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Backgound/aim: The transport of radiolabelled photoreceptor outer segments (POS) lipids was
investigated by cultured retinal pigment epithelial cells (RPE). Phagocytosis of POS by the RPE is essential
to maintain the health and function of the photoreceptors in vivo. POS are phagocytised at the apical cell
surface of RPE cells. Phagocytised POS lipids may be either recycled to the photoreceptors for
reincorporation into new POS or they may be transported to the basolateral surface for efflux into the
circulation.
Results: The authors have demonstrated that high density lipoprotein (HDL) stimulates efflux of
radiolabelled lipids, of POS origin, from the basal surface of RPE cells in culture. Effluxed lipids bind
preferentially to HDL species of low and high molecular weight. Effluxed radiolabelled phosphotidyl
choline was the major phospholipid bound to HDL, with lesser amounts of phosphatidyl ethanolamine,
phosphatidyl inosotol. Effluxed radiolabelled triglycerides, cholesterol, and cholesterol esters also bound to
HDL. Lipid free apolipoprotein A-I (apoA-I) and apoA-I containing vesicles also stimulate lipid efflux.
Conclusion: The findings suggest a role for HDL and apoA-I in regulating lipid and cholesterol transport
from RPE cells that may influence the pathological lipid accumulation associated with age related macular
degeneration.

A
ge related macular degeneration (AMD) is the leading
cause of visual loss in the Western world.1–3 Most visual
loss in AMD develops secondary to neovascularisation

beneath the retina that leads to haemorrhage, accumulation
of subretinal fluid and, inevitably, replacement of macular
tissue with a scar.4 Before visual loss from AMD, there is
progressive accumulation of lipids in Bruch’s membrane, a
multilayered extracellular tissue separating the retina from
its choroidal blood supply.5 6 Progressive lipid deposition in
Bruch’s membrane reduces diffusional transport from the
choroid to the retina and is thought to impair retinal
function.7 8 There has been considerable debate over whether
the lipid deposits in Bruch’s membrane are of circulatory or
retinal origin. Recent evidence suggests the predominant
source of this lipid is from the retina, deriving from residues
of degraded photoreceptor outer segments (POS) effluxed
from the retinal pigment epithelium (RPE) into Bruch’s
membrane.9 Although cholesteryl ester and apolipoprotein B
deposition in Bruch’s membrane suggests contribution from
plasma lipids, analysis of lipids and apolipoproteins from
tissue and RPE cell cultures indicates that these cells may
account for most of the deposits.10 11 Mechanisms by which
lipids efflux from the RPE across Bruch’s membrane and into
the choroidal circulation are incompletely understood. RPE
cells express apolipoprotein E (apoE),12 13 scavenger receptor
BI (SR-BI),14 and ATP binding cassette transporter A1
(ABCA1),15 all recognised components of reverse cholesterol
transport (RCT).16 Similar to macrophages, apoE expression is
regulated by nuclear hormone receptor ligands.13

AMD shares risk factors with atherosclerosis, such as
smoking, hypertension, and elevated C reactive protein (CRP)
levels.17–19 The relation between AMD and hyperlipidaemia is
not consistent.20–26 Investigators have speculated that since
the main source of Bruch’s membrane lipids is the retina and
RPE, and not the circulation, serum lipids levels would not
necessarily correlate with the extent of lipid deposition in
Bruch’s membrane.8 9 11 Serum HDL levels have also not been
associated consistently with AMD. Several studies showed a

positive correlation between serum HDL levels and advanced
stages of AMD.24–26 Other studies have not confirmed these
results.22 23 Recently, in a case-control study of a Veterans
Affairs Medical Center cohort, HDL levels correlated nega-
tively with the development of neovascularisation in patients
with AMD.27

The atheroprotective properties of HDL include promotion
of RCT, antioxidative, and anti-inflammatory effects
(reviewed by Assmann and Nofer28 and Nofer et al29). The
Age-Related Eye Disease Study demonstrated that high dose
supplementation with anti-oxidant vitamins C and E, b
carotene, and zinc reduces visual loss in patients with
macular degeneration.30 The importance of anti-oxidants
may be attributed to protection against lipid peroxidation
owing to the high content of oxygen, polyunsaturated fatty
acids, and light irradiation in the retina.31 The anti-oxidative
and anti-inflammatory attributes of HDL may protect against
visual loss associated with AMD. The presence of CRP,
complement components, and macrophages in Bruch’s
membrane deposits is suggestive of a chronic inflammatory
response in AMD.18

