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Comparative Genomic Hybridization of Malignant
Fibrous Histiocytoma Reveals a Novel Prognostic
Marker
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DNA sequence copy number changes were studied by
comparative genomic hybridization (CGH) along all
chromosomes in 58 samples of malignant fibrous his-
tiocytoma (MFH). The material consisted of 43 pri-
mary tumors (9 of myxoid and 34 of storiform-pleo-
morphic subtype), 13 local recurrences (2 myxoid
and 11 storiform-pleomorphic), and 2 metastases (1
myxoid and 1 storiform-pleomorphic). Genetic aber-
rations, with a mean of 5.5 changes per sample
(range, 0 to 22), were detected in 47 of 58 samples
(81%). The minimal common regions of the most
frequent gains were lp31 (330/o), 9q31 (29%), 5pl4-
pter (260/o), 7q32 (24%), and 7p15-pter (22%). High-
level amplifications were detected in 16 of the 58
samples (28%). High-level amplification of 13q31-qter
was seen in four tumors (7%); other high-level ampli-
fications were more sporadic. Losses of DNA se-

quences were less frequent than gains. The minimal
common regions of the most common losses were

13q21 (21%) and 13q22 (21%). Statistically significant
correlation was found between gain of 7q32 and the
rates ofworse metastasis-free survival (P = 0.01) and
overall survival (P = 0.004). The gain of7q32 retained
its prognostic significance also in a multivariate anal-
ysis with tumor size and grade. Gain of 1p31 was

associated with a trend to decreased overall survivaL
Gains of 5p14-pter and 9q31 and losses of 13q21
and/or 13q22 did not have any prognostic value; nei-
ther did the total number of aberrations, total num-
ber of gains, or total number of losses per sample.
(AmjPathol 1997, 151:1153-1161)

Malignant fibrous histiocytoma (MFH) is the most fre-
quent soft tissue sarcoma occurring in adults.1`3 In a
recent World Health Organization classification, MFH has
been defined as "a pleomorphic spindle cell sarcoma
usually occurring in adults and displaying no distinct line
of differentiation."4 Histologically, MFH is a heteroge-
neous group of sarcomas composed of a mixture of
fibroblastic, histiocytic, and bizarre cells, often accompa-
nied by variable amounts of inflammatory cells, collagen,
and a myxoid substance in the stroma.1 It is still unknown
whether the tumor originates from histiocytes, fibroblasts,
or undifferentiated mesenchymal cells. MFH has been
divided into four subtypes.4 The most common are the
storiform-pleomorphic and myxoid subtypes. Giant cell
and inflammatory subtypes are seen less frequently.1

Even though MFH is the most commonly diagnosed
soft tissue sarcoma, relatively few comprehensive studies
about prognostic factors have been published on this
tumor. The strongest prognostic factors are tumor size
and grade.3,5-8 Additional prognostic information can be
gained from tumor necrosis3 9 and histological sub-
type.689

The karyotypic abnormalities in MFH are usually com-
plex, with multiple numerical and structural rearrange-
ments. No chromosomal aberrations specific to MFH
have been identified so far, but telomeric associations,
unidentified ring chromosomes, and dicentric chromo-
somes are frequently seen in MFH.1011 Cytogenetic
signs of gene amplification, ie, homogeneously staining
regions and double minute chromosomes, are also seen
in MFH.12,13 A 19p+ marker chromosome is a recurrent
aberration in MFH.14 This marker seems to correlate with
an increased risk for local recurrence.15 Furthermore,
metastases in high-risk patients are more common with
the 19p+ marker than without it.15 The nature of the 19p+
marker is still unknown. The presence of ring chromo-
somes can indicate a reduced risk of relapse.15
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The participation of several oncogenes with potential
pathogenic importance to soft tissue tumor development
has been analyzed, for example, sarcoma amplified se-
quence gene SAS, human homologue of murine double
minute 2 gene MDM2, cyclin-dependent kinase CDK4,
and the gene for C/EBP homologous protein CHOP (all
mapped to the 12q13-15 amplicon). All of these genes,
except CHOP, have been shown to be amplified in more
than one-third of the MFHs.16-21 Alterations affecting tu-
mor suppressor genes p53 (17p13) and RB1 (13q14)
have been reported in approximately one-third of the
tumors.2223 The prognostic significance of these gene
alterations has not been determined.
We used comparative genomic hybridization (CGH) to

detect gains and losses of DNA sequences in soft tissue
MFH. The CGH findings were further evaluated for their
possible prognostic significance.

