Abstract
A multiplex reverse transcription polymerase chain reaction assay was designed to measure manganese superoxide dismutase (MnSOD) and CuZnSOD mRNAs in the left and right ventricles of rat hearts after myocardial infarction induced by occlusion of the left coronary artery. These data were compared with changes in enzymatic activities. In the left ventricle, Mn-SOD RNA increased significantly at 6 hours, peaked at 12 hours (490 +/- 38 arbitrary units), and progressively decreased (127 +/- 21 arbitrary units at 48 hours). In contrast, there was a steady accumulation of transcripts in the right ventricle up to 48 hours. In both ventricles, the changes in the MnSOD mRNA and protein content were not associated with proportional variations in enzymatic activity. There was no characteristic alteration of the CuZnSOD system in either ventricle over the 48-hour period. These results demonstrate that infarction selectively activates the MnSOD gene in the viable myocardium of both ventricles. They suggest that MnSOD may be involved in the adaptive response of myocytes to the overloading stress.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anversa P., Li P., Zhang X., Olivetti G., Capasso J. M. Ischaemic myocardial injury and ventricular remodelling. Cardiovasc Res. 1993 Feb;27(2):145–157. doi: 10.1093/cvr/27.2.145. [DOI] [PubMed] [Google Scholar]
- Anversa P., Sonnenblick E. H. Ischemic cardiomyopathy: pathophysiologic mechanisms. Prog Cardiovasc Dis. 1990 Jul-Aug;33(1):49–70. doi: 10.1016/0033-0620(90)90039-5. [DOI] [PubMed] [Google Scholar]
- Aschoff J. M., Lazarus D., Fanburg B. L., Lanzillo J. J. Relative quantification of angiotensin-converting enzyme mRNA in human smooth muscle cells, monocytes, and lymphocytes by the polymerase chain reaction. Anal Biochem. 1994 Jun;219(2):218–223. doi: 10.1006/abio.1994.1260. [DOI] [PubMed] [Google Scholar]
- Brand T., Sharma H. S., Fleischmann K. E., Duncker D. J., McFalls E. O., Verdouw P. D., Schaper W. Proto-oncogene expression in porcine myocardium subjected to ischemia and reperfusion. Circ Res. 1992 Dec;71(6):1351–1360. doi: 10.1161/01.res.71.6.1351. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Das D. K., Maulik N., Moraru I. I. Gene expression in acute myocardial stress. Induction by hypoxia, ischemia, reperfusion, hyperthermia and oxidative stress. J Mol Cell Cardiol. 1995 Jan;27(1):181–193. doi: 10.1016/s0022-2828(08)80017-x. [DOI] [PubMed] [Google Scholar]
- Das D. K., Moraru I. I., Maulik N., Engelman R. M. Gene expression during myocardial adaptation to ischemia and reperfusion. Ann N Y Acad Sci. 1994 Jun 17;723:292–307. [PubMed] [Google Scholar]
- Dessen P., Fondrat C., Valencien C., Mugnier C. BISANCE: a French service for access to biomolecular sequence databases. Comput Appl Biosci. 1990 Oct;6(4):355–356. doi: 10.1093/bioinformatics/6.4.355. [DOI] [PubMed] [Google Scholar]
- Domenech R. J., Hoffman J. I., Noble M. I., Saunders K. B., Henson J. R., Subijanto S. Total and regional coronary blood flow measured by radioactive microspheres in conscious and anesthetized dogs. Circ Res. 1969 Nov;25(5):581–596. doi: 10.1161/01.res.25.5.581. [DOI] [PubMed] [Google Scholar]
- Engler R., Gilpin E. Can superoxide dismutase alter myocardial infarct size? Circulation. 1989 May;79(5):1137–1142. doi: 10.1161/01.cir.79.5.1137. [DOI] [PubMed] [Google Scholar]
- Flohé L., Otting F. Superoxide dismutase assays. Methods Enzymol. 1984;105:93–104. doi: 10.1016/s0076-6879(84)05013-8. [DOI] [PubMed] [Google Scholar]
- Geller B. L., Winge D. R. Subcellular distribution of superoxide dismutases in rat liver. Methods Enzymol. 1984;105:105–114. doi: 10.1016/s0076-6879(84)05014-x. [DOI] [PubMed] [Google Scholar]
- Guarnieri C., Flamigni F., Caldarera C. M. Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart. J Mol Cell Cardiol. 1980 Aug;12(8):797–808. doi: 10.1016/0022-2828(80)90081-4. [DOI] [PubMed] [Google Scholar]
- Herskowitz A., Choi S., Ansari A. A., Wesselingh S. Cytokine mRNA expression in postischemic/reperfused myocardium. Am J Pathol. 1995 Feb;146(2):419–428. [PMC free article] [PubMed] [Google Scholar]