To determine whether HDL may be involved in RCT from
RPE cells, we have studied human RPE cells in culture
incubated with radiolabelled POS. We demonstrate that
labelled lipids of POS origin are transported through RPE for
efflux from the cell at the basolateral surface. The effluxed
labelled lipids (primarily phospholipids) are bound preferen-
tially to HDL of both low and high molecular weight species
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LCAT, lecithin:cholesterol acyltransferase; LDL, low density lipoprotein;
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phosphatidyl choline; phosphatidyl inosotol, ; PE, phosphatidyl
ethanolamine; POS, photoreceptor outer segments; RCT, reverse
cholesterol transport; RPE, retinal pigment epithelium; SR-BI, scavenger
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in a process that is stimulated by HDL and apolipoprotein A-I
(apoA-I).

MATERIALS AND METHODS
Cell culture and POS labelling
Primary cultures of normal human RPE cells from a 35 year
old male donor were grown as described.14 32 RPE cells
(passage 5–10) were propagated to confluence on laminin
coated six well or 12 well Costar Transwell tissue culture
plates (Fischer Scientific, Los Angeles, CA, USA) with DMEM
H21 containing 5% FBS, 2 mM glutamine, 5 mg/ml genta-
mycin, 100 IU/ml penicillin, 100 mg/ml streptomycin,
2.5 mg/ml fungizone, 1 ng/ml bFGF, and 1 ng/ml EGF in
the top and bottom chambers. POS were prepared from
bovine retinas as described33 and stored at 270 C̊ for use. POS
were labelled with 1,4,7,10,13,16,19-[1-14C] docosahexanoic
acid (DHA) (ICN Life Sciences, 49 Ci/mol) as described.34 For
lipid efflux experiments, cell monolayers were washed three
times with Dulbecco’s phosphate buffered saline (PBS) and
medium containing 14C labelled POS (50 mg/ml) and 5%
lipoprotein free fetal calf serum was added to the top
chambers. Bottom chambers contained apolipoprotein and
lipoprotein acceptors in serum free medium.

Lipoprotein purification and analyses
Low density lipoprotein (LDL) (d = 1.019–1.063 g/ml) and HDL
(d = 1.063–1.210 g/ml) were purified from human plasma by
KBr density gradient ultracentrifugation as described.35 ApoA-I
was purified from human HDL as described.36 RPE media
samples were adjusted to d = 1.25 g/ml with solid potassium
bromide, underlayered with a KBr solution (d = 1.21 g/ml), and
ultracentrifuged (Beckman 50.2 Ti rotor) at 45 000 rpm for
24 hours at 10̊ C. The lipoprotein containing d,1.21 g/ml
fraction was transferred to a centrifugal ultrafilter (5K MCO,
Viva Sciences, Hannover, Germany), buffer exchanged to
0.15 M NaCl, 1 mM EDTA (pH 7.4), 0.025% NaN3 (Sal-EN),
and concentrated.

Lipoprotein fractions were analysed by non-denaturing
PAGE. Briefly, samples were electrophoresed in linear 0–30%
gradient PAG at 200 V at 10 C̊ for 3000 V hours. Gels were
calibrated to the mobilities of calibrator proteins (HMW kit,
Amersham Pharmacia, Piscataway, NJ, USA) supplemented

with LDL and ovalbumin, Stokes diameter, 25 nm and
6.0 nm, respectively. Distribution of 14C label was determined
by fractionating Coomassie stained gel into 2 mm slices. Gel
samples were treated with 0.2 ml TS-1 reagent (Research
Products International, Mt. Prospect, IL, USA) at 50 C̊,
overnight in a shaking waterbath, cooled; 0.04 ml glacial
acetic acid added before radioactivity was determined by
liquid scintillation counting (LSC).

Discoidal HDL composed of purified human plasma apoA-
I, DMPC, and cholesterol were produced by the sodium
cholate dialysis method37 and purified by FPLC on two
tandemly connected columns (Superdex 200, Amersham
Pharmacia, Piscataway, NJ, USA).
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Figure 1 HDL stimulates efflux of 14C labelled lipids from RPE cells in
culture (p = 0.0027, t test, n = 3). Total 14C cpm in basal medium (mean
(SEM)) is shown.

