pathogenic mechanism in inflammatory

bowel diseases (IBD). A major current working hypothesis defines Crohn’s disease as a dysregulated

immune response towards components of the intestinal flora, leading to chronic intestinal

inflammation.1 The causes for this inappropriate response can be attributed to (a combination of)

defects in the epithelial barrier, the innate immune response or the adaptive immune response.

Animal experiments as well as clinical data indicate that the immunopathogenesis of Crohn’s

disease and ulcerative colitis differ at the level of T cell differentiation and activation although the

governing mechanisms responsible for these differences have been incompletely defined. In both

diseases, activation of T cells is evident but pathogenic T cells in Crohn’s disease predominantly

produce interferon c (membrane bound), tumour necrosis factor (TNF)a and interleukin (IL)-23

whereas ulcerative colitis is characterised by production of IL-5 and IL-13.2 3

The increased production of ‘‘Th1’’ type cytokines in Crohn’s disease is probably related to

increased activation of mucosal dendritic cells and macrophages, and the pivotal function of

membrane associated (Toll-like receptor (TLR)) and intracellular (nucleotide oligomerisation domain

(NOD) family) receptors in the activation of these antigen presenting cells (APC) has now been well

established. Both receptors are key mediators of innate host defence, crucially involved in

maintaining intestinal homeostasis.4 In healthy subjects, the colonic mucosa harbours ‘‘non-

inflammatory’’ dendritic cells, expressing low levels of TLR2 and TLR4 and producing cytokines such

as IL-10, contributing to a non-inflammatory environment,5 6 but in the mucosa of patients with

Crohn’s disease the production of IL-12 is greatly increased.7–9 Dendritic cells in both ulcerative colitis

and Crohn’s disease have an activated phenotype with higher levels of the activation markers CD40

and CD86, and produce more IL-12 and IL-6 compared with controls.5 10

The causes for this excessive activation are presumably diverse and have been incompletely

defined. A minority of patients with Crohn’s disease have inactivating mutations within the

susceptibility gene NOD2. The NOD2 protein is normally stimulated by its natural ligand muramyl

dipeptide, a degradation product of bacterial peptidoglycan.11–13 Some studies have shown increased

activation of nuclear factor kB, which in antigen presenting cells causes increased transcription of IL-

12. Indeed, dendritic cells from patients with Crohn’s disease with NOD2 mutations produce

increased amounts of IL-12 after stimulation with peptidoglycan, most likely via loss of inhibition of

the simultaneously activated TLR2 pathway (Zelinkova et al, submitted). It should be noted that

other studies have shown impaired activation of nuclear factor kB in patients with Crohn’s disease

with NOD2 mutations, suggesting decreased activation.14 15 Hence it remains unclear what

mechanism is responsible for the excessive Th1 profile in Crohn’s disease and whether the

underlying genetic defects lead to initial decreased immune activation with failure to clear

pathogens, or whether these mutations directly increase activation of immune cells such as dendritic

cells. Abnormal activation and expression of TLR receptors may also be linked to IBD: associations of

TLR4 and TLR5 signalling with their bacterial ligands lipopolysaccharide (LPS) and flagellin,

respectively, have been reported,16 17 enhanced expression of TLR2 and TLR4 on dendritic cells has

been observed5 and recent studies suggest that Crohn’s disease is also associated with TLR9 promoter

polymorphisms.18

In addition, defective apoptosis of T cells has been suggested to play a role in the pathogenesis and

chronic state of inflammation in Crohn’s disease. Lamina propria T cells from patients with Crohn’s

disease were shown to be resistant to activation induced cell death whereas lamina propria T cells

from healthy controls readily underwent apoptosis.19 20 The latter would clarify the effective
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therapeutic action of anti-TNFa agents such as infliximab in

Crohn’s disease, as this reagent was shown to induce apoptosis

through binding to membrane bound TNFa.21

Although the precise cellular and molecular pathways

involved remain to be elucidated, these findings give solid

and abundant evidence for increased stimulation or dysregula-

tion of the innate immune system in IBD that, in the case of

Crohn’s disease, results in induction of hyperactive T cells

which is probably necessary for the initiation of chronic

mucosal inflammation.

Increased activation of the innate and adaptive mucosal

immune systems is tightly controlled by various regulatory

circuits, and it is possible that defects in such mechanisms that

normally downregulate intestinal inflammation are insufficient

in IBD.

