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Autolytic DNA breakdown, detected as smears in elec-
trophoretic gels, is a late event in necrosis. On the
other hand, internucleosomal DNA cleavage, visual-
ized as ladders, is thought to be a hallmark of apo-
ptosis. We now report that this specific form of DNA
fragmentation also occurs during necrosis and is an
early event but appears to be triggered by proteolytic
mechanisms significantly different from those docu-
mented in apoptosis. Treatment ofMDCK cells with a
mitochondrial uncoupler and a Ca2" ionophore led to
ATP depletion, necrotic morphology, and progres-
sive fragmentation ofDNA in an internucleosomal or
ladder pattern. DNA breakdown was immediately pre-
ceded by increased permeability of the plasma mem-
brane to macromolecules. Provision of glycine along
with the noxious agents did not modify the extent of
ATP depletion, but prevented plasma membrane dam-
age. This was accompanied by complete inhibition of
DNA fragmentation. Internucleosomal DNA cleavage
was observed also during necrosis after rapid perme-
abilization of plasma membranes by detergents or
streptolysin-O in hepatocytes, thymocytes, and P19,
Jurkat, and MDCK cells. DNA fragmentation associ-
ated with necrosis was Ca2"/Mg2" dependent, was
suppressed by endonuclease inhibitors, and was
abolished by serine protease inhibitors but not by
inhibitors of interleukin-1f8 converting enzyme (ICE)-
related proteases or caspases. Moreover, unlike apo-

ptosis, it was not accompanied by caspase-mediated
proteolysis. On the other hand, the cleavage-site-di-
rected chymotryptic inhibitor N-tosyl-L-phenylalanyl-
chloromethyl ketone (TPCK) suppressed DNA frag-
mentation not only in necrotic celis but also during
Fas-mediated apoptosis, without inhibiting caspase-
related proteolysis. The results suggest a novel path-
way of endonuclease activation during necrosis not
involving the participation of caspases. In addition,
they indicate that techniques based on double-strand
DNA breaks may not reliably differentiate between
apoptosis and necrosis. (Am J Pathol 1997,
151:1205-1213)

Necrosis and apoptosis are two major forms of cell death,
which are distinguished from each other morphologically
and biochemically.1'2 Apoptosis is usually associated
with internucleosomal cleavage of DNA, recognized as
ladders in agarose gels after electrophoresis.35 Early
observations indicated that DNA laddering occurs during
apoptosis but not necrosis.6 8 More recently, the require-
ment of internucleosomal DNA cleavage in the apoptotic
process has been questioned.9 This form of DNA break-
down was dispensable in some apoptotic models,10-12
and moreover, DNA ladders have been shown to occur in
cells without apoptotic morphology.13-16 Nevertheless,
internucleosomal DNA cleavage continues to be re-
garded as an important event in programmed cell death,
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and DNA laddering is frequently used to characterize
apoptosis (for a review see Ref.5).

During studies on the pathogenesis of necrosis
caused by ATP depletion, we observed DNA degrada-
tion, and electrophoretic analysis showed DNA ladders
indistinguishable from those caused by internucleosomal
DNA cleavage in apoptotic cells. Additional investigation
showed that this type of DNA fragmentation occurred
soon after the loss of plasma membrane integrity. Gly-
cine, an agent that prevents plasma membrane damage
during ATP depletion,17 23 completely inhibited the frag-
mentation of DNA. However, when the plasma membrane
of such glycine-protected cells was permeabilized by
detergents, DNA fragmentation occurred soon thereafter,
even in the presence of glycine. Because DNA laddering
appeared to be coupled to plasma membrane damage,
we tested in several types of cells the effects of strepto-
lysin-O (SLO) and saponin, agents that rapidly induce
necrosis by plasma membrane permeabilization. The re-
sults show that internucleosomal DNA cleavage occurs
ubiquitously after the loss of plasma membrane integrity
and development of necrotic morphology. Furthermore,
serine proteases, but not cysteine proteases, appear to
participate in necrotic DNA laddering, suggesting the
existence of diverse pathways of endonuclease activa-
tion during cell death. Thus internucleosomal cleavage
may be a common form of DNA damage that occurs
during necrosis as well as apoptosis. DNA ladders and
cytochemical stains based on double-strand breaks may
not be reliable markers for specific forms of cell death.

