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Alzheimer’'s disease (AD) is defined by the classical
pathological hallmarks of senile plaques and neurofibril-
lary tangles (NFTs). Whether these are a cause or a
consequence of the disease is still under some contro-
versy, but the difficulty in understanding the relationship
between these evident pathological alterations in AD
brains has propelled interest in other possible mecha-
nisms for AD. It is highly suspected that cognitive decline
is linked to neuronal cell death. Growing interest in apo-
ptosis as a molecular basis for neurodegenerative dis-
eases has not escaped attention in the Alzheimer’s field
of research. The manuscript of Yang et al’ in this issue
describes a novel approach to the detection of apopto-
sis-related events in AD. To place this study in perspec-
tive, a brief review of other findings relating to apoptosis
and AD is provided.

Neuronal Loss and Alzheimer’s Disease

It has been known for some time that AD pathology encom-
passes selective neuronal synaptic loss and cell death (re-
viewed in Ref. 2). Recently, the technique of stereological
quantitation has enabled Hyman and colleagues to identify
neuronal loss in the entorhinal cortex as a very early event of
Aizheimer’s disease, one that increases with severity of
illness.® In contrast, neuronal loss in the superior temporal
sulcus of AD patients occurs as a later event in the progres-
sion of the disease and increases with the duration of the
disease and with the severity of cognitive impairment. Al-
though the NFTs also increase with the duration and sever-
ity of disease, neuronal loss is markedly enhanced and
does not correlate with the presence of senile plaques. In
contrast, neuronal loss is not detected in nondemented
aged individuals.®* Therefore, in some selective areas of
the brain, neuronal loss precedes strong clinical manifesta-
tion of the disease. The initial symptoms of cognitive deficit
suggest neuronal dysfunction, and the progressive loss of
these functions indicates that neuronal death is apoptotic
rather than necrotic. The hypothesis that apoptotic neuronal
cell death occurs in Alzheimer’s or any other neurodegen-

erative disease is particularly attractive as apoptosis can be
prevented by general inhibitors in many situations.

Apoptosis and Alzheimer’s Disease

The evidence for apoptosis in AD is varied and some-
times controversial. The absence of techniques to detect
apoptosis in live tissue leaves us with ambiguous data.
Postmortem tissue presents many problems. First, arti-
facts can arise with increasing length of retrieval of post-
mortem brains. The standard in situ method of terminal
deoxynucleotidyl transferase-mediated dUTP nick end
labeling (TUNEL) used for the detection of DNA fragmen-
tation in apoptotic cells is particularly sensitive and will
also detect DNA fragmentation occurring during necrosis
especially in long-term postmortem interval tissues. Even
in the best preserved tissues, it is likely that most apo-
ptotic cells will undergo phagocytosis and present neg-
ative results when tested for DNA fragmentation. Second,
no one has yet investigated the molecular mechanisms of
human neuronal apoptosis or cell death. We assume that
the mechanisms gleaned from human neuroblastoma cell
types or from rodent primary cultures will be the same in
human adult brains. It is likely that the human neuron,
which is terminally differentiated at an early age yet long
lived, has a special adaptive response to an apoptotic
stimuli or insult. Therefore, a challenged neuron may not
display characteristic apoptotic morphological events in
the earlier phases of apoptosis and may avoid detection
by standard methods. In addition, the apoptotic program
may be different depending on the neuronal subtypes,
and some neuronal subsets may have increased protec-
tion against apoptosis. This assumption is supported by
the fact that only subsets of neurons are affected in
neurodegenerative disorders. Therefore, the presence of
one marker for apoptosis may not necessarily indicate
neuronal apoptosis. The apoptotic program may also
change depending on the insult, especially in the initial
and pre-commitment stage of apoptosis. In addition, the
proteins expressed in the initial phases of apoptosis may
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well be expressed in other situations not involving cell
death.

There is strong in vitro support for the role of apoptosis
in AD. Mutations in the three genes linked to AD, amyloid
precursor protein, presenilin |, and presenilin 1l, induce
apoptosis in transfected cultured cells.>® In addition,
presenilin Il was shown to be a substrate for the apoptotic
effector protein, caspase-3, resulting in alternate carbox-
yl-terminal cleavage and the production of an insoluble
carboxyl-terminal fragment of presenilin 11.° The amyloid
B-peptide, increased in both sporadic and familial AD
associated with either amyloid precursor protein, prese-
nilin I, or presenilin Il mutations, induces neuronal cell
death through an apoptotic mechanism.'®=2° In human
primary neuron cultures, amyloid B-peptide toxicity weak-
ens the anti-apoptotic protection of the neurons, and a
second insult is required to induce cell death.?