Table 1 14C labelled lipid associated with
lipoprotein

14C cpm bound

Control 1270
HDL 71 800
LDL 5860
HDL/LDL 31 400

1 2 3 4 MW

25 nm

17

12.2

10.4

7.1

6.0

Figure 2 Repurification of HDL and LDL following incubation with RPE
cells fed 14C labelled POS. Shown are Coomassie stained gel lanes
containing samples: control medium (lane 1), purified plasma
lipoproteins (lane 2), repurified HDL (lane 3), and repurified LDL (lane
4). Calibrator proteins of known Stokes diameter (nm) in lane labelled
MW.
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Figure 3 Distribution of radioactivity in repurified lipoproteins.
Polyacrylamide gel lanes were fractionated from the top (fraction 1) to
the bottom (fraction 28). 14C was quantified by liquid scintillation
counting. Coomassie blue stained fractions 3–5 (LDL) and fractions 9–14
(HDL).
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Thin layer chromatography (TLC)
14C labelled lipids were extracted from HDL by the Bligh-Dyer
method38 and separated by one dimensional TLC by sequen-
tial development; first in solvent 1: chloroform/methanol/
acetic acid/water (25:15:4:2) until the solvent front had
progressed half way up the plate; then in solvent 2: n-hexane/
diethylether/acetic acid (65:35:2), until the solvent front
reached the top of the plate. Lipid species were detected by
acid charring. Plates were immersed in 7.5% copper acetate,
2.5% copper sulfate, 8% phosphoric acid, and heated on a
hotplate for 1 hour. Lipid spots identified by charring were
cut out and subjected to liquid scintillation counting.

RESULTS
Since HDL has been demonstrated to facilitate lipid and
cholesterol efflux in macrophages, we sought to determine
whether HDL has similar effect on lipid efflux from RPE cells.
RPE cells were cultured in Transwell plates and fed 14C-DHA
labelled bovine POS in the apical chambers in the presence or
absence of purified lipoproteins added to the bottom media.
Lipoprotein acceptors included LDL (100 mg/ml), HDL
(100 mg/ml), and LDL+HDL (50 mg/ml each). After 36 hours
14C in basal media was determined by liquid scintillation
counting. As shown in figure 1, total 14C in basal media was
significantly increased by HDL (p = 0.0027, two tailed t test).
HDL stimulated basal 14C labelled lipid efflux 1.9-fold
compared to no lipoprotein acceptor. LDL did not signifi-
cantly increase basal efflux of 14C labelled lipids (p = 0.4293,
two tailed t test). When LDL and HDL were present together,
stimulation of 14C labelled lipid efflux was about half that of
HDL alone (1.4-fold), although this was not significantly
different from the control (p = 0.0719, two tailed t test).

In order to determine whether basally effuxed 14C labelled
lipids associated with lipoproteins, like samples were
combined and lipoproteins were purified from basal media
by ultracentrifugation at a density of 1.21 g/ml. The amount
of 14C in the d,1.21 g/ml density fraction for each sample
was determined by liquid scintillation and is given in table 1.

HDL bound about 14-fold more 14C labelled lipids than did
LDL. When both LDL and HDL were present, 14C in the
d,1.21 g/ml fraction was intermediate to the amount when
either HDL or LDL were present alone. In the absence of added
lipoproteins, control media had low, but measurable, levels of
radioactivity in the d,1.21 g/ml fraction. The ultracentrifuged
media lipoprotein fractions were resolved by non-denaturing
PAGE (fig 2). The Coomassie stained components observed in
HDL (fig 2, lane 3) and LDL (fig 2, lane 4) are typical lipoprotein
profiles expected of pure LDL and HDL. For purposes of
comparison control basal medium (fig 2, lane 1) and purified
plasma lipoprotein (fig 2, lane 2) profiles are also shown.

The distribution of 14C labelled lipids among the lipopro-
teins in HDL and LDL samples was determined. Gel lanes
(fig 2, lanes 3 and 4) were fractionated and counted. As
shown in figure 3, radioactivity was confined to the
lipoproteins present in each sample: HDL (1783 cpm), LDL
(266 cpm). HDL+LDL was separated on another gel (not
shown) and yielded 966 cpm in the HDL band and 380 cpm
in the LDL band. Again, HDL was a better acceptor (sixfold to
sevenfold) than LDL when tested as a pure lipoprotein and in
plasma. When purified LDL and HDL were combined, HDL
exhibited a twofold to threefold higher affinity for basally
effluxed 14C labelled lipids.