This review discusses evidence for abnormal regulation of T

cell activation in Crohn’s disease, as well as data pertaining to

the existence and functional activity of regulatory T cells (Treg)

in the intestinal mucosa. We also consider the potential

therapeutic application of Treg in IBD.

REGULATORY MECHANISMS IN THE GUTc
The immune system controls activation of the innate as well as

the adaptive arms through various means, primarily including

induction of anergy, apoptosis of activated immune cell and the

activities of regulatory CD4+ T cells. In addition, several other

regulatory mechanisms are operational in the gut mucosa,

including CD8 T cells, cd T cells and NKT cells, that are highly

correlated with their surrounding epithelial cells, and IL-10

secreting B cells, immature dendritic cells and plasmacytoid

dendritic cells.

Intraepithelial CD8 T lymphocytes, cd T cells and NKT cells

are mucosal T cell subsets with a restricted T cell receptor

repertoire that are in close contact with mucosal epithelial cells.

There is evidence that these interactions can lead to induction

of T cells with regulatory capacities: for example, interactions

between human intestinal epithelial cells and peripheral blood

T cells cause expansion of CD8+CD282 T cells with regulatory

activity.22 These cells are present in the lamina propria of

healthy individuals but not in the lamina propria of patients

with IBD,23 suggesting that these cells prevent the pathogenesis

of IBD. Intraepithelial lymphocytes have been reported to

downregulate excessive inflammation caused by infection and

autoimmunity in epithelial tissues and their protective ability

has been shown in several murine models of colitis.24–28

Accumulating evidence implicates additional cell types in

immunoregulation. Recent studies have revealed a protective

role of IL-10 producing B cells in murine CD4+ T cell colitis29

and inhibition of antigen specific T cell proliferation by

plasmacytoid dendritic cells. This dendritic cell population has

a marked presence in mucosal tissue and is, in common with

steady state lamina propria immature dendritic cells, able to

induce a non-anergic state of T cell unresponsiveness that

involves the differentiation of Treg30 31

These data indicate that mucosal immune activation is

regulated at various levels by different cells that downregulate

immune responses. A rapidly expanding body of evidence

indicates that the most important among these regulatory cells

reside within the CD4+ T cell population, and these will be the

further focus of this review.

REGULATORY CD4+ T CELLS: PHENOTYPE, FUNCTION
AND REGULATION
Once T cells are activated through engagement of the T cell

receptor, they do not distinguish between ‘‘self’’ and ‘‘non-

self’’. It is now clear that the human immune system regards

antigens expressed by the normal gut flora as ‘‘self’’. Because

activated T cells that recognise self-antigens induce significant

tissue damage, it is important to either prevent their activation

or control proliferation. It has long been known that most high
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Figure 1 Regulatory T cells and their
function. Several types of regulatory T
cells (Treg) have been identified and the
mechanisms of suppression may differ.
Thymus derived regulatory T cells, also
known as naturally occurring regulatory
T cells, are a subset of CD4+CD25+ T
cells and are thought to suppress
activation of T cells at level of antigen
presenting cell. Adaptive peripheral
induced regulatory T cells include Tr1,
Th3 and CD8. These cells produce the
immunosuppressive cytokines interleukin
(IL)-10 and/or transforming growth
factor (TGF)b and function in a cytokine
dependent manner. IFN-c, interferon c.
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affinity self-reactive T cells are clonally deleted within the

thymus but this system is leaky and by itself insufficient to

prevent autoreactivity. Hence prevention of autoreactivity is

also continuously controlled outside the thymus, and this

‘‘peripheral tolerance’’ is critically dependent on the presence of

Treg.

Although, in general, microbes mount strong immune

responses, the resident gut flora is unable to activate T cells

in healthy individuals. Thus there should be a mechanism by

which potentially detrimental immune responses in the gut are

prevented.

Regulatory CD4+ T cells represent a population of lympho-

cytes with the ability to suppress both adaptive and innate

immune responses (fig 1),32–34 and these characteristics make

them important for both maintenance of immunological

tolerance and control of antimicrobial responses. Various types

of Treg have been identified (table 1), but because specific

phenotypic markers have long been lacking, it is uncertain to

what extent these Treg constitute separate lineages.