Materials and Methods

Tumor Specimens
The material consisted of 58 samples obtained from 55
patients. The samples were collected from the files of the
Pathology Laboratory, Department of Oncology, Helsinki
University Central Hospital. The histological slides were
re-examined. Most of the cases had already at the time of
the initial diagnosis been studied by immunohistochem-
istry and a few also by electron microscopy. When nec-
essary, new immunostainings were performed, especially
with antibodies against cytokeratins, S-100 protein,
desmin, and actins. Cases that revealed specific differ-
entiation were excluded. Tumors displaying myxoid
stroma in at least one-half of the area sampled were
classified as belonging to the myxoid subtype. Tumors
fulfilling diagnostic criteria for giant cell and inflammatory
subtypes were not seen. A four-grade system was ap-
plied. The main criteria for grading were proliferative
activity and necrosis. All tumors except one were re-
garded as high-grade (III and IV) tumors. None of the
patients except one (sample 1, Table 1) had received
chemo- or radiotherapy before the operation. The 43
primary tumors were all of high grade: 17 grade III (8 of
myxoid subtype and 9 of storiform-pleomorphic subtype)
and 26 grade IV (1 myxoid and 25 storiform-pleomor-
phic). The 13 local recurrences were of grade 11 (1 myx-
oid), grade III (1 myxoid, 4 storiform-pleomorphic), and
grade IV (7 storiform-pleomorphic). The two metastases
were of grade IV (one myxoid and one storiform-pleomor-
phic). Of the 43 primary tumors, 24 were deep and 19
were subcutaneous. Histopathological and clinical char-
acteristics of the samples are presented in Table 1. DNAs
were extracted from 42 frozen tumor samples and from
16 paraffin-embedded tissue sections.

Treatment
All patients have been consecutively treated by the Soft
Tissue Sarcoma Group at the Helsinki University Central
Hospital between 1987 and 1996. The main principles for

treatment have been published recently.24 Briefly, after
aspiration or coarse-needle biopsy, all tumors were op-
erated with compartmental or wide resection, if possible.
If histopathological analysis showed that the margins
were close or intralesional, the patients received radio-
therapy with a total dose of 50 to 60 Grey depending on
the achieved surgical margins. Of the 43 patients with
samples analyzed from primary tumors, three had been
operated intralesionally and all had received postopera-
tive radiation. Twenty-seven patients had been operated
with a marginal margin, and nineteen of these had re-
ceived postoperative radiation. Twelve patients were op-
erated with a wide margin. None of them had received
postoperative irradiation. In one case the surgical mar-
gins could not be determined with certainty.

Comparative Genomic Hybridization
CGH was performed using direct fluorochrome-conju-
gated DNAs for all samples according to a recently re-
ported protocol.25 Briefly, tumor DNAs were labeled with
fluorescein isothiocyanate (FITC)-dUTP (DuPont, Boston,
MA), and reference DNA was labeled with Texas Red-
dUTP (DuPont) by nick translation to obtain DNA frag-
ments ranging from 600 to 2000 bp. The hybridization
mixture consisted of 400 ng of labeled tumor DNA, 400
ng of labeled reference genomic DNA, and 10 ,ug of
unlabeled Cot-1 human DNA (Gibco BRL, Life Technol-
ogies, Gaithersburg, MD) dissolved in 10 ,ui of hybridiza-
tion buffer (50% formamide, 10% dextran sulfate, 2X
SSC). Hybridizations and post-hybridization washes were
carried out as reported previously.25

Digital Image Analysis
Hybridizations were analyzed using an Olympus fluores-
cence microscope and the ISIS digital image analysis
system (MetaSystems Hard & Software, Altlussheim, Ger-
many) based on an integrated high-sensitivity mono-
chrome CCD camera and automated CGH analysis soft-
ware. Three-color images (green for tumor DNA, red for
reference DNA, and blue for DAPI counterstaining) were
acquired from 12 metaphases for each sample. Chromo-
somal regions were interpreted as overrepresented when
the green-to-red ratio was higher than 1.17 (gains) or 1.5
(high-level amplifications, >10-fold) and as underrepre-
sented when the ratio was lower than 0.85 (losses). In
each CGH experiment, a negative control (blood DNA
from a healthy donor) and a positive control (tumor with
known DNA copy number changes) were included and
run in parallel. All results were confirmed using a 99%
confidence interval. Briefly, intra-experiment standard
deviations for every position in the CGH ratio profiles
were calculated from the variation of the ratio values of all
homologue chromosomes within the experiment. Confi-
dence intervals (Cls) for the ratio profiles were then com-
puted by combining them with an empirical inter-experi-
ment standard deviation and by estimating error
probabilities based on the t-distribution.
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Table 1. Histopathological and Clinical Characteristics of 58 Soft Tissue MFH Samples

