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Viscoelastic shear properties of the fresh porcine lens
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Aim: To determine the viscoelastic properties of the porcine lens
Methods: Linear viscoelastic shear properties of the stroma of
four porcine lenses were measured within 5 hours post-
mortem, using sinusoidal oscillatory shear deformation. The
elastic shear modulus, viscous shear modulus, dynamic
viscosity, damping ratio, and phase shift of the lenses were
quantified by a controlled-strain, linear simple-shear rheometer
at frequencies of 10–50 Hz.
Results: The mean viscoelastic properties and their standard
deviations across the frequencies examined were: the elastic
shear modulus, G9 = 6.2¡4.0 Pa, the viscous shear modulus,
G 0 = 1 9 . 2 ¡ 2 . 5 P a , t h e d y n a m i c v i s c o s i t y ,
g9 = 0.16¡0.1 PaNsec, the damping ratio f = 4.06¡1.25,
and the phase shift, d= 76˚¡ 5.6 .̊
Conclusions: The measured viscoelastic shear properties of the
porcine lens reflect a low dynamic viscosity with a high
damping ratio. The porcine lens is viscoelastic and is more
viscous than elastic. The magnitude of the complex shear
modulus of the porcine lens, |G*|, is similar to the shear
modulus of the young human lens. Understanding these
viscoelastic properties of the natural lens may provide guidance
in developing a lens substitute capable of accommodation in
the post cataract patient.

P
rogress in developing an artificial intraocular lens that can
change power like the human lens critically depends on a
better understanding of the material properties of the

crystalline lens. The crystalline lens is viscoelastic.1 2 Its rigidity
can be measured by the complex shear modulus,3–5 G*, which
consists of the real part, the elastic shear modulus, G9, and the
imaginary part, the viscous shear modulus, G0. The magnitude
of the complex shear modulus, |G*|, is given by:

G*  =    G'2+G''2

The higher the magnitude of the complex shear modulus, the
more rigid the lens.

To measure the viscoelastic material properties of the lens, a
time varying strain is required. The complex shear modulus, G*,
depends on the amplitude and frequency of the deforming
strain.3–5 By placing the lens between two parallel plates,
applying a small-amplitude sinusoidal oscillatory shear strain,
and measuring the resulting shear stress, linear viscoelastic
shear properties of the lens can be determined, including; the
elastic shear modulus, the viscous shear modulus, the dynamic
viscosity, the damping ratio, and the phase shift.2–5

The dynamic viscosity, g9, is related to the viscous shear
modulus by the following equation:

=g'
v
G''

where, v, is the angular frequency of the deforming strain.
The higher the dynamic viscosity, the more viscous is the
material.

The damping ratio is a measure of the energy loss when the
material is subjected to an oscillatory strain. The damping ratio,
f, is the ratio of the viscous and elastic shear moduli:

G'' 
G' 

=f

When the damping ratio is less than 1.0, equal to 1.0, or
greater than 1.0, the material is described, respectively, as
underdamped, critically damped, or overdamped.

Another viscoelastic parameter, determined by the viscous
and elastic shear moduli, is the phase shift. It is the shift in
phase between the oscillatory strain and stress of the lens, and
is measured in degrees. It is mathematically expressed as the
arctangent of the ratio of the viscous and elastic shear moduli:

=d tan_1 G'' 
G' 

When the phase shift falls between zero and ninety degrees,
is equal to zero, or is infinite, a material is respectively
characterized as being, viscoelastic, purely elastic, or purely
viscous.3–5

Knowledge of the viscoelastic properties of the crystalline
lens may make it possible to duplicate these functional
characteristics in a deformable, accommodating lens substitute.

METHODS
Four eyes from four, 5-month old pigs were obtained from an
abattoir immediately following death and transported on ice in
less than 30 minutes to our laboratory. The clear intact lens was
carefully removed from the eye. The lens capsule was dissected
from the stroma of each lens. A one-millimeter thick mid-
sagittal section was excised from two of the lenses. A one-
millimeter mid-transverse section was excised from the other
two lenses. Each lens section was placed between two parallel
acrylic plates of a calibrated validated controlled-strain, linear
simple-shear rheometer6 (EnduraTec ELF 3200, Bose
Corporation, Minnetonka, MN). The rheometer consisted of a
linear motor or actuator capable of prescribing a precise, small-
amplitude sinusoidal shear displacement to the excised block of
fresh lens stroma via the upper plate (fig 1). The sinusoidal
shear force resulting from the viscoelastic response of the lens
stroma was detected by a piezoelectric quartz force transducer
(PCB 209C12, PCB Piezotronics, Depew, NY, USA) attached to
the lower plate. Additionally, the lower plate was attached to a
micrometer. Before each test, the micrometer was adjusted
until both the upper plate and the lower plate surfaces were in
contact with the entire surface of the lens section. The distance
between these plates was 1 mm. The plates were enclosed in a
chamber to control temperature at 37 ¡̊0.1 C̊ and humidity at
80%.
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Using a camera that was centered above the lens section and
rigidly mounted to the rheometer, a digital photograph was
taken of the area of the lens section in contact with the upper
plate, before and after completing the testing, to verify stability
of the contact surface during the measurement, and to allow for
the calculation of shear stress. To ensure stress-strain linearity
and negligible inertia of the sample, the displacement of the
upper plate was set at 1% of the distance between the plates
(i.e., 1% shear strain).5