Nonetheless, Treg can be divided into two major groups, the

so-called ‘‘naturally occurring’’ Treg and ‘‘adaptive’’ Treg,

containing the so-called Tr1 and Th3 cells.35

‘‘NATURALLY OCCURRING’’ REGULATORY T CELLS
Most CD4+ T cells that recognise autoantigens in the thymus

with high affinity are either clonally deleted or differentiate

into a ‘‘naturally occurring’’ Treg. This cell is characterised by a

unique phenotype and potent suppressive function towards

autoreactive peripheral T cells. Thymus derived Treg constitute

about 5–10% of mouse and 1–2% of human peripheral CD4+ T

cells. Initially, these cells were identified by their CD4+CD25high

phenotype but an increasing number of markers has been

recently reported (table 2). Several membrane expressed

molecular markers such as CD25 (IL-2 receptor a chain),

glucocorticoid induced TNFR family related protein (GITR) and

cytotoxic T lymphocyte associated antigen 4 (CTLA-4) are

constitutively expressed on Treg but can also be observed on

activated non-regulatory T cells, and it was not until the

discovery of the foxp3 gene (FOXP3 in humans) that a unique

marker for murine Treg was identified. Mutations in Foxp3

result in severe autoimmune reactivity in both mice and

humans, leading to, respectively, the scurfy or IPEX (immune

dysregulation, polyendocrinopathy, enteropathy, x-linked) syn-

drome. The foxp3 gene was identified as a master regulatory

gene; it is constitutively and specifically expressed in natural

Treg and plays an indispensable role in their development and

function. Furthermore, forced expression of foxp3 can convert

naı̈ve peripheral blood T cells to Treg cells.36 The specificity of

foxp3 in mice is clear; it is solely expressed in Treg and the scurfy

mutation is always related to defective suppressive function.

Conversely, the expression of FOXP3 in humans is not restricted

to Treg and can be induced on activation of conventional T cells,

albeit at much lower levels than in natural Treg. To add to the

confusion, it has been reported that IPEX patients have varying

degrees of disease severity and not all patients have dysfunc-

tional Treg.37 Even with these restrictions, there is general

consensus that FOXP3 expression is highly correlated to the

suppressive function of CD4+ CD25high T cells.

It has recently become apparent that expression of the a-

chain of the IL-7 receptor, CD127, allows an unambiguous flow

cytometry based distinction of Treg (CD127low) and non-

regulatory T cells (CD127high) within the CD4+CD25+ popula-

tions. CD127low cells were strongly suppressive in functional

suppressor assays and expression of FOXP3 protein was highly

correlated to a CD127low phenotype.38 39 These findings are

important because human Treg can now be accurately

identified and isolated.

Treg were originally thought to be anergic when stimulated

ex vivo, yet adoptive transfer studies using (DO11.10) T cell

receptor (TCR) transgenic CD4+CD25+ cells have clearly

demonstrated the ability of these cells to expand in vivo on

TCR stimulation.40 Recently, it has been shown that human

Treg can be greatly expanded ex vivo by TCR stimulation in the

presence of high concentrations of IL-2 as CD25 is functionally

essential as a key component of the high affinity IL-2

receptor,41 42 largely increasing their potential for therapeutic

manipulation. The exact mechanism of suppression by Treg

remains uncertain. In vitro, the suppressive function can be

assessed by coculturing Treg with conventional CD4 (or CD8) T

cells ( ‘‘responder’’ T cells) in a mixed leucocyte reaction. The

proliferation of conventional T cells in such assays is induced

via TCR stimulation by allogeneic peripheral blood mono-

nuclear cells (PBMCs) or agonistic anti-CD3 antibodies. In the

Table 1 Characteristics of the different regulatory T cell subsets

Feature Naturally Treg Adaptive Treg

Subpopulations CD4+CD25+ Tr1 Th3
Site of induction Thymus Periphery
Mechanism of action Cell–cell contact, cytokine

independent
Cytokine dependent

Characterisation CD25+ and Foxp3+ IL-10 TGF-b
Specificity Self-antigens in the thymus Tissue specific antigens and foreign antigens
Protection demonstrated Transfer colitis, SCID Transfer colitis, SCID Neutralising TGF-b

antibodies

IL, interleukin; TGF-b, transforming growth factor b; Treg, regulatory T cells.