Materials and Methods

Materials
lonomycin was from Calbiochem-Novabiochem Interna-
tional (La Jolla, CA). SLO was purchased from Wellcome
Diagnostics (Dartford, UK). [3H]Thymidine was obtained
from NEN Life Science Products (Boston, MA). Anti-Fas
monoclonal antibody was from Medical and Biological
Laboratories (Nagoya, Japan). C-2-10 mouse mono-
clonal anti-poly(ADP-ribose) polymerase antibody was
supplied by Biomol Research Laboratories (Plymouth
Meeting, PA). Z-Val-Ala-Asp(oMe)-CH2F (Z-VAD.FMK)
and Z-Asp(oMe)-Glu(oMe)-Val-Asp(oMe)-CH2F (Z-DEVD-
.FMK) were purchased from Enzyme System Products
(Dublin, CA). All other reagents were from Sigma Chem-
ical Co. (St. Louis, MO)

ATP Depletion
Madin-Darby canine kidney (MDCK) cells were depleted
of ATP by incubation in glucose-free Krebs-Ringer bicar-
bonate solution (KRB) containing 15 ,umol/L carbonyl
cyanide-m-chlorophenyl hydrazone (CCCP), a mitochon-
drial uncoupler. Free Ca2+ in KRB was 1.25 mmol/L or
was adjusted to 100 nmol/L with 2.25 mmol/L EGTA,24
and 5 ,umol/L ionomycin, a Ca2+ ionophore, was also
included so that intracellular Ca2' rose to high concen-
trations or did not increase beyond 100 nmol/L.25 Exper-

iments were done with or without the addition of 5 mmol/L
glycine and/or 4% sucrose, a membrane impermeant
osmolyte, to the incubation medium. Plasma membrane
integrity was monitored by measuring the release of in-
tracellular lactate dehydrogenase (LDH) into the incuba-
tion medium.26

Cell Permeabilization by Detergents or
Streptolysin-Q
Cells were incubated in KRB containing 0.2 mg/ml sapo-
nin or 0.1% Triton X-100 at 370C. In other experiments,
SLO, a pore-forming toxin, was used to permeabilize
plasma membranes selectively, using a protocol modi-
fied from Miller and Moore.27 Briefly, cells were preincu-
bated in phosphate-buffered saline containing 1 U/mI
activated SLO at 40C for 30 minutes, transferred to KRB
containing 100 nmol/L free Ca2+ without SLO, and incu-
bated at 370C.

Analysis ofDNA Fragmentation
DNA fragments released from 2 x 106 cells were ex-
tracted and separated by electrophoresis in agarose gels
according to Arends et al.4 After experiments, cells were
lysed in a hypotonic buffer containing 0.5% Triton X-100,
10 mmol/L Tris, and 20 mmol/L EDTA, pH 7.4. Cell lysate
was then centrifuged at 14,000 x g for 20 minutes. The
resultant supernatant was treated with proteinase K and
RNase A and was then extracted with phenol/chloroform
(1:1). In some experiments, the phenol/chloroform step
was omitted, with identical results. DNA fragments were
precipitated with 67% ethanol, 0.5 mol/L NaCI at -200C
for 18 hours and resuspended in 10 mmol/L Tris/HCI, 1
mmol/L EDTA, pH 8.0, before 1.5% agarose gel electro-
phoresis. Quantitation of DNA fragmentation was done by
a method modified from Duke et al.7 Briefly, 106 cells
were labeled overnight with [3H]thymidine (2.5 ,uCi/ml).
After experiments, the incubation medium was saved.
Cells were lysed as before and the lysate was centri-
fuged. DNA fragments in the incubation medium and
lysate supernatants were precipitated with ethanol. Pre-
cipitates were dissolved in 10 mmol/L Tris with 1 mmol/L
EDTA and counted for radioactivity by scintillation spec-
trometry. Specific DNA fragmentation was calculated as
described.7

