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Abstract
Decisions based on the timing of sensory events are fundamental to sensory processing. However,
the mechanisms by which the brain measures time over ranges of milliseconds to seconds remain
unknown. The dominant model of temporal processing proposes that an oscillator emits events that
are integrated to provide a linear metric of time. We examine an alternate model in which cortical
networks are inherently able to tell time as a result of time-dependent changes in network state. Using
computer simulations we show that within this framework, there is no linear metric of time, and that
a given interval is encoded in the context of preceding events. Human psychophysical studies were
used to examine the predictions of the model. Our results provide theoretical and experimental
evidence that for short intervals there is no linear metric of time, and that time may be encoded in
the high-dimensional state of local neural networks.

INTRODUCTION
All forms of sensory processing are ultimately based on decoding the spatial and/or temporal
structure of incoming patterns of action potentials. The elucidation of the neural mechanisms
underlying the processing of spatial patterns has advanced considerably in the past forty years.
For example, the coding and representation of simple spatial patterns, such as the orientation
of a bar of light, are well characterized in primary visual cortex (Hubel and Wiesel, 1962;
Ferster & Miller, 2000). Indeed, much has been discovered about the mechanisms underlying
the emergence of orientation selective cells, and their role in perception (e.g., Miller et al,
1989; Ferster & Miller, 2000; Gilbert et al, 2000; Schoups et al, 2001; Yang et al, 2004).

In comparison to spatial stimuli, there is a significant gap in our understanding of how the brain
discriminates simple temporal stimuli, such as estimating the duration of time for which a light,
or tone, is presented. Recent studies have begun to examine the neural (Kilgard & Merzenich,
2002; Hahnloser et al, 2002; Leon and Shadlen, 2003) and anatomical (Rao et al, 2001; Lewis
& Miall, 2003; Coull et al, 2004) correlates of temporal processing. However, the neural
mechanisms that allow neural circuits to tell time and encode temporal information are not
known. Indeed, it has not yet been determined if timing across different time scales and
modalities relies on centralized or locally independent timing circuits and mechanisms (Ivry
& Spencer, 2004).

Timing is critical in both the discrimination of sensory stimuli (Shannon et al, 1995;
Buonomano & Karmarkar, 2002; Ivry & Spencer, 2004; Buhusi and Meck; 2005) and the
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generation of coordinated motor responses (Mauk and Ruiz, 1992; Ivry, 1996; Meegan et al,
2000; Medina et al, 2005). The nervous system processes temporal information over a wide
range, from microseconds to circadian rhythms (Carr, 1993; Mauk & Buonomano, 2004;
Buhusi & Meck, 2005). We will focus on the scale of milliseconds and seconds, in which the
dominant model of temporal processing is the internal clock model. A prototypical clock model
includes a pacemaker (oscillator) that emits pulses that are counted by an accumulator
(Creelman, 1962; Treisman, 1963; Church, 1984; Gibbon et al, 1997). Within this framework,
the pulse count provides a linear metric of time, and temporal judgments rely on comparing
the current pulse count to that of a reference time. This model has proven effective in providing
a framework for much of the psychophysical data relating to temporal processing (Church,
1984; Meck, 1996; Rammsayer and Ulrich, 2001). However, electrophysiological and
anatomical support for the putative accumulator remains elusive, and mounting evidence
indicates that clock models are not entirely consistent with the experimental data (for reviews
see Mauk & Buonomano, 2004; Buhusi and Meck, 2005).

A number of alternate models of timing have been suggested (see Discussion; for reviews see
Gibbon et al, 1997; Buonomano & Karmarkar; 2002; Buhusi and Meck, 2005). One such class
of models, state-dependent networks (SDNs), propose that neural circuits are inherently
capable of temporal processing as a result of the natural complexity of cortical networks
coupled with the presence of time-dependent neuronal properties (Buonomano & Merzenich,
1995; Buonomano, 2000; Maass et al, 2002). This framework, based on well characterized
cellular and network properties, has been shown to be able to discriminate simple temporal
intervals on the millisecond scale, as well as complex spatial-temporal patterns (Buonomano
and Merzenich, 1995; Buonomano, 2000; Maass et al, 2002). Here we examine the mechanisms
and nature of the timing in this model, and show that it encodes temporally patterned stimuli
as single temporal objects, as opposed to the sum of the individual component intervals. This
generates the counterintuitive prediction that we do not have access to the objective (absolute)
time of a given interval if it was immediately preceded by another event. This prediction is
tested and confirmed using independent psychophysical tasks. Together, our results provide a
mechanistic account of the distinction between millisecond and second timing, and suggest
that within the millisecond range, timing does not rely on clock-like mechanisms or a linear
metric of time.

RESULTS
State-dependent Networks

A SDN composed of 400 excitatory (Ex) and 100 inhibitory (Inh) recurrently connected
integrate-and-fire units was simulated using NEURON. The synapses in the network exhibit
short-term forms of synaptic plasticity, and both fast and slow IPSPs (see Experimental
Procedures). Short-term synaptic plasticity (Zucker, 1989) plays a critical role in SDNs by
altering the state of the network in a time-dependent fashion after each input, which in turn
produces time-dependent neuronal responses. In essence, in the same manner that long-term
plasticity may provide a memory of a learning experience (Martin et al, 2000), SDNs use short-
term synaptic plasticity to provide a memory trace of the recent stimulus history of a network
(Buonomano, 2000).