Table 2 Cell surface and intracellular markers
constitutively expressed by thymus derived natural
regulatory T cells

Species Cell surface Intracellular

Murine CD25+, CD122+, CD69+, CD44+,
CD45RBlow, GITR+, CD103+(aE-integrin),
CD134+(OX-40), CD54+(ICAM)

CTLA-4+, Foxp3+

Human CD25high, CD122+, HLA-DR+(50%),
CD45RO+(80%), CD95high, CD45RBlow,
CD38low, partly CD62low, GITR+,CD127low

CTLA-4+, FOXP3+
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presence of Treg, in ratios below 1/10, the proliferation of the

responder T cells and their cytokine production is strongly

suppressed. In these in vitro studies, the suppressive function is

cell contact dependent and independent of cytokines. However,

mouse studies have proven the suppression to be dependent on

cytokines such as transforming growth factor (TGF)b and IL-

10. The mechanisms responsible for these differences between

in vivo and in vitro results remain to be fully explained.

Treg execute suppressive functions as soon as they are

activated via the TCR, aspecifically (CD28, CD3), by a natural

(HLA class II presented) ligand or by foreign antigens that are

cross reactive to self-antigen receptors43 in the periphery. Treg

not only suppress proliferation but also downregulate activa-

tion, differentiation and even effector function of multiple

immune cells, including CD4+ and CD8+ T cells, natural killer

cells and dendritic cells.44–46

APC are able to regulate Treg activation by differential

expressed costimulatory molecules and MHCII molecules.

Although the precise mechanism of CTLA-4 expression and

its involvement on Treg is not known,47 it is thought that

engagement of CTLA-4 by CD80/CD86 on dendritic cells

activates Treg, whereas interaction with CD28, in the context

of TCR activation, downregulates suppression. In addition,

activation of GITR by GITR ligand (which is expressed on

dendritic cells) downregulates Treg function.48 An integrin that

is expressed by dendritic cells, CD103, is also involved in T cell

polarisation, promoting a positive balance of Treg over effector

T cell activity in the intestine.49 Interestingly, the very same

stimuli (ie, LPS) that cause APC such as dendritic cells to

become activated and present antigen, have a direct effect on

Treg. Murine CD4+CD25+ Treg express TLR1, TLR 2 and TLR 4–

8, and activation of TLR-4 and TLR-5 by LPS and flagellin,

respectively, activates Treg and increases suppressor function in

vitro.50–52 Therefore, TLR activation of Treg seems to counteract

uncontrolled activation of T cell proliferation. Conversely,

natural ligands for TLR8 and TLR2 can reverse Treg func-

tion.53 54

The functional importance of Treg is underscored by many

observations in mice where depletion of the CD4+CD25+

population precipitates diseases characterised by autoreactive

T cells.55–59

‘‘ADAPTIVE’’ REGULATORY T CELLS
Apart from the CD4+CD25+ thymus derived Treg, there is

evidence for the existence of Treg that are induced in the

periphery, the so-called ‘‘adaptive’’ Treg. In mice and humans,

peripheral conventional CD4+ T cells were shown to differ-

entiate into CD4+CD25+ Treg under the influence of TGFb in

addition to TCR mediated signals.60–62 Alternatively, adaptive

Treg which are phenotypically distinct from Treg from

intrathymic origin have been identified, and known as the

Th3 and Tr1 T cell subsets. These generally do not express CD25

or foxp3 and are characterised by the secretion of the

immunosuppressive cytokines TGFb and IL-10, respectively.

Although their functions are complex and incompletely under-

stood, it seems that their suppressive activity is critically

dependent on the production of regulatory cytokines.

A classical example of peripheral regulatory cells is the Th3

Treg that secretes predominantly TGFb together with varying

amounts of IL-4 and IL-10, and mediates oral tolerance.63 64 The

main immunosuppressive effect of TGFb is inhibition of Th1

responses via downregulation of IL-12b2 chain expression, and

TGFb itself is required for differentiation of TGFb producing

cells. Th3-like cells have been shown to be important in some

cases of allergy and in autoimmune diseases.65 66

Tr1 cells were initially isolated from human SCID chimera

and subsequently derived by culturing naı̈ve T cells in the

presence of high concentrations of IL-10. They secrete high

levels of IL-10, a cytokine that inhibits Th1 induction by

downregulation of IL-12, and suppress the production of

proinflammatory effector cytokines. Tr-1 cells are anergic,

functionally suppressive in vitro, generally produce low levels

of TGFb and IL-5 but no IL-4, and are critically dependent on

IL-10 for their function and development.67 In SCID patients

transplanted with HLA mismatched haematopoietic stem cells,

the number of Tr1 cells correlated with tolerance of the host to

the graft.37

Proliferation of murine Tr1 cells in vivo is induced by

plasmacytoid dendritic cells that express low numbers of CD11c

and costimulatory molecules, and secrete large amounts of IL-

10.68 Human Tr1 cells can be induced ex vivo with the

pharmacological immunosuppressant vitamin D3 and dexa-

methasone69 and by immature (CD832) dendritic cells.70 In

contrast with the latter observations, we have demonstrated

that induction of Treg that result from activation of monocyte

derived CD11c+ dendritic cells by probiotic bacteria requires full

maturation of the dendritic cells (Braat H et al, submitted).