Sample Age at diagnosis Tumor type,
number Sex (years) histological subtype Grade Location Size (cm)

1
2
3
4
5
6
7
8
9
10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

M
M
F
F
F
M
M
F
F
M
M
M
F
M
M
F
F
F
M
M
M
M
F
F
F
F
F
F
F
F
M
M
M
F
M
M
M
M
M
F
F
M
F
F
M
M
F
F
F
F
F
M
F
M
M
M
F
F

74
29
85
83
65
60
60
77
63
61
70
40
76
35
70
79
78
77
77
63
79
53
32
66
74
70
67
66
31
35
81
60
42
54
65
76
79
81
70
80
58
51
84
84
57
64
78
79
67
66
78
43
71
81
84
51
66
79

P, St-pI*
P, St-pl
P, St-pl
P, St-pl
P, Myx
P, St-pl
P, St-pl
P, St-pl
P, St-pl
P, St-pl
P, St-pl
P, Myx
P, St-pl
P, St-pl
P, St-pl
P, St-pl
P, St-pl
P, St-pl
P, St-pl
P, Myx
P, St-pl
P, St-pl
P, St-pl
P, St-pl
P, St-pl
P, Myx
P, Myx
P, Myx
P, St-pl
P, St-pl
P, St-pl
P, St-pl
P, St-pl
P, Myx
P, St-pl
P, Myx
P, St-pl
P, St-pl
P, St-pl
P, St-pl
P, Myx
P, St-pl
P, St-pl
R, St-pl
R, St-pl
R, St-pl
R, Myx
R, St-pl
R, St-pl
R, Myx
R, St-pl
R, St-pl
R, St-pl
R, St-pl
R, St-pl
R, St-pl
M, Myx
M, St-pl

IV
IV
IV
IV
IV
IV
III
IV
IV
III
IV
III
III
IV
III
IV
IV
III
IV
III
IV
IV
III
III
IV
III
III
III
IV
IV
III
IV
IV
III
IV
III
IV
IV
IV
III
III
IV
IV
IV
IV
IV
III
III
III
11
III
IV
III
IV
IV
IV
IV
IV

Lower arm
Upper arm
Lower leg
Upper arm
Lower leg
Thigh
Thigh
Lower leg
Thigh
Shoulder
Knee
Upper trunk
Lower trunk
Head
Lower leg
Lower leg
Thigh
Lower arm
Upper arm
Thigh
Upper arm
Lower trunk
Thigh
Knee
Thigh
Lower leg
Lower leg
Upper trunk
Shoulder
Lower trunk
Lower leg
Upper arm
Thigh
Lower leg
Lower arm
Lower arm
Lower arm
Upper arm
Lower arm
Lower trunk
Shoulder
Upper arm
Shoulder
Upper arm
Thigh
Lower leg
Lower leg
Lower arm
Knee
Thigh
Lower leg
Upper trunk
Lower leg
Upper trunk
Lower leg
Upper arm
Groin
NA

20.0
4.5
7.0
4.0

26.0
14.0
2.0
7.0

18.0
4.0

13.5
5.0
2.7
7.0

12.5
8.0
9.0
5.0
8.0
6.0
6.5

18.0
7.0
4.5

11.0
3.0
8.0
6.0
4.0
9.0
2.5
7.0

15.0
1.5

14.0
5.0
5.8

12.0
7.0
6.0
6.0
8.0
7.7

NA (7.0)t
2.2 (NA)
3.2 (NA)
NA (1.0)
NA (3.5)
4.5 (NA)
3.5 (NA)
1.0 (2.0)
NA (5.0)
2.5 (NA)
11.0 (NA)
NA (5.0)
10.0 (8.0)
10 (26.0)
NA (10.0)

M, male; F, female; P, primary tumor; M, metastasis; R, local recurrence; Myx, myxoid subtype; St-pl, storiform-pleomorphic subtype; NA, not available.
*Radiotherapy given before the operation.
tFor metastases and recurrent tumors, the size of the primary tumor is given in parentheses.