The functional properties of an SDN can be understood if we consider the sequential
presentation of two brief and identical events (e.g., two auditory tones) 100 ms apart (Figure
1A). When the first event arrives in the network, it will trigger a complex series of synaptic
processes resulting in the activation of a subset of neurons. When the same event is repeated
100 ms later, the state of the network will have changed from S0 to S100. Due to the time-
dependent changes in network state (imposed by short-term synaptic plasticity) the population
response to the second stimulus inherently encodes the fact that an event occurred 100 ms
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before. In this fashion the network implements a temporal–to-spatial transformation – i.e., the
presence, absence or number of spikes from a given subset of neurons will depend on the
temporal structure of the stimulus. The model is stochastic in the sense that determining which
neurons will be interval sensitive is a complex function of the network's random connectivity,
assigned synaptic strengths and short-term plasticity (Buonomano, 2000). Once time is
encoded in a spatial code it can be read-out by a set of output neurons (see below; Buonomano
& Merzenich, 1995; Buonomano, 2000; Maass et al, 2002; Knüsel et al, 2004).

In this model, there is no explicit or linear measure of time like the tics of an oscillator or a
continuously ramping firing rate (see Discussion; Durstewitz, 2003). Instead, time is implicitly
encoded in the state of the network - defined not only by which neurons are spiking, but by the
properties that influence cell firing, such as the membrane potential of each neuron and synaptic
strengths at each point in time. Thus, even in the absence of ongoing activity, the recent stimulus
history remains encoded in the network. The simulation in Figure 1 consists of 500 neurons
and a total of 12,200 synapses, allowing us to define the network's state in 12,700 dimensional
space. Since the state of the network ultimately determines the response to the next input we
can think of its evolving trajectory through this space as encoding time. Principal component
analysis was performed to provide a visual representation of this trajectory (see Experimental
Procedures). In response to a single stimulus, the first three principal components establish a
rapidly evolving neural trajectory through state-space, followed by a much slower path settling
back towards the initial state (Fig 1B). When a second event is presented at t=100 ms it produces
a perturbation in state-space different from the t=0 event (Fig. 1C). Similarly, additional
presentations of the same stimulus at varying delays would continue to produce cumulative
changes in network state.

The time it takes for the network to return to its initial state - its reset time - is a function of the
longest time constants of the time-dependent properties. For short-term synaptic plasticity this
is on the order of a few hundred milliseconds (Zucker, 1989; Markram et al, 1998; Reyes and
Sakmann, 1998). The dynamics of short-term plasticity must run its course; thus the network
cannot return to its initial state on command. As addressed below this property has important
implications for temporal processing.

Temporal Objects
An important feature of state-dependent networks is that they naturally extend beyond simple
interval discrimination to the processing of complex temporal sequences. This is due to the
cumulative nature of changes in network state (Buonomano & Merzenich, 1995; Maass et al,
2002). However, potential weaknesses in SDNs arise because of both the absence of an explicit
metric of time, and their sensitivity to changes in initial state.

To examine these issues we investigated the ability of the network to discriminate between
100 and 200 ms intervals (we will use the notation [100] x [200] ms), as well as two simple
patterns that contain these intervals, namely a 100 or 200 ms interval preceded by a 150 ms
interval ([150; 100] and [150; 200]). We calculated the information each neuron in the network
contains for the discrimination of both sets of stimuli. Mutual information was determined
based on the number of spikes in each neuron (see Experimental Procedures). The neurons
containing information for the [100] x [200] and the [150; 100] x [150; 200] discriminations
fall in largely nonoverlapping populations (Fig. 2A). This occurs even though the
discrimination could in principle be based on the same [100] x [200] interval. Since the
individual intervals are encoded in the context of the whole stimulus, the network cannot
recognize that the [100] and [150; 100] patterns share a common feature. Nevertheless, it can
discriminate between all four stimuli (Fig. 2B). Each stimulus is coded as a distinct ‘temporal
object’ regardless of its component features.
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Reset Task
The prediction that emerges from the model is that if a distractor precedes a 100 ms target
interval at random intervals, discrimination of the target should be impaired in comparison to
a 100 ms interval with no distractor (or one preceded by a fixed distractor). This prediction
was examined using psychophysical studies. We designed a task (Fig 3A) in which each trial
consisted of a randomly interleaved presentation of a single two-tone (2T) or three-tone (3T)
stimulus, and participants were asked to judge the interval between the last two tones. In the
3T case the first tone acts as a distractor. By independently and adaptively varying the intervals,
discrimination thresholds were calculated for the 2T and 3T tracks (see Experimental
Procedures). The randomly interleaved - and thus unpredictable - presentation of the 3T stimuli
also ensured that the subjects did not adopt strategies to ignore the distractor. The standard
interval was presented at the beginning of a trial and maintained implicitly as a result of
feedback to each response (Grondin & Rammsayer, 2003;Karmarkar & Buonomano, 2003).
Subjects were asked to judge whether the target interval was shorter or longer than the standard.
Two classes of distractors, fixed (FIX) and variable (VAR), were examined. In the FIX
condition, the distractor was always presented at a fixed interval before the target interval. In
the variable condition (VAR), the distractor was presented at a range of times (±50% of the
standard).