Induction of these Treg is dependent on production of IL-10 by

the mature dendritic cells, and although these Treg also secrete

IL-10, this is not required for their regulatory function.

In summary, peripheral Treg comprise a heterogeneous group

of T cells that secrete immunomodulatory cytokines that have

been implicated in various inflammatory conditions.

REGULATORY T CELLS IN EXPERIMENTAL COLITIS
It is well known that adoptive transfer of T cells depleted of

CD4+CD25+ cells in immunodeficient mice causes multiorgan

autoimmunity in the recipient animals71 and many studies have

demonstrated that depletion of CD4+CD25+ T cells in mice

aggravates T cell mediated models of inflammation,72 including

colitis.73 Conversely, Treg clearly have anti-inflammatory effects

in various murine models of IBD. For example, the induction of

colitis that results from transfer of CD4+CD45RBhigh T cells into

immunodeficient mice can be prevented by cotransfer of the

antigen experienced CD4+CD45RBlow T cells. Thymus derived

Treg are CD45RBlow, and it is now thought that the CD4+CD25+

Treg present in the CD4+CD45RBlow subset are responsible for

this regulatory activity.74 75 Cotransfer with isolated CD4+CD25+

T cells prevents the induction of colitis which is reverted by the

addition of monoclonal anti-CTLA-4, anti-IL-10R or anti-TGFb

antibodies. Not only do CD4+CD25+ T cells prevent the

induction of colitis, they can also reverse established colitis

and wasting disease, indicating their importance in controlling

ongoing immune mediated inflammation.76

Peripheral Treg with a Tr1 phenotype also have the capacity

to control colitis. Chronic activation of OVA specific naı̈ve CD4+

T cells in the presence of IL-10 induced Tr1 cells that produced

large amounts of IL-10 after exposure to OVA. These cells

were able to control colitis induced by pathogenic

CD4+CD45RBhigh T cells in immunodeficient mice, and this
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function was dependent on activation of the T cell receptor by

OVA.77 78 Mouse strains deficient in IL-10 spontaneously

develop chronic enterocolitis, underlining the importance of

IL-10 in controlling responses against the commensal flora.79–81

Treatment with recombinant IL-10 in the T cell transfer model

prevents but does not cure established colitis. In contrast, local

mucosal delivery of recombinant IL-10 by the genetically

modified bacteria of the strain L lactis seemed to be effective

when disease activity was well established, and ameliorated

DSS induced colitis and colitis in IL-10 deficient mice.82

TGFb is also recognised for its ability to downregulate

immune responses. TGFb1 deficient mice develop a systemic

inflammatory response, and blockade of TGFb signalling in T

cells results in T cell activation and induction of IBD in mice.83

CD4+ Th3 cells protect against uncontrolled inflammation in

the gut, and in models of intestinal inflammation TGFb

producing mucosal T cells were shown to reduce disease

activity.84–86

THE ROLE OF REGULATORY T CELLS IN
INFLAMMATORY BOWEL DISEASES
Because it has long been difficult to reliably characterise Treg,

all data about their presence and functional characteristics in

humans are recent, and some of these data require confirma-

tion. Several clinical observations indicate that the CD4+CD25+

population in patients with ‘‘autoimmune’’ diseases such as

multiple sclerosis, uveitis and autoimmune polyglandular

syndromes II is functionally defective.87 In patients with

Crohn’s disease, approximately 6% of both peripheral blood

and lamina propria T cells were found to be CD4+CD25+, and

the fraction with a high expression of CD25 (CD25bright)