Statistical Analysis

Correlation between the most frequent CGH aberrations and
clinical features was analyzed in 43 patients with primary tu-
mors studied by CGH. The median follow-up time was 21

months (range, 9 months to 7 years). The association between
CGH aberrations and clinical features was tested by the x2 test
(if the number of cases in all classes was greater than five),
Fisher's exact test (grade and histological subtype), or the
Mann-Whitney U-test (age at diagnosis and tumor size).
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Figure 1. Summary of gains and losses of DNA sequence copy number in 58 soft tissue MFH samples analyzed by CGH. Losses are shown on the left and
gains on the right. Each line represents a genetic aberration seen in one sample. High-level amplifications of small chromosomal regions are shown as thick
lines.

Metastasis-free and overall survival rates were esti-
mated using the Kaplan-Meier method. The most com-
mon aberrations were studied for their association with
metastasis-free survival, overall survival, and local recur-
rence using the log-rank test. The associations among
outcome in groups with and without DNA copy number
changes were evaluated with the log-rank test. To avoid
the problem with multiple comparisons, statistical testing
was restricted to the five most common aberrations (four
most frequent gains and a combination of the two most
frequent losses), and the statistical significance level was
set to 0.01 in accordance with the method of Bonferroni.
The proportional hazards model was used to test whether
there is a linear association between the risk of death or
relapse and the total number of aberrations (total number
of aberrations, total number of gains, and total number of
losses per tumor).

Four other factors (grade, tumor subtype, tumor size,
and patient's age at diagnosis) were tested for associa-
tion with local control, metastasis-free survival, and over-
all survival. Tumor size and patient's age were tested as
continuous variables and grade and tumor subtype as
dichotomous. Factors with significant association to out-

come were finally combined in a multivariate Cox analysis
of metastasis-free and overall survival.

Results

Overview of DNA Sequence Copy Number
Changes
Of the 58 samples, 47 (81%) had changes with a mean
value of 5.5 aberrations per sample (range, 0 to 22).
Eleven samples did not show any aberrations. Although
nonrepresentative histology is a possible reason for CGH
not detecting any changes, other explanations are, eg,
balanced aberrations not affecting DNA sequence copy
number, aberrations beyond the resolution capacity of
CGH, and intratumor heterogeneity.
The number of DNA copy number changes was higher

in the group of metastases and local recurrences (mean,
6.5 ± 1.7; range, 0 to 22) than in primary tumors (mean,
4.9 + 0.6; range, 0 to 14). Gains were three times more
frequent than losses (gains:losses = 2.9:1). All chromo-
somal regions with an increased or decreased DNA se-
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quence copy number are summarized in Figure 1. Table
2 shows the copy number karyotypes and Table 3 shows
the most frequent gains, high-level amplifications, and
losses.

Gains and High-Level Amplifications
The minimal common regions of the most frequent gains
were narrowed down to 1p31 (33%), 9q31 (29%), 5p14-
pter (26%), 7q32 (24%), 7p15-pter (22%), 1q24 (21%),
and 11q14 (21%). Other minimal common regions of
gains are presented in Table 3.

High-level amplifications of small chromosomal re-
gions were detected in 16 of the 47 samples with at least
one alteration in CGH (34%). The most frequent high-
level amplification affected 13q31-qter (four tumors, 7%;
Table 3). Other high-level amplifications, seen in two
tumors each, are listed in Table 3.

Losses of DNA
The minimal common regions of the most common losses
were 13q21 (21%) and 13q22 (21%), adjacent regions in
13q. Other less frequent losses are listed in Table 3.

Correlations between Changes Detected by
CGH and Clinical Features or Outcome
There were no statistically significant associations be-
tween the most common gains (1p31, 5p14-pter, 7q32,
and 9q31) or losses (13q21 and/or 13q22) and any of the
tested clinical features (tumor grade and size, his-
topathological subtype, or patient's age at diagnosis).