Lipids were extracted from the HDL fraction, purified as
above, and partially purified by one dimensional TLC. As
shown in figure 4 several lipid spots could be identified. Most
of the 14C label was in phosphatidyl choline (PC) and
cholesterol (C), with lesser amounts in phosphatidyl inosotol
(PI), phosphatidyl ethanolamine (PE), triglycerides (TG) and
cholesterol esters (CE) (table 2). The remaining 14C label was
in a dozen other, as yet unidentified, spots.

As a first step in determining which HDL fraction was the
most potent stimulator of 14C labelled lipid efflux, we
fractionated plasma HDL (1.063,d,1.210) by ultracentrifu-
gation in a continuous KBr density gradient. Ten HDL
fractions ranging in density (1.07–1.18 g/ml) and particle
size (6–11 nm, Stoke’s diameter) (fig 5) were tested in
equivalent protein concentrations (100 mg/ml). All HDL
fractions stimulated basal efflux of 14C labelled lipids more
than twofold (p,0.0005, t test) (fig 6). In addition, all HDL
fractions bound effluxed 14C labelled lipids (not shown).

C TG CE

HDL

PC
PI
PE
C

TRL

Figure 4 TLC separation and identification of some lipids bound to
HDL. Following incubation with RPE cells fed 14C labelled POS, HDL
bound lipids were extracted and separated by TLC (bottom of plate at the
left). Standards for pure phosphatidyl choline (PC), phosphatidyl inosotol
(PI), phosphatidyl ethanolamine (PE), and cholesterol (C) were run, as
well as triglyceride rich lipids (TRL) which contains triglycerides (TG) and
cholesterol esters (CE) were run.

Table 2 14C labelled lipid bound to HDC

Lipid % cpm

PC 26.0
PI 3.0
PE 3.0
C 21.0
TG 2.0
CE 2.0

Density fractions

1 2 3 4 5 6 7 8 9 10

25.0

17.0

12.2

10.4

8.2

7.1

6.0

MWMW
Starting

HDL

Figure 5 Isolation of HDL subspecies. HDL was separated by KBr
ultracentrifugation, fractionated and analysed by non-denaturing PAGE.
Shown is a Coomassie stained gel. Densities of each fraction are: F1
(d = 1.077), F2 (d = 1.086), F3 (d = 1.096), F4 (d = 1.105), F5
(d = 1.116), F6 (d = 1.127), F7 (d = 1.141), F8 (d = 1.154), F9
(d = 1.176), F10 (d = 1.191). Calibrator proteins of known Stoke’s
diameter (nm) are in lanes labelled MW.
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As a first step in identifying the components of HDL
necessary and sufficient for stimulating basal efflux of 14C
labelled lipids, an artificial HDL, consisting of purified apoA-
I, cholesterol, and DMPC, was synthesised as described in
Methods. Purified artificial HDL (apoA-I vesicles), average
Stoke’s diameter of 10 nm, is shown in figure 7, fractions 44–
49. The ability of purified apoA-I and apoA-I vesicles
(fractions 44–49), to stimulate basal 14C labelled lipid efflux
was tested. Both purified apoA-I and apoA-I vesicles
stimulated 14C labelled lipid efflux by about 1.5-fold to 2-
fold (p = 0.0079, Mann-Whitney test) (fig 8).

DISCUSSION
In non-ocular cell types, where RCT and its regulation has
been studied extensively,16 nascent HDL particles containing
apoA-I bind to ABCA1, promoting phospholipid and choles-
terol efflux. Binding of these lipids to HDL forms pre-beta
migrating HDL, which is then converted to larger alpha
migrating HDL through esterification of cholesterol by
lecithin:cholesterol acyltransferase (LCAT). In macrophages,
incubation with apoA-I, the major apolipoprotein component
of HDL, increases efflux, probably mediated by direct binding
of apoA-I to ABCA1.39 Recent evidence suggests that apoA-I
binding to ABCA1 may reduce ABCA1 turnover, effectively
increasing overall efflux mediated by this transporter.40

Lipid efflux from RPE may be mediated, as it is in
macrophages, by SR-BI and ABCA1. We have previously
demonstrated expression of these proteins by cultured
human RPE cells and, in the case of ABCA1, have localised
expression to the basal aspect of the cell.14 15 Increased lipid
efflux by RPE in the presence of HDL and apo A-I is probably
mediated by binding of the lipoproteins to ABCA1. To bind
ABCA1 in the basal RPE plasma membrane, a lipoprotein
acceptor must traverse Bruch’s membrane from the chor-
iocapillaris. With ageing, there is progressive thickening of
Bruch’s membrane. This thickening is associated with a
reduction in macromolecular permeability and hydraulic
conductivity across Bruch’s membrane.7 41 Moore and
Clover have reported a 10-fold reduction in macromolecular
permeability of Bruch’s membrane from the first to the ninth
decades of life.41 They show that proteins of molecular weight
.200 kDa could traverse a young patient’s Bruch’s mem-
brane, while elderly patients had an exclusion limit of
between 100–200 kDa.