This task was termed the "reset task" based on the unique constraints it places on the temporal
encoding mechanisms. If a subject were using a simple stopwatch strategy, they would have
to start their stopwatch at the first tone, even though it is irrelevant in the 3T trials. The true
role of the second tone can only be determined retroactively by the presence or absence of a
third tone. With a stopwatch, one approach could be to quickly record the time at t2 and then
reset the watch. Alternately, the time at t2 and t3 could be noted and then t2 subtracted from
t3 to obtain the interval between the second and third tones. We will refer to the first strategy
as a clock reset mechanism and the second as temporal arithmetic. Both can be implemented
with internal clock models, either because the accumulator could be reset, or because the
presence of a linear temporal metric would allow for temporal arithmetic. Both clock-based
models predict that performance on the 2T and 3T tracks should be similar in both the FIX and
VAR conditions because the predictability of the distractor should not affect the encoding of
t1–t2 and t2–t3.

In contrast, in the state-dependent network model, a reset strategy cannot be implemented
because short-term plasticity cannot be reset on cue. Temporal arithmetic cannot be performed
due to the absence of a linear metric of time. State-dependent networks predict that performance
on the FIX condition will be similar for the 2T and 3T stimuli because the feedback at the end
of each trial can be used to establish consistent states on which to build internal temporal
representations for both stimuli. However, they also predict an impaired performance in the
3T-VAR trials compared to the 2T or FIX conditions, since the state of the network will not
be reproducible across trials.

Subjects were first tested with a target interval of 100 ms (SHORT). Consistent with previous
studies, thresholds for the 2T conditions were in the range of 20% of the target (Wright et al,
1997; Karmarkar & Buonomano, 2003). A two-way analysis of variance revealed a significant
interaction between conditions (FIX x VAR) and tone number (2T x 3T; F=57.75; n=15;
P<0.0001) demonstrating a dramatic impairment in the 3T-VAR condition only (Fig 3B).
Indeed, the threshold in the 3T-VAR condition for a 100 ms interval was similar to that in
separate (2T only) experiments on a 200 ms interval (46±3.4 ms versus 45±7; data not shown).
Thus under the SHORT condition, the psychophysics supported the predictions of the state-
dependent network. In contrast, when the reset task involved a target of 1000 ms (LONG) there
was no effect of the variable distractor, as evident in the lack of interaction in the ANOVA
(Fig 3C; F=0.087; n=12; P>0.5). Importantly, the point of subjective equality was
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approximately equal to the target intervals in both the SHORT and LONG experiments,
independent of the presence or absence of the distractor in both the FIX and VAR conditions
(Fig. 3D-E). Therefore a memory component of the task cannot account for the differences
observed between the two target lengths.

The specific effect of the variable distractor on the SHORT group is consistent with the
prediction of the state-dependent network model. It is unlikely that this result is due to effects
such as the increased uncertainty caused by the variable distractor, as the same degree of
uncertainty was present in the LONG trials without an accompanying timing impairment.
Additionally, the randomly interspersed presentation of the 2T and 3T stimuli ensures the same
level of uncertainty for both stimuli (in both conditions), but the 2T-VAR performance was
not affected. However, to further examine the general psychophysical effects of a variable
distractor, we conducted two additional controls. The first was a task in which the distractor
interval was 100 (FIX) or 50–150 ms (VAR) and a 1000 ms target (Short-LONG). In addition,
subjects performed a frequency discrimination task in which the target frequency was preceded
by a tone either at a fixed or variable interval (see Experimental Procedures). Neither the Short-
LONG [F=0.18; n=10; P>0.5] or frequency [F=0.23; n=14; p>0.5] experiments revealed a
decrement in performance produced by the variability of the distractor (Fig. 4A-B).

Effect of the Inter-Stimulus Interval on Performance
It is important to rule out the possibility that the impairments observed in the Reset task were
not produced by some complex interaction between uncertainty and the intervals being judged,
or that the distractor in the FIX condition was serving as a reference interval (see Discussion).
Thus, we examined the prediction of the SDN model using a second independent
psychophysical test. The SDN model predicts impaired performance under conditions when
the network state at the time of the target stimulus varies across trials. This condition can also
be produced by insufficient reset time before the next stimulus is presented. To test this directly,
we examined performance on a traditional two-interval two-alternative forced-choice task
(Wright et al, 1997) in which the interstimulus interval (ISI) was varied. In this paradigm,
subjects heard both the 100 ms target and a longer comparison interval, then made a judgment
as to whether the longer stimulus occurred first or second. We presented the two intervals with
a mean ISI of either 250 or 750 ms. Since experimental data suggests that short-term plasticity
operates on the time scale of a few hundred milliseconds (Markram et al, 1998; Reyes &
Sakmann, 1998) the state-dependent model predicts that the network will not have completely
returned to its initial state in the ISI250 condition, thus impairing temporal discrimination.
Indeed, a comparison of the ISI250 to the ISI750 condition showed a significant decrease in
performance for the shorter ISI [t=3.53; n=10; P<0.01] (Fig. 5A). Subjects also performed a
frequency discrimination task under the short and long ISI conditions, where they reported if
the tone pitch was higher for the first or second stimulus. There was no difference between the
two conditions [t=0.53; n=10; P>0.5] (Fig. 5A), indicating that the effect of the shorter
interstimulus interval was specific to process of measuring time.

