Skip to main content
. 2007 May 1;117(5):1422–1431. doi: 10.1172/JCI30558

Figure 5. Oct1 deletion results in reduced hepatic metformin accumulation and phosphorylation of AMPK and ACC in mice receiving oral doses of metformin.

Figure 5

(A) The pharmacokinetics of metformin was similar in age-matched Oct1+/+ mice and Oct1–/– mice after an oral dose. Shown here are blood metformin concentration–time profiles. The mice (n = 4 per group) were given an oral dose of metformin (15 mg/kg containing 0.2 mCi/kg of [14C]metformin), approximating the single dose of 1,000 mg in humans. The radioactivity in blood was determined and converted to mass amounts. Data represent mean ± SD. (B) Hepatic metformin accumulation after an oral dose was much higher for Oct1+/+ mice than for age-matched Oct1–/– mice. The mice (n = 4 per group) were sacrificed 1 hour after the oral dose, and the livers were removed immediately. The radioactivity determined in liver homogenates was converted to mass amounts. Data represent mean ± SD. *P < 0.001 versus Oct1+/+ (2-tailed Student’s t test). (C) OCT1 was required for metformin to fully stimulate hepatic AMPK phosphorylation and ACC phosphorylation in mice. A daily dose of metformin (50 mg/kg) or saline was administered i.p. for 3 consecutive days to 10-week-old male mice. The mice were sacrificed 1 hour after the i.p. administration on the third day. Liver extracts were detected with polyclonal antibodies against phospho-ACC (Ser79), phospho-AMPKα (Thr172), and β-actin.