However, it has been more difficult to assess the pres-
ence of apoptotic neurons in vivo. Using tools that are
available and known to identify apoptosis in cell cultures,
many individuals have tested the apoptotic hypothesis in
AD. The initiation of cell death normally includes imme-
diate-early gene expression. The transcriptional factors,
c-jun and c-fos, have been intensively studied for their
role in neuronal apoptosis, and c-jun seems likely to
induce neuronal cell death.?22® Reports show increased
c-jun and c-fos expression in the brains of AD patients as
compared with age-matched controls.?#25 However, it is
known that immediate-early genes are also expressed
during neuronal cell activation and can be influenced by
various drugs.262” Therefore, in the absence of addi-
tional markers of neuronal cell death, the expression of
c-jun and c-fos in neurons of AD does not produce con-
clusive evidence of apoptosis. There is evidence that
genes that are normally responsible for cell cycle tra-
verse are re-expressed in terminally differentiated apo-
ptotic neurons. Cyclin D1 is particularly studied in neu-
rons and has been shown to increase in primary neurons
undergoing apoptosis.?®2° In AD but not in normal con-
trols, the MPM-2, an antibody to mitotic phospho-
epitopes, and cdc2 and cyclin B1 kinase antibodies,
stain NFTs, neuritic processes, and neurons.30-31

After the initiation of apoptotic cell death, the progres-
sion to apoptosis will depend on the expression of the
regulators of cell death. A group of proteins known as the
bcl-2 and bcl-2 related proteins have been identified that
either promote or protect against apoptosis.®2 The ex-
pression of these proteins in human adult brains could
control the response to the initial insult. These are inter-
esting candidates to explain the age and central nervous
system (CNS) dependence of AD. For example, bcl-2
expression decreases with age in the CNS but not in the
peripheral nervous system.33 Bcl-2 expression in neuro-
nal culture systems protects against a wide variety of
insults.®4=37 On the other hand, other members of this
family, such as bax protein, promote cell death.3® In AD,
bcl-2 and bax are increased in neurons except in NFT-
positive cells.3%4° Others have observed increased bcl-2
levels in glial cells.*’

Irreversible commitment to apoptosis occurs with the
activation of one or a group of mammalian cysteine pro-

teases called caspases.*? Caspases are expressed as
proenzymes and are proteolytically activated. Caspases
cleave carboxyl-terminal to an aspartic acid and gener-
ally recognize four amino acid substrate sites as their
target. These proteins can be subdivided in three classes
based on their specific substrates.*® Caspase-3, also
known as apopain, CPP32, or YAMA is particularly im-
portant for developmental neuronal cell death.#44%
Caspase-3 null mice have increased numbers of neurons
that normally would be eliminated during development.*€
The fact that other cell types are not affected in the
caspase-3 null mice indicates that caspase-3 can be
targeted to prevent cell death in neurons without causing
increased proliferation of the neighboring cell types such
as astrocytes or microglia, a situation that would result in
a detrimental treatment for neurodegenerative diseases.
Caspase-3 has many cellular substrates: poly(ADP-ri-
bose) polymerase (PARP),%44° catalytic subunit of the
DNA-dependent protein kinase,*” 70-kd subunit of the
U1 small ribonucleoprotein,*® and actin.*®=5' At this
stage, the cell undergoes a severe morphological
change consisting of DNA fragmentation, nuclei conden-
sation, and nuclear breakdown.

Actin and Apoptosis

Recently, many studies have concentrated on actin as a
substrate of active caspase. Actin is a substrate of
caspase-1 (interleukin-1B-converting enzyme) and
caspase-3 (YAMA, apopain, or CPP32).4°-5' The full-
length 45-kd actin contains two caspase substrate-spe-
cific sites at amino acids 11 and 244 and can be cleaved
into 41-kd, 30-kd, and 15-kd fragments. Cleavage of the
actin is, however, minimal, and most of the time, down-
regulation of the level of full-length actin cannot be de-
tected even in the presence of ongoing proteolytic cleav-
age of actin. In human neutrophils, others have found that
actin cleavage could not be inhibited completely with
caspase inhibitors but were with acetyl-leucine-leucine-
norleucinal, a proteasome and calpain inhibitor. These
studies suggest that the activation of other proteases in
apoptotic cells may be responsible for the cleavage of
actin.®? The effect of caspases on actin cleavage could
very well be cell type specific. For example, some cell
lines do not produce in vivo actin-cleavable activity.5°-53
Gelsolin, an actin-regulatory protein, can prevent actin
cleavage, but this activity is indirect as it is shown that
gelsolin actually inhibits caspase-3 activation and apo-
ptosis in some cells.3* Gelsolin itself is reported as a
substrate of caspase-3 in neutrophils, suggesting that it
may be responsible for morphological alterations ob-
served during apoptosis.®