Statistically significant correlation was found between
gain at 7q32 and worse metastasis-free survival (P =
0.01) and overall survival (P = 0.004). There was also a
trend to an increased risk for local recurrence (P = 0.07).
The 3-year metastasis-free survival was 70 and 38%, and
overall survival was 70 and 23%, in patients without and
with a gain at 7q32, respectively. Local control at 3 years
showed 82 and 43% of the patients without and with the
gain of 7q32. Gain of 1 p31 was associated with a trend to
a worse overall survival (P = 0.04; 65 and 49% at 3 years
in patients without and with gain of 1 p31, respectively)
but not with metastasis-free survival (P = 0.18) or local
control (0.38). A summary of the association between
gains of 1 p31 and 7q32 and metastasis-free and overall
survival and local control is shown in Table 4. Metastasis-
free and overall survival in patients with and without the
gain of 7q32 are shown in Figures 2 and 3. Gains of
5p14-pter and 9q31 and losses of 13q21 and/or 13q22
did not have any prognostic value; neither did the total
number of aberrations, total number of gains, and total
number of losses per sample.
No association was found between the patient's age at

diagnosis or tumor subtype and metastasis-free or overall
survival or local control. Histological grade was signifi-
cantly (P = 0.0009) associated with metastasis-free sur-
vival (3-year metastasis-free survival was 92% versus

42% for grade Ill and IV, respectively) but not to overall
survival (P = 0.12) or local control (P = 0.94). Tumor size
was significantly associated with both metastasis-free
survival (3-year metastasis-free survival was 37% versus
89% for tumors .7 cm (median) or <7 cm, respectively;
P = 0.003) and to overall survival (3-year overall survival
was 36% versus 91 %; P = 0.005) but not to local control
(P = 0.08). The results of multivariate analysis on metas-
tasis-free and overall survival, including tumor size,
grade, and gain of 7q32, are shown in Table 5.

Discussion
The present CGH analysis of soft tissue MFH revealed
that 81 % of the samples showed gains and/or losses of
DNA sequences involving at least one but typically sev-
eral different chromosomal regions. On average, the tu-
mors had five copy number aberrations per sample,
gains being more frequent than losses. The most fre-
quent gains affected 1 p31 (33%), 9q31 (29%), 5p14-pter
(26%), and 7q32 (24%). High-level amplifications were
observed in 34% of the samples with aberrations. Similar
complexity with a nonrandom pattern of abnormalities
has been seen in conventional cytogenetic studies, but
the complexity often makes it impossible to interpret the
karyotypes. 10-13

Our results pinpoint several novel chromosomal re-
gions where frequent gains of DNA sequences were
observed. Gains were found in both arms of chromosome
1, affecting 1 p (33%) more often than 1 q (21 %). Gains of
DNA sequences at 1 q have been frequently detected by
CGH in malignant glioma,26 bladder cancer,27 osteosar-
coma,28 chondrosarcoma, and liposarcoma.29 The
minimal common region 1q24 detected in the present
study overlaps with gains of 1 q in other sarcoma types.
1 p31 and 8q24 were frequently affected by gains (33 and
14%, respectively). These sites harbor the oncogenes
LMYC and MYC.30

Gain of 5p14-pter was detected in 26% of the samples
with two high-level amplifications. Gains of 5p have also
been reported in liposarcoma,29 malignant gastrointesti-
nal stromal tumor,31 colorectal carcinoma,32 small-cell
lung cancer,33 and squamous cell carcinoma of head
and neck.34 The target genes in the copy number in-
creases of 5p are not known at present.

Gain of 9q31 was also a relatively frequent event
(29%). In previous CGH studies of other cancers, gains in
9q are extremely rare, suggesting that this gain might be
specifically linked to the tumorigenesis of MFH. On the
other hand, in some cases a gain of 9q was seen with a
simultaneous loss of 9p, suggesting isochromosome for-
mation. 9p21 contains tumor suppressors p16INK4A and
p15INK4B, frequently inactivated in different cancers35
and also in a subset of sarcomas.36'37
CGH revealed an overrepresentation of chromosome 7

in 20 of the 58 samples (34%) with two minimal common
regions narrowed down to 7q32 (24%) and 7p15-pter
(22%). Trisomy 7 is a frequent additional aberration in
several cancers,38 and copy number increases of both
7p and 7q have been detected by CGH in several tumor
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Table 2. DNA Sequence Copy Number Changes in 58 Soft Tissue MFH Samples Analyzed by CGH