Detection of Poly(ADP-Ribose) Polymerase
Poly(ADP-ribose) polymerase (PARP) was detected by
immunoblotting.28 At the end of experimental incubation,
protease inhibitors (1 mmol/L phenylmethylsulfonyl fluo-
ride (PMSF), 100 ,tmol/L 3,4-dichloroisocoumarin (DCI),
10 ,ug/ml aprotinin, and 5 ,ug/ml leupeptin) were added.
Cells were then collected and dissolved in 9 mol/L
urea/1% sodium dodecyl sulfate (SDS)/5% ,B-mercapto-
ethanol. Cell proteins were resolved by SDS-polyacryl-
amide gel electrophoresis and immunoblotted with C-2-
10, a mouse monoclonal antibody recognizing an epitope
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Figure 1. Electron microscopy of MDCK cells. MDCK cells were incubated
for 3 hours in KRB with 100 nmoVL free Ca2+, without further addition (A,
time control) or with 15 jimoVL CCCP and 5 ,LmoVL ionomycin (B, ATP-
depleted cells). LDH released from cells into the incubation medium was 2
and 94% for A and B, respectively. The cells were then fixed and processed
for electron microscopy.

located at the carboxyl end of the DNA-binding domain of
PARP.29

Morphological Observations

Cell morphology during the experimental incubation was
followed by phase contrast microscopy. Cells were also
fixed in 2% glutaraldehyde with 50 mmol/L lysine, 50 meq
of Na, and 100 meq of cacodylic acid and processed for
electron microscopy as described.30 Nuclear morphol-
ogy was also monitored by staining with Hoechst
33342.12

Results

Necrotic DNA Laddering in ATP-Depleted Cells

MDCK cells became necrotic during 3 hours of incuba-
tion in 100 nmol/L Ca2+ KRB containing CCCP and iono-
mycin. As shown in Figure 1, the affected cells had
swollen and empty cell bodies with disrupted organelles.
This was accompanied by increased permeability of the
plasma membranes to LDH, a 136-kd protein. Nuclear
chromatin was dispersed, unlike the condensation and
fragmentation seen in apoptosis (Figure 1). Absence of
nuclear fragmentation in necrotic cells was confirmed by
fluorescence microscopy after staining with Hoechst
33342 (not shown).

Death of ATP-depleted cells was accompanied by pro-
gressively increasing breakdown of DNA, indicated by
greater recovery of radioactive DNA fragments from
[3H]thymidine-labeled cells (Figure 2). Unexpectedly,
agarose gel electrophoresis of necrotic DNA displayed a
ladder-like pattern, consisting of -180-bp DNA multi-
mers identical to those observed in apoptosis (Figure
3A). DNA laddering, which was first noted at 2 hours and
increased progressively with incubation time, was pre-
ceded by release of LDH from cells into the incubation
medium (Figure 3A). As these findings suggested that
cleavage of DNA was a secondary event that followed
plasma membrane damage and loss of cellular solutes,
we tested the effects of glycine on DNA fragmentation.
Glycine prevents plasma membrane damage but not the
ATP depletion that is induced in cells by hypoxia or other
inhibitors of mitochondrial function.17-23,25'26 As shown in
Figures 2 and 3A (lane 7), not only LDH release but also
DNA fragmentation was totally blocked by glycine.
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Figure 2. Quantitation of DNA fragmentation during ATP depletion. MDCK
cells were prelabeled with [3H]thymidine and then subjected to ATP deple-
tion in KRB with 100 nmol/L free Ca2" containing CCCP and ionomycin,
without glycine (-Gly) or with 5 mmol/L glycine (+Gly). At the end of
incubation, free LDH in the medium was measured (A). DNA fragments
released from cells were counted for radioactivity and expressed as a per-
centage of label in whole cells (B).