The state-dependent framework predicts that the two intervals are more difficult to compare,
resulting in higher temporal discrimination thresholds, because their state-space trajectories
have different starting points which vary from trial to trial. The total length of time from the
first tone of the first stimulus to the first tone of the second is determined by the exact duration
of the ISI (250 ± up to 25%). As a result, the variability in the initial state for the second stimulus
is caused by the first - the first interval interferes with the second. However, if the target and
comparison stimuli were presented at the same ISI but to different local networks the
impairment produced by the short ISI should be decreased or absent. To examine this
prediction, we took advantage of the known tonotopic organization of the auditory system. We
performed interval discrimination tasks under two experimental conditions: (1) as above, a 100
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ms standard and a comparison (100+ΔT ms) played at 1 kHz at ISI250 and ISI750; (2) a similar
condition except that one of the stimulus intervals was played at 4kHz and the other at 1kHz.
Replicating the above results, Fig. 5B shows that there was a significant increase in threshold
in for the ISI250 compared to the ISI750 [t=6.85; n=9; P<0.001] in the same frequency condition.
However, using different frequencies for the standard and comparison intervals eliminated any
impairment in performance on the short ISI [t=0.85; n=9; P>0.3].

Interval Discrimination Despite Differences in Initial State
While the insufficient reset time in the above experiments (Fig. 5A) impaired discrimination
thresholds, it did not entirely prevent subjects from performing the task. We were thus
interested in returning to the theoretical model to determine how performance varied as a
function of ISI, and whether some degree of timing was still possible with only a partial reset
of the network. First, the trajectory of the network in state space was calculated in response to
two 100 ms intervals separated by a 250 or 750 ms ISI. As shown in (Fig 6A), a 750 ms ISI
allows for the network to return to a point very close to its ‘naïve’ initial state. As a result, the
trajectory produced by the second stimulus closely traces that produced by the first one. In
contrast, for the 250 ms ISI, the network does not return to the neighborhood of the initial state,
and its trajectory for the second interval is significantly different. Measures of these distances
are presented in Fig. 6B.

To quantify the effect of initial state on interval discrimination, Output units were trained to
discriminate 100 ms from other intervals in the range of 50–150 ms. We then determined the
ability of the model to perform this discrimination when the comparison intervals followed the
100 ms target by ISIs that varied from 250 – 750 ms. Performance worsened with decreasing
ISIs (Fig. 6C). Importantly, performance changed in a graded manner, indicating that the reset
effect is not expected to be all or none. Thus the behavior of the theoretical model is consistent
with the results seen in the human psychophysical data.

DISCUSSION
The standard model of temporal processing postulates a single centralized internal clock, which
relies on a pacemaker and a counter (Creelman, 1962; Treisman, 1963; Church, 1984; Grondin,
2001). The clock concept is generally taken to imply that the passage of time is counted in
units that can be combined or compared linearly. In contrast, SDN models propose that for
spans on the scale of tens to hundreds of milliseconds time may be represented as specific states
of a neural network. Within this framework, a 50 ms interval followed by a 100 ms interval is
not encoded as the combination of the two. Instead, the earlier stimulus interacts with the
processing of the 100 ms interval resulting in the encoding of a distinct temporal object. Thus,
temporal information is encoded in the context of the entire pattern, not as conjunctions of the
component intervals.

State-Dependent Networks and the Reset Task
State-dependent network models propose that timing is a ubiquitous component of neural
computations, and that local cortical circuits are inherently capable of processing both temporal
and spatial information. Buonomano and Merzenich, 1995; Buonomano, 2000; Maass et al,
2002). In these models timing relies on mechanisms analogous to using the evolving state of
a physical system – like the ripples on the surface of a lake – to tell time. However, as shown
here (Fig. 1 and 2), reliance on the state of a complex system to tell time creates potentially
serious limitations in the resulting dependence on the initial state and the lack of a linear metric
of time.
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Interestingly, our psychophysical results reveal the same limitations - interval discrimination
is impaired by the presence of a distractor that appears at unpredictable times. However, interval
discrimination was not altered if the distractor occurred at a fixed time prior to the target. Thus
internal representations of the target interval can develop across trials for the 2T and 3T-FIX
stimuli but not for the target interval of the 3T-VAR stimuli. This is because the state of the
system at the onset of the second tone is variable. The impairment in the 3T-VAR condition
is not due to the unpredictability of the distractor's presence itself, since the 2T and 3T stimuli
are randomly intermixed, the unpredictability is the same under all conditions. Rather, the
impairment in the 3T-VAR condition is limited to the predictability (consistency) of the
interval of the distractor.

An alternate interpretation of the 3T-VAR impairment is that in the 3T-FIX condition, the
distractor interval served as a reference cue for the target interval. The two-interval
discrimination task, in which both a standard and comparison interval are presented on each
trial was used to rule out this possibility (Grondin & Rousseau, 1991; Rammsayer, 1999;
Wright et al, 1997). Performance was impaired if the time between the stimuli was 250 but not
750 ms (Fig. 5A). It could be argued that the impairment for short ISIs reflects a difficulty in
segmenting or attending to rapidly presented stimuli. We find this interpretation unlikely since
performance on the short and long ISI conditions did not differ when the two intervals were
presented at different frequencies.