Sample
number Copy number changes

1 +1p22-pter, +5p14-pter, +7, +8q23-qter, -9p23-pter, +9q21-qter, +15q15-q24, +22
2 No changes
3 + 1 p21 -p31, + 1q14-qter
4 -1 q31 -qter, -2q13-qter, -1Oq21-qter, -1 1q22-qter, -13q14-qter
5 +3q24-qter, +7q21-qter, +11/11qI13q22, +21
6 + 1 q22-q25, +8q21.3-qter, +9q22-qter, +Xpter-ql3/Xp21
7 No changes
8 + 1 p31 -pter, +3p14-p22, +5p14-pter, +8q21.1-q22, +15q14-qter
9 +1pter-q22, -1q32-qter, -2q21-qter, +3p12-qter, +4p, +5p, +6q26-qter, -8p12-pter, -8q21.3-q23, -10p12-

pter, -13q14-q21, -18q
10 No changes
11 -2p14-p16, +6q21-qter, +12p11.2-pter, -13, -18q, +19q/19q13.2-qter
12 No changes
13 + 1 p22-pter, -2q32-q36, +4p, +17q12-qter
14 No changes
15 +1p22-p31, +2pter-q35, -4q31.2-qter, +6q24-qter, +7q31-qter, +8q13-q22, +9q21-q33, +10q22-24, +12,

+ 15q25-qter, + 17
16 +4q13-q25, +5, +9q21-q32, +10q24-qter, +13q21-qter/13q22-qter, +15q23-qter/1Sq25-26, +17p-11.2-p12
17 +1p21-p31
18 +1 1q13
19 +1pter-q25, +5p14-pter, +6p12-p23, +9p13-qter, -12p, +13q31-qter, +17p, +19q/19q12-qt9r
20 +7, +15q12-qter
21 No changes
22 +7q, -13
23 + 1 p31 -pter, -2p1 3-p21, -2q22-qter, +3p1 4-q13. 1/3p1 3-qI1.2, -4q28-q33, +6, +8pter-q 13, -11 q22-qter,

+ 1 3q21 -qter, + 1 4q22-qter/14q24-q31, +X
24 +1p13-p31, +1q24-q25, -1q41-qter, +2, +3q13.1-q25, +4p13-pter, +5p13-pter, +14q22-qter
25 +1p32-q31, +3q13.2-qter, +7, +11p11.2-pter, +11q14-qter
26 +1p21-p31, +4cen-p15.3, +4q31.1-qter, +9q21-qter, +1q14-q22, +12p12-pter, +17cen-p12
27 No changes
28 +1p34.2-pter, +1p31-q24, +5/Sp14-p15.1/5q33, +6q22-qter, +7/7p12-p21, +8q, -9p, +9cen-q32, +17p, +X/

Xp22.2.q13
29 +1q23-q25, +3p13-p24, +4p, -4q, +5p14-pter, -6cen-q23, +7p15-pter, +8q, +9, -10p, -13q21-qter, +15q21-

qter, +17p, +19q
30 +lpter-q31, +2q12-q31, +4p, +5p, +7p, +8p, +9q21-q31, -11q22-qter, +13q31-qter
31 No changes
32 +7p21-q22
33 +8
34 -1q31-qter, -3p12-pter, -6p, -8, -9p, -10, -11q23-qter, -13q21-qter, -15cen-q15, -16q21-qter, -22,

-Xq2l -qter
35 +12p/12p12-pter
36 No changes
37 +1q22-q31, +3q22-qter, +6pter-ql2, +7q22-q32, -10cen-qter, +11q14-qter, +13q22-qter/13q31-qter, +15ql4-q22
38 +5p14-pter/5p15.3, +6p22-pter, -6q21-q23, +7q32-qter, +9q22-qter, +11q13-q22, +15cen-q21, +19q
39 +1q12-q24, +2p12-q22, +4p15.3-pter, +6q23-qter, +7p11.2-qter, +11p11.2-q14, -13q21-q32
40 +6q22-qter, +10q23-q25, +11
41 -1q32-qter, +7, -8p12-pter, -8q22-q23, +9q13-q31, -10q21-q22, -11q21-qter, +12p13, 13q21-qter, +19/