We have demonstrated that various species of HDL bind
14C labelled lipids basally effluxed by human RPE. Analyses
of these density subclasses show that they range in size of
6.0–12.2 nm Stokes diameter. Their corresponding apparent

molecular weights (Mr 43–440 kDa) are consistent with the
possibility that HDL may affect lipid transport in vivo. The
potential functional differences of different HDL subspecies
or their abilities to traverse Bruch’s membrane have not been
extensively studied. Serum levels of HDL2 have been
demonstrated to be negatively correlated with risk for
coronary disease.42 Gordiyenko et al have demonstrate that
rhodamine labelled LDL can traverse Bruch’s membrane in
the mouse.43 However, little is known of the permeability of
human submacular Bruch’s membrane to LDL and HDL in
vivo. It is possible that, with ageing, some of the larger
molecular weight HDL species may not traverse Bruch’s
membrane efficiently. This might lead to increased lipid
accumulation in the RPE and Bruch’s membrane.
Furthermore, there is no known mechanism, other than
diffusion across Bruch’s membrane, for removing lipids from
Bruch’s membrane if they were effluxed by other means—for
example, SR-BI or as large apoB containing lipoproteins.10

The inability of larger molecular weight lipoprotein acceptors
to fully traverse Bruch’s membrane might contribute to
progressive lipid accumulation that occurs with ageing in
Bruch’s membrane. In the present study, apo A-I increased
lipid efflux by approximately 50% in cultured human RPE.
The molecular weight of apo A-I is 28 kDa and may be better
at traversing a thickened Bruch’s membrane in older
subjects. Thus, nascent HDL particles such as pre-beta HDL
(6.0 nm Stokes diameter, personal communication, B Ishida
2005) may be particularly important in removing lipids from
RPE and Bruch’s membrane in older individuals.

Reducing access of some HDL species to Bruch’s membrane
and the RPE may have other consequences in ageing. HDL’s
atheroprotective effects derive not only from its role in
reverse cholesterol transport, but also its anti-oxidative
properties.28 HDL bound enzymes, paraoxonase, and platelet
activating factor acetylhydrolase inhibit lipid peroxidation.
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Figure 6 All HDL subspecies stimulate efflux of 14C labelled lipids from
RPE cells in culture (p,0.0005, t test, n = 3). Total 14C cpm in basal
medium (mean (SEM)) is shown.
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Figure 7 Purification of synthetic HDL (apoA-I vesicles). Discrete lipid
particles from sodium cholate dispersions of DMPC, cholesterol, and apo
A-I were purified by FPLC and fractions were analysed by non-
denaturing PAGE followed by Coomassie blue staining. Starting material
(Start), and calibrator proteins of known Stoke’s diameter (nm) (MW)
are shown.
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Figure 8 Purified apoA-I (ApoA-I) and synthetic HDL (ApoA-I Ves)
stimulate efflux of 14C labelled lipids from RPE cells in culture
(p = 0.0079, Mann-Whitney test, n = 5). Results are the combination of
two separate experiments normalised to control levels of 14C cpm in
basal medium. Control is 100%.
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Because lipid peroxidation has been implicated in both the
pathogenesis of AMD and identified as a potential therapeu-
tic target, HDL’s potent anti-oxidants may play a part in
slowing the progression of AMD. A Bruch’s membrane
barrier to HDL diffusion may effectively diminish the anti-
oxidant properties of this lipoprotein.

Since lipid accumulation in Bruch’s membrane (basal
linear deposit) is one of the best histopathological correlates
with AMD,44 45 an understanding of the mechanisms of RCT
in the RPE is particularly important. The present study
demonstrates that HDL is a preferred lipoprotein acceptor for
effluxed residues derived from phagocytised POS. The
changes that occur in ageing and AMD may impair access
of HDL and apoA-I to the basal surface of the RPE and the
inner aspect of Bruch’s membrane. A resultant decrease in
RCT may contribute to the pathological deposition of lipid
and cholesterol observed in AMD. Furthermore, pharmaceu-
tical strategies to increase RCT in RPE may be useful in
treating the early stages of AMD.
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