The influence of preceding stimuli on temporal judgments is surprising because much of the
timing performed by the nervous system on the scale of hundreds of milliseconds is based on
a continuous barrage of incoming stimuli, such as speech or Morse code recognition. The
subjects in the current study were naïve, thus, a critical issue relates to the effect of learning.
We speculate that training would allow subjects to improve their discrimination of intervals
independent of temporal context. Indeed, state-dependent network models do not predict that
spatial-temporal patterns preceded by other events are impossible to process. Rather, they
propose that there must be previous exposure to a large number of instances of the stimuli so
that a correspondence between the target information in a number of different contexts can be
learned.

Clock Models
The standard clock models predict a linear metric of time, which implies that the clock can
time the sequential intervals independent of the presence of a variable distractor across trials.
However, most of these models do not explicitly address the issue of the clock reset properties.
Thus it seems reasonable to consider whether a clock with some state-dependent properties
could account for the impaired timing of short ISIs or intervals with a distractor. For example,
one could assume that resetting or reading the time of the clock is state-dependent, and thus
the reset process could inject noise into the system or be delayed dependent on the initial state.

There are two aspects of our results which could argue against a state-dependent clock
mechanism. First, though a state-dependent reset of a centralized clock could explain impaired
timing in the short ISI condition (Fig. 5A), it would not predict the lack of impairment in the
short ISI condition with different frequencies (Fig. 5B). The second issue concerns the
specificity of the reset problem. In our Reset experiments (Fig 3), a clock would be started by
the first tone and stopped and reset (restarted) by the second. The third tone would again stop
the clock. As mentioned above, a state-dependent reset would take time or inject noise into the
process, and impair the 3T-VAR sequence compared to the 2T one. However, such a clock
would also be expected to impair timing of three tone stimuli in the FIX condition. In both
cases, the second tone would stop and reset the clock, because there is a 50% chance that the
second tone was the end vs. the beginning of the target interval. This prediction is counter to
our psychophysical results. One might then propose the use of multiple clocks, in which the
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first tone activates a primary clock, the second tone activates a secondary clock (and stops the
first), and the third tone stops the second clock. This explanation would correctly suggest that
timing is not impaired in the FIX condition, but would also hold for the VAR, again violating
the dissociation found in our data.

Nevertheless, we cannot eliminate the possibility that there exists a set of assumptions which
can enable clock models to account for the observed millisecond timing results. However, we
argue that the SDN model provides the most parsimonious explanation of the current
psychophysical data on the processing of short intervals.

Other Models of Temporal Processing
A number of other mechanistic models have been put forth to account for measuring and
encoding time. These include climbing firing rate models (Durstewitz, 2003; Reutimann et al,
2004), multiple oscillator models (Miall, 1989; Matell and Meck, 2004), as well as those based
on ongoing network dynamics (Medina and Mauk, 2000; Buonomano, 2005). The latter focus
primarily on generating appropriately timed motor responses and will not be discussed here.

The climbing or ramping firing rate models suggest that, like many other stimulus features,
time is encoded in the firing rate of neurons. Experimentally it is established that some cortical
neurons undergo a more or less linear ramping in their firing rate over time (Niki & Watanabe,
1979; Brody et al, 2003; Leon & Shadlen, 2003). In their simplest form climbing models
propose that firing rate represents a linear metric of absolute time. However, recent data
suggests that at least in some cases these neurons are coding expectation rather than absolute
time (Janssen & Shadlen, 2005). Climbing rate models have been discussed primarily in
relation to timing of intervals or durations, how they would account for timing of temporal
patterns has not been addressed. Thus their predictions for our tasks are not immediately clear.
For the Reset task it could be argued that ramping would begin at the first stimulus. Time could
be read out in the firing rate at the onset of the second and third tone – assuming activity is not
reset by the second tone. However, climbing models would not predict the dramatic impairment
observed in the 3T-VAR condition or the effect of short ISIs. We would speculate that ramping
firing rates are likely to play an important role in the timing of expected motor responses, but
less likely to be involved in the timing of rapid sensory stimuli particularly for complex tasks
such as speech or Morse code.

The multiple oscillator model suggests that time is encoded in a population of oscillators with
different base frequencies (Miall, 1989; Matell and Meck, 2004; Buhusi & Meck, 2006). Time
can be read-out by a set of coincidence detectors. This model has the advantage of not requiring
a counter/accumulator, and being capable of timing multiple consecutive intervals once the
oscillators have been triggered. However, how this model will behave in the tasks examined
here is again dependent on its assumptions. If each event does not reset the oscillators, this
model would be expected to produce a decrease in performance in the 3T-VAR condition,
consistent with our results. However, it would not necessarily predict the decrease in
performance observed with the short ISIs observed in Fig. 5, since its reset mechanisms could
be all or none. Furthermore, this model posits that timing is centralized. Thus it would not
predict that any effect of a short ISI would be dependent on whether the frequency of the
comparison stimuli were the same. We would concur that a multiple oscillator model could
contribute to timing in the range of seconds (Matell and Meck, 2004; Buhusi & Meck, 2006),
but would argue that it is unlikely to account for the timing on the scale of a few hundred
milliseconds.
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Millisecond versus second timing
Timing in both the range of milliseconds and seconds has often been considered to rely on the
same underlying mechanisms (Church, 1984; Macar et al, 2002). The results described here
demonstrate qualitative differences in the processing of short and long intervals. Unlike the
millisecond range, timing of intervals lasting one second or longer appears consistent with
mechanisms that generate a linear metric of time. For a 1 sec target subjects could accurately
judge the first or second of two consecutive intervals in the reset task, even though they did
not know a priori which was the target. Performance was also independent of both fixed and
variable distractors preceding the target interval. This implies that subjects could independently
keep track of the objective time of two sequential second-long intervals, and implies the
presence of a linear metric of time. Two simple strategies by which a standard clock model
could perform this task are by resetting a clock at the second tone, or by temporal arithmetic.
For the long intervals we did not observe any decrease in timing accuracy in the 3T versus 2T
stimuli. We would suggest that this observation is more consistent with the temporal arithmetic
scenario. Specifically, that timing on the order of seconds relies on a linear metric of time, and
that the second of two consecutive intervals can be calculated by subtracting the first interval
from the final count.