19p12-p13.2, +Xpl 1 .2-p21
42 +4cen-pl5.3, +7
43 -1 p21 -p22, +2p1 2-q22, -3q13.1 -qter, + 11 cen-q 13, -11 q23-qter, -1 2q 1 5-q22, -1 3q22-qter, + 1 5q22-qter,

+18p, -18q
44 No changes
45 No changes
46 +11q14-q22
47 +11q13-q23, +17q12-q24
48 +14q21-qter, +20q11.2-qter
49 -4q, -12p12, -13q14-q31, +17p12-q21
50 +5p13-pter, +9q21-qter, +12q13-q21, 17p
51 +3q24-q26.3, +4q26-q31.3, +8q13-qter, +12q14-q23
52 +lpter-q31, +7p, -9p, +9q31-qter, -12p, +Xp
53 +4p, -5pter-q23, +6q22-qter, +7p, -9p21-pter, +11cen-q13, -13q14-q32, +18p/18p11.3, +19q,

+22/22q1 1.2
54 +1p22-pter, +2p11.2-p13, +4p13-p15.3, +5p13-pter, +8q13-qter, +9q21-qter, +10p12-p14, +13q21-qter,

+14q1 1 .2-q13, +15q22-q25, + 17q21-qter
55 +1p22-pter, +1cen-q25/1q12.24, +5p/Scenp14, +6/6p23-ptwr, +7/7p21.q11.2, -8p12-pter, -9p21-pter, +9q,

-13q14-q31, +13q32-qter, +14, +15, +16p, +17/++17p13-q12, +18pter-q11.2/18p11.2-p11.3, +22, +Xp2l-
pter

56 +1p31-p36.1, -1q31-qter, -2q22-q31, +3p13-p21, +4p, -4q26-qter, +5p14-pter, -5q22-qter, +7p, +7q21-qter,
+8p, -8q, +9p13-pter, +9q21-qter, -10p12-pter, -11p14-pter, +11cen-q14, +12p, -13q21-qter, +18p, +20q,
+22/22q1 1.2-q12

57 +1 1pter-q23/++11q13-q22, +22, +Xpter-q23
58 +1p22-p36.1, +1q21-q31, -4q31.2-qter, +5p14-pter, +6p12-pter/6p21.1-p24, +8q12-qter, +9q12-qter,

-11 q 1 4-qter, -1 3q1 2-q22, + 1 3q22-qter/1 3q31 -qter, + 1 5q1 5-qter/1 5q22-q26, + 1 6p1 1 .2-pter

Gains of DNA sequences are marked with + and losses with -. High-level amplifications are in bold.
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Table 3. The Most Frequent Gains, High-Level Amplifications, and Losses of DNA Sequence Copy Number Detected by CGH in
58 Soft Tissue MFH Tumor Samples

Gains High-level amplifications Losses

Location Number of samples (%) Location Number of samples (%) Location Number of samples (%)

1p31 19 (33) 13q31-qter 4 (7) 13q21 12 (21)
9q31 17 (29) 5p14 2 (3) 13q22 12 (21)
5p14-pter 15 (26) 6p23-p24 2 (3) 11q23-qter 7 (12)
7q32 14 (24) 7p12-p21 2 (3) 1q41-qter 6 (10)
7p15-pter 13 (22) 11q13-q22 2 (3) 4q31.2-q33 6 (10)
1q24 12 (21) 15q25-q26 2 (3) 9p23-pter 6 (10)
11q14 12(21) 17p 2(3)
4p 1 5.3 11 (19) 18pl 1.3 2 (3)
11q13 10 (17) 19q13.2-qter 2 (3)
6q26-qter 9 (16) 22q11.2 2 (3)
8q21.3-q22 9 (16) Xp2l 2 (3)
13q32-qter 9 (16)
15q22 9 (16)
15q25 9 (16)
17p11.2-p12 9(16)

Locations indicate minimal common regions.

types. 29'33'3439-42 The minimal overlapping region 7q32
is a novel finding in MFH, and so far the target genes
affected by this gain are not known.
The only chromosomal region affected repeatedly by

high-level amplification was narrowed down to 13q31-
qter, amplified in four tumors (7%). This region was also
affected by gains with the minimal common region of
13q32-qter. Partly or fully overlapping gains or amplifica-
tions have been reported in rhabdomyosarcoma,43 colo-
rectal carcinoma,32 and ovarian cancer.44 Other high-
level amplifications were of a more random nature.