expressed CTLA-4 and GITR. In contrast with peripheral blood

T cells, some expression of CTLA-4 and GITR was found on

lamina propria CD4+CD252 T cells. In agreement with this

finding, Foxp3 was predominantly transcribed by

CD4+CD25bright lamina propria T cells, and to a lesser extent

by CD4+CD252 T cells. When tested for functional properties, it

was found that lamina propria CD4+CD25bright T cells, but not

CD4+CD252 T cells, suppressed the proliferation (as well as

cytokine production) of peripheral blood CD4+CD252 T cells88 89

but not of lamina propria CD4+CD252 T cells. The inability of

lamina propria Treg to suppress proliferation of lamina propria

T cells may be related to the relative anergic and memory

phenotype of the latter.85 Likewise, CD4+CD25+ T cells isolated

from human colonic mesenterial lymph node in ulcerative

colitis display typical features of Treg cells and possess potent

suppressor activity in vitro in spite of persistent mucosal

inflammation {unpublished results, Saruta M et al, DDW 2006,

abstract 599}.

At present, these sparse data on Treg in IBD suggest that the

inflammatory pathology in patients with Crohn’s disease does

not result from an absence or altered functionality of the Treg

population although the increase in Treg numbers and activity

may be insufficient to suppress the inflammatory condition.90

There are no reliable data on the existence of Tr1 or Th3 cells

in the human mucosa, or on their functional properties. IL-10

deficient mice develop IBD but patients with IBD do not have

deficient IL-10 production.91 Remarkably, isolated T cells from

patients with IBD were found to express high levels of SMAD7,

a negative regulator of TGFb signalling, suggesting that

impaired responsiveness to TGFb may be involved in IBD.92 93

The functional role of lamina propria Treg may be more

complex than that of peripheral regulatory cells because of the

necessity to specifically suppress immune responses to endo-

genous bacteria but not to bacterial pathogens.

THERAPEUTIC POTENTIAL OF REGULATORY T CELLS
As described above, Treg can prevent and even cure various

experimental colitis models. Although their therapeutic poten-

tial is without dispute, translation of these data into therapeutic

strategies is not straightforward. Furthermore, the ability to

apply this therapeutic strategy in a human clinical setting will

depend on techniques to isolate and transfer adequate numbers

of cells. In most mouse models of autoimmune diseases, the

antigens that induce T cell activation are known, and antigen

specific Treg are able to potently suppress activation in an

antigen dependent manner. For example, in the NOD model of

autoimmune diabetes, islet antigen specific BDC2.5 Treg

completely prevent diabetes. However, polyclonal Treg are at

least 50-fold less potent than antigen specific Treg and can only

be a viable therapeutic option in this context when sufficient

numbers are applied.94

Although there is evidence for a role of peptidoglycan and

flagellin at the level of dendritic cell stimulation, it is not

known what antigens are involved in the pathogenesis of IBD,

excluding the possibility to using antigen specific Treg. It is now

clear that Treg do not need to be antigen specific in order to

suppress immune responses as a result of so-called bystander

suppression (fig 2). A clear example of bystander suppression

was demonstrated in the SCID transfer model where OVA

specific Tr1 cells suppressed the occurrence of IBD after

administration of OVA although OVA is not involved in the

Lumen

Mucosa
TR1

IL 10
TGFb

IFNc
TNF
IL 17

TH1

IL 12

_

_

Figure 2 Bystander suppression. Presentation of bacterial antigens to
naive T cells by dendritic cells results in the generation of Th1 effector cells
that migrate into the intestine and cause an inflammatory response.
Because the antigens that are involved in inflammatory bowel disease are
unknown, therapeutic application of Treg requires antigen-non-specific
suppression. Bystander suppression is the capacity of Treg to suppress
immune responses that are caused by a different antigen. The mechanisms
involved include the production of regulatory cytokines, deactivation of
dendritic cells that attempt to stimulate effector T cells, or direct contact
with the responding T cell. The concept of bystander suppression has been
shown for Tr1, CD4+CD25+, Th3 and CD8+ T cells. IFNc, interferon c; IL,
interleukin; TGFb, transforming growth factor b; TNF, tumour necrosis
factor.
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immune mediated inflammation in this model.95 Therefore, the

OVA specific Tr1 cells were able to suppress responses induced

by other antigens, very likely derived from intestinal bacteria,

and this is known as ‘‘bystander’’ suppression. In various

situations CD4+CD25+ Treg, once activated by their TCR, have

been shown to be capable of such antigen-non-specific

bystander suppression.96

Apart from bystander suppression, Treg inhibit the response

of conventional CD4 T cells in a contact dependent manner and

can even confer suppressive properties to such T cells. This

process is known as ‘‘infectious tolerance’’ and results in the

conversion of conventional T cells into IL-10 producing Tr1-like

cells and TGFb producing Th3-like cells.97 These concepts of

‘‘infectious tolerance’’ and bystander suppression are instru-

mental in providing a context for using Treg as a potential

therapy.