The theoretical framework and psychophysical results described here, together with previous
psychophysical (Rammsayer & Lima, 1991), pharmacological (Rammsayer, 1999), and
imaging studies (Lewis & Miall, 2003), support the existence of distinct loci for subsecond
and second processing. The precise boundary between these forms of temporal processing
cannot yet be established. However, it seems likely that they are highly overlapping, and that
timing in intermediary ranges (e.g., 400–800 ms) may be accurately performed by both the
mechanisms underlying time perception and time estimation. Based on the time constants of
short-term synaptic plasticity and other time-dependent neural properties we suggest that the
SDN model is limited to intervals below 500 ms. Additionally, even within a specific time
scale there may be multiple mechanisms contributing to timing, and thus the above models are
not mutually exclusive.

Relation to previous psychophysical data
A comprehensive model of temporal processing should provide a detailed description of the
neural mechanisms underlying timing, generate novel testable predictions, and account for
existing experimental data. Two of the most robust features of temporal processing determined
experimentally relate to the scalar property and the role of attention in subjective time
estimation. The scalar property refers to the observation that the ratio of the absolute criterion
interval and the standard deviation of temporal estimates tends to be constant for long intervals
(Gibbon, 1977; Gibbon et al, 1997; Buhusi & Meck, 2005). However, this is not the case for
interval discrimination in the range of a few hundred milliseconds (Wright et al, 1997; Mauk
& Buonomano, 2004). Thus, we examined how performance scales with short intervals in the
SDN model. Results showed that, consistent with the human psychophysical data, temporal
resolution is proportionally worse for short intervals (Fig. S1).

Attention has been widely reported to alter estimates of time in the range of seconds (Hicks et
al, 1976; Macar et al, 1994; Brown, 1997; Coull et al, 2004). Internal clock models account
for attention-dependent effects in the second range, by assuming a gating mechanisms that
controls the number of events generated by the pacemaker that are counted by the accumulator
(Meck, 1984; Zakay & Tsal, 1989). In contrast, on the shorter time scale, divided attention or
cognitive load does not appear to specifically alter temporal judgments (Rammsayer, 1991;
Lewis & Miall, 2003). Therefore the SDN model would be expected to be fairly insensitive to
shifts in attention. However, recent studies have revealed that temporal distortions of short
intervals can be produced by saccades or stimulus features (Morrone et al, 2005; Johnston et
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al, 2006). These studies suggest that on short scales timing is local, and are generally consistent
with the SDN model that predicts that temporal processing could occur in a number of different
cortical areas on a as needed basis.

Conclusion
We propose here that cortical networks can tell time as a result of time-dependent changes in
synaptic and cellular properties, which influence the population response to sensory events in
a history-dependent manner. This framework is applicable to the processing of simple intervals
as well as more complex spatial-temporal patterns, and does not invoke any novel hypothetical
mechanisms at the neural and synaptic level. Additionally, it is proposed that timing is not
centralized, and can potentially occur locally at both early and late stages of cortical processing.
The psychophysical experiments examined here emerged as a direct prediction of this model,
and the results are supportive of this general framework. However, establishing the neural basis
for timing will ultimately require the accumulation of converging evidence from a number of
different fields, of particular relevance will be the use of more complex temporal stimuli in
conjunction with in vivo electrophysiology, to determine if the population response to ongoing
sensory events also contain information about the preceding stimuli.

EXPERIMENTAL PROCEDURES
Neural Network Simulations

The simulated network was composed of 400 excitatory (Ex) and 100 inhibitory (Inh)
recurrently connected Hodgkin-Huxley units (Buonomano, 2000). Excitatory neurons were
randomly interconnected with a probability of 0.2. The mean synaptic weights were adjusted
so that neurons responded with 0–3 spikes to a short stimulus, as is typical for primary sensory
cortex in awake animals (Brody et al, 2002; Wang et al, 2005). Short-term dynamics of
excitatory synapses were simulated according to Markram et al (1998). Short-term synaptic
plasticity of Ex→Ex synapses was facilitatory, based on experiments suggesting that paired-
pulse facilitation is present in adult cortex (Reyes & Sakmann, 1998; Zhang, 2004). The mean
U (‘utilization’), τrec (recovery from depression), and τfac (facilitation) parameters were 0.25,
10 ms and 100 ms. All three values were randomly assigned using a normal distribution with
a SD of 20% of the mean. Short-term plasticity IPSPs in the form of paired-pulse depression
was implemented as previously described (Buonomano, 2000).