Proteolytic cleavage of actin precedes DNA fragmen-
tation, raising an important question as to its role in the
apopotic process of the cell. Actin maintains morpholog-
ical integrity, and it is assumed that cleavage will result in
a weakened cytoskeleton. However, the full-length 45-kd
protein is still very abundant in cells where actin frag-
ments are detected, even if in some apoptotic cells actin
mRNA itself is reduced and precedes actin cleavage and



disruption of the cytoskeleton.®® Most interesting is the
role of actin in the inhibition of DNAse |, the enzyme
responsible for DNA fragmentation in apoptotic cells (re-
viewed in Ref. 57). Kalayar and colleagues have ele-
gantly demonstrated that the proteolytic fragments of
actin have lost DNAse | inhibitory activity.5®

In their manuscript, Yang et al’ look at actin break-
down as a tool to determine earlier neuronal apoptosis in
AD. They raised an antibody specific to the five amino
acids of the carboxy-terminus of the 30- to 32-kd actin
fragment. On Western blots, their antibody, named frac-
tin, detects the fragment in apoptotic differentiated hu-
man neuroblastoma SY5Y cells, as well as that cleaved in
vitro. The activity is specific for apoptotic cells and is not
seen in necrotic SYSY cells despite considerable DNA
breakdown induced by H,O,. The actin fragment is de-
tected early in apoptotic SY5Y and likely precedes DNA
fragmentation. The caspase-3 inhibitor DEVD, but not the
caspase-1 and -4 inhibitor YVAD, inhibits the actin cleav-
age. Therefore, this tool appears highly specific in apo-
ptotic neuron-like cells.

When used for the study of apoptosis in AD, fractin
immunoreactivity is detected only in tissues obtained
from AD patients. Two early-onset cases show more re-
activity than four late-onset cases, but all six cases are
positive for fractin immunoreactivity. In contrast, in five
normal cases ranging in age from 46 to 93 years, fractin
immunoreactivity was not detected except for limited im-
munoreactivity in a clinically normal 64-year-old with high
plaque numbers. Although TUNEL and fractin staining
overlap, fractin appears to be more restricted than
TUNEL staining, which can be artificially high in long-
interval postmortem tissue. Therefore, fractin staining has
a distinct advantage over the detection of DNA fragmen-
tation in the study of neurodegenerative processes.

It is interesting that the fractin immunoreactivity is de-
tected in areas containing abundant amounts of senile
plagues. Although neuronal loss in AD does not correlate
well with plaque density,3* these results suggest that the
neurons that are present in this area are not all normal
and may be undergoing apoptosis. Surprisingly, the im-
munoreactivity is found both in neurons and microglia. In
neurons, the immunoreactivity is not restricted to cell
soma but is also seen at a distance in neurites, providing
an additional tool to detect abnormal cell processes that
are not obvious under classical pathological examination.
The authors provide logical and interesting explanations
for the presence of fractin staining in microglia.

It is still not clear that all cells immunopositive to fractin
will undergo apoptosis in the brain. We must be careful in
the interpretation of these results and remain aware that
human neuron apoptosis in adult brains remains unex-
plored. It is possible that human neurons have developed a
highly efficient system to control neuronal apoptosis, espe-
cially as these cells are nonrenewable, and the organism
suffers irreversible damage upon their death. Whereas ap-
optosis of dividing cells or developmental neuronal apopto-
sis may occur fairly rapidly within days, human adult neu-
rons may undergo this process for months or even years by
activating different backup systems to prevent neuronal
loss, at least up to a point. However, if fractin does identify
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apoptosis-related events, as seen in the neuroblastoma cell
line, this antibody provides a distinct advantage over end-
point markers of apoptosis. The development of other pro-
tein-specific caspase substrate site antibodies or even ac-
tive caspase-specific antibodies will eventually help clarify
some of these issues. The main problem remains the inabil-
ity to study the ongoing process of neuronal dysfunction
and cell death in an affected brain. Determination of the
state of the neurons at the end of the disease process giving
a cross-sectional view of an ongoing process will not an-
swer our questions of whether apoptosis is primary and
crucial in AD. Nevertheless, our attempts to understand the
apoptotic process in neurodegenerative diseases must not
be hampered. By inhibiting apoptosis in neurons at an early
stage of the disease, we may have a fighting chance to
return these neurons to normal function.
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