The principle of controlled strain rheometry3–5 was followed,
with sinusoidal oscillatory shear deformation applied to the
lens stroma in the following steps: 10 Hz, 15 Hz, 20 Hz, 25 Hz,
and 50 Hz. The measurements of each lens section took
approximately 20 minutes. All measurements commenced
within 5 hours of the pigs’ death and within 5 minutes of
removal of the lenses from the eyes.

For each frequency, the changes in phase and amplitude of
20 cycles of oscillations were measured. Then, the means and
standard deviations of G9, G0, g9, and f at each frequency for all
the lenses were calculated according to the theory of linear
viscoelasticity,6 using Matlab (Version 7.0, The Mathworks,
Inc., Natick, MA, USA) and plotted on a log-log scale.

RESULTS AND DISCUSSION
The mean changes in G9, G0, g9, and f versus frequency are
given in figs 2 and 3. The mean G9, G0, g9, and f for all
frequencies were 6.2¡4.0 Pa, 19.2¡2.5 Pa, 0.16¡0.1 PaNsec
and 4.06¡1.25, respectively. The phase shift, d, = tan-1(f) was
76 ¡̊5.6 .̊ There was no significant difference in response of the
mid-sagittal and mid-transverse sections.

Since the mean phase shift for the porcine lens was found to
equal 76 ,̊ by definition, the lens stroma is viscoelastic. The
mean elastic shear modulus of the porcine lens is less than its
mean viscous shear modulus. Therefore, the porcine lens
stroma can be described as more viscous than elastic. The
mean dynamic viscosity of the porcine lens is low and, as is
common with soft biological tissues,5 decreases linearly and
monotonically with frequency on a log-log scale. Since the
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Figure 1 Schematic diagram of the linear, simple-shear rheometer. The
section of porcine lens was subjected to a linear sinusoidal shear strain as
applied by the controlled displacement of the upper plate (x), and the shear
force resulting from the viscoelastic response of the sample (F) was detected
by a piezoelectric force transducer attached to the lower plate.
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Figure 2 A. Mean elastic shear modulus (¡ standard deviations) of the
porcine lens stroma as a function of frequency (n = 4). B. Mean viscous
shear modulus (¡ standard deviations) of the porcine lens stroma as a
function of frequency (n = 4).
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Figure 3 A. Mean dynamic viscosity (¡ standard deviations) of the
porcine lens stroma as a function of frequency (n = 4). B. Mean damping
ratio (¡ standard deviations) of the porcine lens stroma as a function of
frequency (n = 4).
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damping ratio was greater than 1.0 for all frequencies, the
porcine lens is over-damped.

The magnitude of the complex shear modulus of the porcine
lens is 20.2 Pa. This shear modulus is about 40% of the
magnitude of the mean shear modulus of the young human
lens, which is 50 Pa.7 8

Since the speed of ultrasound,9 10 the biochemistry11 12 and
the structure13 14 of porcine and human lenses are similar, it is
likely that the human lens, like the porcine lens, also has a low
dynamic viscosity and is over-damped. Over-damping of the
human lens can be demonstrated, in vivo, during human
accommodation. It is reflected in the ability of the eye to rapidly
and consistently track a step stimulus that is within the linear
portion of the subject’s accommodative function.15

Overdamping of the lens is also demonstrated in the linear
portion of accommodation by the rapid decline that occurs in
the magnitude of the power spectrum of the microfluctua-
tions.15

In summary, the porcine lens is viscoelastic, readily
deformed, and overdamped. It has a shear modulus similar in
magnitude to that of the young human crystalline lens.
Understanding these viscoelastic properties of the natural lens
may provide guidance in the development of a deformable lens
substitute, capable of accommodation in the post cataract
patient.
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