Mutual Information and Network Readout
Mutual information was calculated using the total number of spikes in response to a stimulus,
thus providing an assumption-independent estimate of the amount of information available
(Buonomano, 2005). For the discrimination between stimuli with different numbers of pulses
(Fig. 2A) training of the output units was based on previously described supervised learning
rules (Buonomano, 2000;Maass et al, 2002) using only the pattern produced by the last pulse.
Training was performed on a set of 25 stimulus presentations and tested on 10 novel test
presentations. In the stimulations shown in Figure 6, the outputs were trained to discriminate
pairs of intervals (100 ms versus intervals ranging from 50 – 150 ms). In each case the shortest
interval was defined as the short stimulus and the longest as the long stimulus.

Principal Component Analysis
The data set was comprised of the voltage of all Ex and Inh neurons, and the synaptic weights
(which were time-varying) of excitatory and inhibitory synapses. To reduce the dimensionality
of the data set, only 20% of all synaptic weights were used. The data was normalized and the
principal components were calculated using the PRINCOMP function in Matlab. Although the
dimensionality is very high, the dimensions are highly correlated during the silent period
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between events (if one cell is hyperpolarized, most cells are hyperpolarized). As a result, the
first three principal components can account for a significant amount of the total variability
(approximately 75% in Fig. 1B). As expected, these components do not account well for the
actual response to each event, which is dominated by highly nonlinear dynamics.

Psychophysics
Subjects consisted of graduate and undergraduate students with normal hearing, and between
the ages of 18 and 30 from the UCLA community.

Reset Task—These experiments were based on a single-stimulus two-alternative forced-
choice protocol as described previously (Karmarkar & Buonomano, 2003). A within-subject
design was used, thus each subject performed the two distractor conditions (FIX and VAR),
each condition having two tracks (2T and 3T). Sessions of the FIX and VAR conditions were
given on alternating days over a day period (counterbalanced). Each block within a session
consisted of 120 trials: 60 2T and 60 3T. Each tone (1 kHz) was 15 ms in duration, including
a 5 ms linear ascending and descending ramp. In the FIX condition, a distractor tone was
presented at a fixed interval equal to that of the standard interval (SI) prior to the target. In the
VAR condition the distractor occurred before the target at an interval uniformly distributed
between SI±0.5*SI. Thresholds for the 2T and 3T tracks were obtained by presenting the target
interval as SI±Δt, where Δt varied adaptively according to a 3-down 1-up procedure (Levitt,
1971; Karmarkar & Buonomano, 2003). Threshold was defined as two times the mean of the
reversal values, which corresponds to a 79% correct performance level.

In each trial subjects made a forced choice decision as to whether the stimulus seemed shorter
or longer than the target interval by pressing one of two buttons on a computer mouse. They
were provided with immediate visual feedback. All stimuli were generated in Matlab and
presented through headphones.

The 2T and 3T stimuli were randomly interleaved to ensure that subjects did not develop a
strategy that involved ignoring the distractor tone. Additionally, the simultaneous measure of
performance on a conventional two tone task and one with the presence of a distractor provided
a control for nonspecific effects such as difficulty of the overall task, attention and memory.
Target intervals were either 100 or 1000 ms.

A similar protocol to the one used above was also used for the frequency discrimination task.
Rather then adaptively varying the interval of the tones, their frequency was varied according
to F±ΔF (where F, the target frequency was 1 kHz). Tone duration was 25 ms.

Two-Interval Forced Choice Procedure—In this task subjects were presented with two
intervals on each trial: a standard and the comparison (standard + ΔT) (Allan, 1979; Karmarkar
and Buonomano, 2003). Subjects are asked to press one of two buttons depending on whether
they judged the first stimulus or the second interval to be longer. The standard interval was
100 ms, and the interstimulus intervals for the short and long ISI conditions were 250 and 750,
ms respectively.