It has now become possible to produce and expand sufficient

CD4+CD25+ and Tr1-like cells for therapeutic application, and

clinical studies have been initiated. For example, in a currently

ongoing clinical trial, Roncarolo et al (personal communication)

used ex vivo induced Tr1 cells as post-transplant cellular

therapy in haematological cancer patients undergoing HLA-

haploidentical HSC transplantation. After a 10 day ex vivo

culture of donor PBMC in the presence of irradiated host PBMC

and IL-10, the IL-10 anergised donor T cells are infused into the

host. The ultimate goal is to provide immune reconstitution

with donor T cells that are anergic towards host antigens and

contain precursors of host specific Tr1 cells. Although promis-

ing, the clinical usage of Tr1 cells for the cure of T cell mediated

diseases is still in a developmental stage.77

A second important observation has been that regulatory

functions can be imprinted in mouse and human T cells by

genetic engineering. Unselected peripheral blood naı̈ve mouse T

cells become regulatory following transfection with a retroviral

vector encoding IL-10, and these cells are able to suppress

inflammation by a bystander mechanism.98 Such cells can also

be generated from human peripheral T cells.99 Using similar

techniques, FOXP3 can be overexpressed in human CD4+ T cells

but the data on the functional efficacy of these generated

suppressor T cells are conflicting.100 101

Finally, it may be possible to induce Treg in vivo by directing

APC such as dendritic cells. It appears that the capacity of

dendritic cells to induce regulatory T cells depends on the

dendritic cell instruction and maturation state.102 Different

approaches to render ‘‘regulatory’’ dendritic cells103 104 include

ex vivo genetic manipulation, anti-inflammatory cytokine

exposure or by direct instruction with tolerogenic compounds.

We have recently demonstrated that injection of the Bordetella

pertussis derived filamentous haemagglutinin A reduced

inflammation in a mouse model of IBD.105 The experimental

data of T cell as well as dendritic cell manipulation, along with

future investigations, needs to determine the exact value of

both approaches but recent advances are very promising.

When considering ex vivo manipulation or induction of Treg,

two major hurdles need to be overcome.

Firstly, sufficient numbers of the manipulated T cells need to

be directed to the gut mucosa, a process known as ‘‘homing’’,

which is directed by specific integrins and by chemokines. It

has been reported that cultured CD4+ gut derived T cells that

express high levels of the pivotal gut homing receptor a4b7 did

not home to the gut following injection in healthy individuals.89

However, we have reported that homing, at least in mice and

rats, is greatly increased in inflammatory conditions. Also, it

has become apparent that the isolation and expansion of

CD45RA+ naı̈ve (instead of CD45RO+) CD4+CD25+ T cells is the

best strategy for adoptive Treg cell therapies.106

Secondly, it might be a problem that the bystander

suppression of adoptively transferred Treg cannot be controlled.

Treg may worsen inflammatory disease because they may

interfere with the immune mechanisms that are necessary for

clearance of microbial pathogens.107 The non-specific immuno-

suppressive effects of Treg are a concern when considering

therapeutic application. On the other hand, such effects may be

limited because effective pathogen specific immune responses

are shown to be Treg resistant.108 However, from this

perspective the use of natural occurring CD4+CD25high Treg

may be preferred, as in these cells, at least in vitro, TLR2

triggering results in a temporal loss of the suppressive Treg

phenotype.54

CONCLUSIONS
Regulatory T cells are key players of immune regulation, and

they have important functions in suppressing unwanted

inflammatory responses towards self antigens, and the antigens

of endogenous intestinal bacteria. Patients with IBD do not

seem to have a primary absolute defect in regulatory cells but,

apparently, the regulatory capacity of these cells is insufficient

to downregulate inflammation.

None of the current therapies for IBD directly targets Treg

function or generation but drugs that are used widely clinically

may influence Treg function. For example, corticosteroids may

enhance Treg function in asthma and allergic diseases109–111 but

future research needs to determine the exact role of corticos-

teroids on regulatory T cell function. Interestingly, it was

recently shown that anti-TNF antibodies increased the FOXP3

mRNA and protein levels in the CD4+CD25high compartment

and restored their tolerogenic function.112 In mice and humans

with diabetes, treatment with non-agonistic anti-CD3 anti-

bodies resulted in prevention of progression of loss of islet cell

function by immunosuppressive mechanisms that included the

induction of Treg.113

None of the previously discussed possible clinical approaches

uses a strategy that allows control over Treg activity. Are such

approaches feasible?