Additional support for the role of membrane permeabi-
lization in necrotic DNA laddering was provided by re-
sults displayed in Figure 3B. When large increases of
cellular Ca2" were induced in ATP-depleted cells by
treatment with ionomycin in 1.25 mmol/L Ca2+ KRB, cell
injury was accelerated (compare Figure 3, A and B).
Release of LDH from cells into the medium was first
observed after 30 minutes of incubation and increased
thereafter to become maximal by 90 to 120 minutes.
Morphologically, these cells were markedly swollen and
showed features of necrosis by electron microscopy (not
shown). This was accompanied by striking fragmentation
of DNA in the characteristic ladder pattern, increasing in
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Figure 3. Internucleosomal DNA cleavage in ATP-depleted cells. A: MDCK
cells were incubated in KRB with 100 nmol/L free Ca2" without further
additions (TC), with ionomycin and CCCP alone (I+C), or with ionomycin
and CCCP in the presence of 5 mmol/L glycine (I+C+Gly). B: MDCK cells
were incubated under conditions described in A, except that free Ca2"
concentration in the medium was 1.25 mmol/L. Separate groups of cells were
incubated without sucrose (-SUC) or with 4% sucrose (+SUC) in the
incubation medium to prevent swelling of the cells. Free LDH in the medium
(shown at the top of each lane) and DNA fragments were analyzed as

described. Lane M, DNA molecular size standards.

severity with progressive release of LDH (Figure 3B,
lanes 2 to 6). Marked swelling and accelerated damage
were observed also in similarly incubated cells provided
with glycine (LDH release, 67%). This suggested that the
plasma membrane protective actions of the amino acid
had been overwhelmed by Ca2+-triggered events. Such
cells showed typical DNA ladders despite the presence
of glycine (Figure 3B, lane 7). That the loss of plasma
membrane protection was due to severe cell swelling and
stretch trauma was demonstrated by the ability of su-

crose, an impermeant solute, to prevent swelling and
restore the ability of glycine to maintain membrane integ-
rity (LDH release, 5%). Correspondingly, DNA break-
down in these cells was remarkably inhibited (Figure 3B,
lane 8). Without glycine, sucrose was unable to amelio-
rate either LDH release or DNA fragmentation (not
shown).

Conditions: - TC I+C I+C+Gly I+C+Gly; Saponin

Saponin Incubation (min): - - - - 5 15 30 60

LDH Release: - 2% 100% 1% 100% 100% 100% 100%
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Figure 4. Intemucleosomal DNA cleavage induced by saponin permeabili-
zation of ATP-depleted cells. MDCK cells were incubated for 180 minutes in
KRB containing 100 nmol/L Ca2" without further addition (TC), with iono-
mycin and CCCP alone (I+C), or with ionomycin and CCCP in the presence
of 5 mmol/L glycine (I+C+Gly). Separate groups of cells were incubated
with ionomycin, CCCP, and 5 mmol/L glycine for 3 hours exactly as those
shown in lane 3 and were then permeabilized with 0.2 mg/ml saponin
(I+C+G; Saponin) for indicated periods (5 to 60 minutes). LDH released into
the medium (shown at the top of each lane) and DNA fragments were
analyzed as described. Lane M, DNA molecular size standards.