- Hoshida S., Kuzuya T., Fuji H., Yamashita N., Oe H., Hori M., Suzuki K., Taniguchi N., Tada M. Sublethal ischemia alters myocardial antioxidant activity in canine heart. Am J Physiol. 1993 Jan;264(1 Pt 2):H33–H39. doi: 10.1152/ajpheart.1993.264.1.H33. [DOI] [PubMed] [Google Scholar]
- Knöll R., Arras M., Zimmermann R., Schaper J., Schaper W. Changes in gene expression following short coronary occlusions studied in porcine hearts with run-on assays. Cardiovasc Res. 1994 Jul;28(7):1062–1069. doi: 10.1093/cvr/28.7.1062. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- NACHLAS M. M., SHNITKA T. K. Macroscopic identification of early myocardial infarcts by alterations in dehydrogenase activity. Am J Pathol. 1963 Apr;42:379–405. [PMC free article] [PubMed] [Google Scholar]
- Olivetti G., Capasso J. M., Sonnenblick E. H., Anversa P. Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res. 1990 Jul;67(1):23–34. doi: 10.1161/01.res.67.1.23. [DOI] [PubMed] [Google Scholar]
- Pfeffer M. A., Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990 Apr;81(4):1161–1172. doi: 10.1161/01.cir.81.4.1161. [DOI] [PubMed] [Google Scholar]
- Pfeffer M. A., Pfeffer J. M., Fishbein M. C., Fletcher P. J., Spadaro J., Kloner R. A., Braunwald E. Myocardial infarct size and ventricular function in rats. Circ Res. 1979 Apr;44(4):503–512. doi: 10.1161/01.res.44.4.503. [DOI] [PubMed] [Google Scholar]
- Plumier J. C., Robertson H. A., Currie R. W. Differential accumulation of mRNA for immediate early genes and heat shock genes in heart after ischaemic injury. J Mol Cell Cardiol. 1996 Jun;28(6):1251–1260. doi: 10.1006/jmcc.1996.0115. [DOI] [PubMed] [Google Scholar]
- Reiss K., Capasso J. M., Huang H. E., Meggs L. G., Li P., Anversa P. ANG II receptors, c-myc, and c-jun in myocytes after myocardial infarction and ventricular failure. Am J Physiol. 1993 Mar;264(3 Pt 2):H760–H769. doi: 10.1152/ajpheart.1993.264.3.H760. [DOI] [PubMed] [Google Scholar]
- Schaper W., Zimmermann R., Kluge A., Andres J., Sharma H. S., Frass O., Knöll R., Winkler B., Verdouw P. Patterns of myocardial gene expression after cycles of brief coronary occlusion and reperfusion. Ann N Y Acad Sci. 1994 Jun 17;723:284–291. [PubMed] [Google Scholar]
- Shlafer M., Myers C. L., Adkins S. Mitochondrial hydrogen peroxide generation and activities of glutathione peroxidase and superoxide dismutase following global ischemia. J Mol Cell Cardiol. 1987 Dec;19(12):1195–1206. doi: 10.1016/s0022-2828(87)80530-8. [DOI] [PubMed] [Google Scholar]
- Steare S. E., Yellon D. M. The potential for endogenous myocardial antioxidants to protect the myocardium against ischaemia-reperfusion injury: refreshing the parts exogenous antioxidants cannot reach? J Mol Cell Cardiol. 1995 Jan;27(1):65–74. doi: 10.1016/s0022-2828(08)80008-9. [DOI] [PubMed] [Google Scholar]
- Subramanian R., Volovsek A., Ho Y. S. Lack of change in MnSOD during ischemia/reperfusion of isolated rat heart. J Mol Cell Cardiol. 1993 Oct;25(10):1179–1186. doi: 10.1006/jmcc.1993.1131. [DOI] [PubMed] [Google Scholar]
- Sugimoto T., Fujita M., Taguchi T., Morita T. Quantitative detection of DNA by coamplification polymerase chain reaction: a wide detectable range controlled by the thermodynamic stability of primer template duplexes. Anal Biochem. 1993 May 15;211(1):170–172. doi: 10.1006/abio.1993.1249. [DOI] [PubMed] [Google Scholar]
- Sweet C. S., Emmert S. E., Stabilito I. I., Ribeiro L. G. Increased survival in rats with congestive heart failure treated with enalapril. J Cardiovasc Pharmacol. 1987 Dec;10(6):636–642. doi: 10.1097/00005344-198712000-00005. [DOI] [PubMed] [Google Scholar]
- Yamazaki T., Komuro I., Yazaki Y. Molecular mechanism of cardiac cellular hypertrophy by mechanical stress. J Mol Cell Cardiol. 1995 Jan;27(1):133–140. doi: 10.1016/s0022-2828(08)80013-2. [DOI] [PubMed] [Google Scholar]
- Zhong W., Oberley L. W., Oberley T. D., Yan T., Domann F. E., St Clair D. K. Inhibition of cell growth and sensitization to oxidative damage by overexpression of manganese superoxide dismutase in rat glioma cells. Cell Growth Differ. 1996 Sep;7(9):1175–1186. [PubMed] [Google Scholar]