Intravenous administration of relatively large doses of

regulatory cytokines is not effective (human recombinant IL-

10 administration in IBD patients114) or found to be toxic

(TGFb). Only a small fraction of the total administered dose of

such cytokines reaches the mucosa and results may be better

when such cytokines are locally administered. Mucosal delivery

of recombinant IL-10 by genetically modified bacteria such as L

lactis addresses this problem and was indeed shown to

ameliorate DSS colitis and colitis in IL-102/2 mice. Recently,

we have demonstrated in a clinical phase 1 trial that this

engineered cytokine excreting organism can be safely adminis-

tered to patients with Crohn’s disease and is biologically

contained.115 TGFb can also be locally expressed, for example by

delivery of TGFb encoding plasmids to mucosal surfaces and

this approach is in preclinical trials.116
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Contained immunosuppression can also be accomplished by

modifying or expanding T cells with regulatory properties ex

vivo. This strategy involves a harvesting step that yields

peripheral blood T lymphocytes (eg, by apheresis) followed by

forced differentiation by exposure to cytokines and tolerogenic

compounds, or by genetic engineering with a ‘‘regulatory’’

gene. On readministration to the patient, such cells can

downregulate inflammation by a bystander mechanism, fol-

lowing specific integrin mediated homing. It is technically

feasible to specifically expand T cells with a predefined TCR

that can be specifically activated by an orally administered

antigen, allowing for control of the immune suppression. These

strategies are attractive in view of the long lifespan of T cells,

and are expected to have long term effects.

Treg are extremely potent and, with production of low

amounts of IL-10 by a very small fraction of mucosal T cells (IL-

10 engineered T cells that comprised only , 0.001% of all

mucosal T cells were effective), a sufficient therapeutic effect

can be achieved.117 With the identification of more genes that

determine Treg development, the ability to identify Treg using

cell surface markers, and with improving transduction methods

over time, the possibilities for such approaches will be

significantly expanded.
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Answer
From the question on page 575
The CT scan (fig 1A,B in Questions section) revealed multiple
adherent small bowel loops encased within a thickened
enhancing peritoneal membrane (arrow) forming a sac-like
structure, with localised fluid collection seen within this sac,
features suggestive of an abdominal cocoon. The second and
third parts of the duodenum were dilated (arrow) as far as and
at the site of entry into the encapsulated sac-like structure.
Peritoneum and omentum thickening (arrows) was also noted
(fig 1C in Questions section). There was no ascites or
lymphadenopathy. The liver, spleen, kidneys and pancreas
were normal. A radiological diagnosis of sclerosing encapsulat-
ing peritonitis forming an abdominal cocoon was made, which
was later confirmed at surgery.

Sections from gastric serosa showed fibrocollagenous tissue
with multiple nodular and discretely scattered malignant cells
(fig 1, arrows). UGI biopsy from the gastric ulcer revealed
poorly differentiated adenocarcinoma.

Abdominal cocoon, also referred to as sclerosing encapsulat-
ing peritonitis, is a rare condition characterised by fibrotic
encapsulation of the bowel. The exact aetiology is unclear but
has been previously described as a benign process in patients
with a history of previous abdominal surgery or peritonitis, liver
transplant, chronic ambulatory peritoneal dialysis, or prolonged
use of the b-blocker practolol, and in patients with tuberculous
pelvic inflammatory disease. Clinical presentation includes
abdominal distension, acute intestinal obstruction and a
palpable abdominal mass.

We describe a case of disseminated gastric adenocarcinoma
(signet cell carcinoma) as a rare cause of abdominal cocoon.

Preoperative diagnosis is a challenge and diagnosis is usual
made at laparotomy.

CT scan provides a more accurate diagnosis of this entity as
well as its complications, and may also help to exclude other
causes of intestinal obstruction.

doi: 10.1136/gut.2005.086561

Figure 1 A photomicrograph (H&E) showing many malignant cells
(arrows) surrounded by stroma and inflammatory cells. Inset:
immunostaining for cytokeratin showing abundant malignant cells.
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