Table 4. Prognostic Significance of Gains of DNA Sequence
Copy Number at 7q32 and lp3l in Soft Tissue
MFH

Gain of 7q32 Gain of 1p31
Hazard ratio P Hazard ratio P
(95% Cl) value (95% Cl) value

Metastasis- 3.4 (1.2-9.3) 0.01 1.9 (0.38-5.1) 0.18
free survival

Overall 4.0 (1.5-10.9) 0.004 2.7 (1.0-7.1) 0.04
survival

Local control 2.9 (0.29-10.1) 0.07 1.7 (0.50-5.9) 0.38

0
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0

E

0-

0

.C
.I9
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Figure 2. Metastasis-free survival in MFH patients with and without a gain at
7q32. The continuous line shows patients with a gain at 7q32, and the broken
line represents patients without a gain at 7q32.

12q13-q15 contains several oncogenes known to be
amplified in sarcomas and also in MFH.17-21,45 In the
present study, gains at this region were detected in only
5% of the samples. Furthermore, no high-level amplifica-
tions were seen. It is possible that oncogenes usually
involved in this amplicon, eg, SAS, MDM2, and CDK4,
were activated in the tumors of the present study through
mechanisms other than amplification (eg, by point muta-
tion, transcriptional gene activation, or chromosomal
translocation). 17-21,29,46,47

Losses of DNA sequences were most frequently ob-
served at chromosome 13, with two adjacent minimal
common regions (13q21 and 13q22). Alterations of tumor
suppressor gene RB1 (13q14) are frequent findings in
cancers in general and also in MFH.23'48 13q14 was lost
only in 14% of the samples with the most common losses
affecting the more distal regions of chromosome 13.
However, mechanisms other than physical deletions can
impair the function of RB1.

Previously, 16 soft tissue MFHs have been studied by
CGH by Forus et al.49 Of these 16 tumors, 9 contained
increases in DNA sequence copy number. The most
frequent gains were narrowed down to 7q21-q31 (25%)

1.0,

.8,

Z

0.60

0.

.2'

0.0"
0 20 40 60

Time, months

Figure 3. Overall survival in MFH patients with and without a gain at 7q32.
The continuous line shows patients with a gain at 7q32, and the broken line
represents patients without a gain at 7q32.
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Table 5. Effect of Tumor Grade, Size, and Gain of 7q32 on
Metastasis-Free and Overall Survival of Patients with
Soft Tissue MFH: A Multivariate Analysis

Metastasis-free survival Overall survival
Hazard ratio P Hazard ratio P
(95% Cl) value (95% Cl) value

7q32 gain 3.3 (0.98-2.40) 0.05 3.7 (1.19-2.45) 0.02
Grade (III 8.9 (1.06-74.6) 0.04 1.2 (0.30-1.55) 0.81

or IV)
Size (cm) 1.14 (1.03-1.26) 0.01 1.2 (1.07-1.37) 0.003

and 1 q21-q22 (25%). Gain of 1 p was observed in 19% of
the samples.49 All of these chromosomal regions were
frequently affected by gains also in the present study but
with slightly different or narrower minimal common re-
gions.

In the present study the minimal common region of
gain in 7q was q32. In statistical analysis this gain
emerged as a novel prognostic marker. It was associated
with a statistically significant worse metastasis-free sur-
vival (P = 0.01) and overall survival (P = 0.004) and with
a trend to an increased risk for local recurrence (P =
0.07). It retained its prognostic significance in a multivar-
iate analysis with the strongest clinical prognostic param-
eters (tumor size and grade). Gain of 1 p31 was associ-
ated with a trend to worse overall survival. Total number
of aberrations, total number of gains, or total number of
losses per sample were not associated with outcome.
Previous publications about prognostic significance of
CGH findings are few. Isola et al50 reported a correlation
between total number of changes and total number of
losses and outcome in breast cancer. High-level gain of
8q was significantly associated with recurrence.50 In re-
nal cell carcinoma, total number of losses and loss of 9p
were associated with recurrence-free survival.51 In uveal
melanoma, monosomy 3 is a significant predictor of re-
lapse-free and overall survival.52 The findings of the
present study seem to indicate that, rather than the num-
ber of genetic aberrations, specific genetic events are
important for the outcome in MFH. Finally, our results
show the power of CGH in screening for DNA copy
number changes in tumors with complex karyotypic ab-
normalities.
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