The frequency task in the ISI experiments used the same type of stimuli, but shifted the
frequency of both tones of the comparison stimulus. Note that in contrast to the single stimulus
protocol, subjects could reference the target frequency on each trial as opposed to developing
an internal representation of it across trials. We believe this difference, together with the
absence of a distractor is responsible for the improvement in the frequency thresholds as
compared to the Reset task. All subjects performed all four tasks in a counterbalanced manner.
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Statistics
In the Reset task, the key analysis was the performance on the 3T-VAR task in comparison to
both the 2T-VAR and 3T-FIX tasks. A difference between only one of these comparisons would
suggest a ‘cross-track’ effect of the variable distractor independent of whether it was in the 2T
or 3T condition, or impairment of 3T discriminations independent of whether the distractor
was presented at a fixed or variable interval. Thus, we performed a two-way analysis of variance
to determine if there was an interaction between the 2T/3T and FIX/VAR factors.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. State-dependent network simulation
(A) Voltage plot of a subset of neurons in the network. Each line represents the voltage of a
single neuron in response to two identical events separated by 100 ms. The first 100 lines
represent 100 Ex units (out of 400), and the remaining lines represent 25 Inh units (out of 100).
Each input produces a depolarization across all neurons in the network, followed by inhibition.
While most units exhibit subthreshold activity, some spike (white pixels) to both inputs, or
exclusively to the first or second. The Ex units are sorted according to their probability of firing
to the first (top) or second (bottom) pulse. This selectivity to the first or second event arises
because the difference in network state at t=0 and t=100 ms.
(B) Trajectory of the three principal components of the network in response to a single pulse.
There is an abrupt and rapidly evolving response beginning at t=0, followed by a slower
trajectory. The fast response is due to the depolarization of a large number of units, while the
slower change reflects the short-term synaptic dynamics and slow IPSPs. The speed of the
trajectory in state space can be visualized by the rate of change of the color code and by the
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distance between the 25 ms marker spheres. Because synaptic properties cannot be rapidly
'reset', the network cannot return to its initial state (arrow) before the arrival of a second event.
(C) Trajectory in response to a 100 ms interval. Note that the same stimulus produces a different
fast response to the second event. To allow a direct comparison, the principal components from
B were used to transform the state data in C.
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Figure 2. Encoding of Temporal Patterns
(A) Information per neuron. The blue trace displays the mutual information that each Ex unit
provides for the discrimination of a 100 versus 200 ms interval (sorted). The red line shows
the information for the same intervals preceded by a 150 ms interval, that is discrimination of
the pattern [150;100] versus [150;200]. While individual neurons contain significant
information for both stimuli, a different population of neurons encodes each one.
(B) Discrimination of all four stimuli. All Ex units were connected to four output neurons
trained to recognize the network activity produced by the last pulse of all four stimuli. Average
responses were calculated from six independent (different random number generator seeds)
simulations. Note that a mutual information measure based on total spike count to each
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stimulus, as in panel A, would introduce a confound because the number of spikes is also a
function of the number of events (see Experimental Procedures).
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Figure 3. Reset Task: a variable distractor impairs discrimination of a short but not a long interval
(A) Reset Task. Top rows represent the standard 2T interval discrimination task in a single
stimulus protocol. Subjects are asked to press different mouse buttons if they judged the interval
to be short (S) or long (L). The feedback across trials results in the creation of an internal
representation of the target interval. Bottom rows represent the 3T task in which a distractor
is presented at a fixed or variable (dashed) interval across trials.
(B) Thresholds for the 100 ms (SHORT) reset task. Left, thresholds for the 100 ms 2T interval
discrimination (open bars) and for the 100 ms interval preceded by a distractor presented at
the same interval across trials (3T-FIX, red). Right, threshold for the standard 100 ms task
(open) and three-tone task in which the distractor was presented at variable intervals across
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trials (3T-VAR; blue). Error bars represent the SEM. The asterisk represents a significant
difference from the other three groups.
(C) Reset task (represented as in A), using a 1000 ms (LONG) target interval. Neither of the
main effects or the interaction was significant.
(D–E) PSE values for the same experiments shown in panels B and C, respectively. The PSE
was not significantly different from the target intervals of 100 (D) and 1000 ms (E) in any
condition.
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Fig 4. Control interval and frequency discrimination tasks
(A) Short-Long reset task. The variable distractor in these trials was between 50–150 ms, and
the target interval was 1 s. When a short unpredictable distractor preceded a long target interval
there was no effect of whether the distractor was Fixed or Variable.
(B) Frequency task. A tone was presented in the absence of a distractor (open bars), or in the
presence of a distractor tone presented at a fixed (red) or variable (blue) interval before the
target tone. Conventions and color coding as in Figure 3.
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Figure 5. Short interstimulus intervals impair interval, but not frequency, discrimination
(A) Bars on the left show the thresholds for a two-interval forced-choice discrimination with
a 100 ms target. When the interval between the stimuli was short (250 ms) performance was
significantly worse compared to the long interstimulus interval (750 ms). In contrast,
performance on a frequency discrimination task was unaltered by the interstimulus interval.
(B) Bars on the left illustrate the results for short (250 ms) and long (750 ms) ISI when both
the standard and comparison intervals were presented at the same frequency. Bars on the right
represent the interval discrimination thresholds when the standard and comparison stimuli were
presented at different frequencies. We believe the difference in absolute interval discrimination
between both studies (right bars in panels A and B) reflects interference between the different
task and stimulus sets in both studies, as well as the inherent subject variability observed in
timing tasks.
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Figure 6. Dependence of the State-dependent Network on Initial State
(A) Trajectory of the same network shown in Fig. 1 and 2, in response to two 100 ms intervals
separated by a 250 (A1) or 750 ms ISI (A2). Note, that the trajectories under the 750 ms ISI
are much closer to overlapping than in the 250 ms condition. Arrows indicated the times of the
onset of the second interval.
(B) Distance matrix. The diagonal represents the distance in Euclidean space between the
trajectories shown in A1 and A2 starting at 0. The distance is zero until the onset of the second
tone (the noise ‘seed’ was the same for both simulations). The secondary diagonals permit the
visualization of the distances between two trajectories shifted in time. This allows the
comparison of the trajectory starting at the onset of the second interval (for the 250 ms ISI)

Karmarkar and Buonomano Page 24

Neuron. Author manuscript; available in PMC 2008 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and of the first interval (blue rectangle and blue line in lower panel), or the second interval of
the 750 ms ISI and the first interval (red rectangle and red line in lower panel). These distances,
shown in the lower panel, allows for quantification of the effect of the network not returning
to its initial (resting) state before presenting the next stimulus. Note that while the initial
distance is lower in the 750 ms ISI, it is not zero.
(C) Percent correct performance of networks trained to discriminate two intervals separated
by varying ISIs. Average data from four stimulations. Output units were trained to discriminate
intervals ranging from 50 – 150 ms. Performance was then tested by examining generalization
to these same intervals when presented at varying ISIs after the presentation of a 100 ms
interval. Results for the 100 x 150 ms discrimination are shown. Performance is highly
dependent on the initial state of the network.
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