Necrotic DNA Laddering Is Not Energy
Dependent but Is Coupled to Plasma
Membrane Damage
Fundamentally distinct from necrosis, apoptosis is an
active energy-dependent process and in many cases
needs new protein synthesis.31'32 It could be argued that
necrotic DNA laddering is triggered by energy-depen-
dent events that occur early during cell injury when ATP
is still available. To investigate this, we depleted MDCK
cells of ATP with CCCP in 100 nmol/L Ca2+ medium in the
presence of glycine and then permeabilized their plasma
membranes with the detergent saponin. After 3 hours of
treatment with CCCP, cell ATP fell to 0.0075% of control
(not shown). At this time, they had been fully protected
against LDH release and DNA fragmentation, unlike sim-
ilarly incubated cells without glycine (1% LDH release
with glycine, Figure 4, lane 3; 100% LDH release without
glycine, Figure 4, lane 2). However, within 5 minutes after
the addition of saponin, intracellular LDH was completely
released, after which there was progressively increasing
fragmentation of DNA in the ladder pattern, becoming
maximal by 30 minutes (Figure 4, lanes 4 to 7).

DNA Laddering Induced by Cell
Permeabilization without Previous
ATP Depletion
The data presented above suggested that increased per-
meability of the plasma membrane played a decisive role
in necrotic DNA laddering. This consideration prompted
us to investigate whether rapid induction of necrosis by
plasma membrane permeabilization without previous
ATP depletion would also lead to the formation of DNA
ladders. For this purpose, we used saponin and SLO, a
bacterial toxin. Saponin preferentially binds plasma
membrane cholesterol, forms micelles, and induces per-
meability defects. SLO causes necrosis by forming po-

A
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LDH Release: -
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ing in a number of different cell types tested, including
renal epithelial (MDCK), embryonic carcinoma (P19), and
lymphocytic (Jurkat) cell cultures as well as freshly iso-
lated mouse thymocytes and rat hepatocytes, with thy-
mocytes showing relatively lower laddering potency.
DNA ladders formed in saponin-lysed rat hepatocytes
and Jurkat cells are displayed in Figure 5B.

Necrotic DNA Laddering Is Ca2+/Mg2+
Dependent and Is Blocked by
Endonuclease Inhibitors

- Activation of Ca2+/Mg2"-dependent endonucleases has
been proposed to be responsible for DNA fragmentation
during apoptosis.5 Similar Ca2+/Mg2+ dependence was
revealed for necrotic DNA laddering (Figure 6A). The

M 1 2 3 4 5 6 formation of DNA ladders was partially blocked by omis-
sion of Mg2+ (Figure 6, lane 3) and completely inhibited

Saponin Saponin by removing both Ca2+ and Mg2+ (lane 2) whereas omis-
Saponin GIY Saponin sion of Ca2+ alone was without effect, suggesting that

0 5 15 30 60 60 60 60 Mg2+ might be sufficient by itself as a cofactor for the
1% 100% 95% 100% 100% 100% nd nd endonucleases. Necrotic DNA laddering was markedly

L- : suppressed by compounds known to inhibit apoptotic
endonuclease(s): Zn2+, Evans blue, and aurintricarboxy-
lic acid but not its analogue fuchsin acid (Figure 6B).
These results suggest that endonucleases involved in
internucleosomal DNA cleavage during necrosis and ap-
optosis are at least related, if not identical.

Hep Jur

Figure 5. Intemucleosomal DNA cleavage induced by cell permeabilization
with streptolysin-O (A) or saponin (B). A: MDCK cells were exposed to
streptolysin-O at 40C, transferred to KRB containing 100 nmol/L free Ca2",
and then incubated at 370C for 0 to 120 minutes, without glycine (SLO) or

with 5 mmol/L glycine (SLO+Gly). B: MDCK cells (lanes 1 to 6), hepato-
cytes (Hep), and Jurkat cells (Jur) were incubated in 100 nmoVL free Ca2`
KRB containing 0.2 mg/ml saponin for 0 to 60 minutes. MDCK cells were

exposed to saponin without glycine (Saponin) or with 5 mmol/L glycine
(Saponin+Gly). Hepatocytes were isolated from rat livers by collagenase
perfusion (Ref. 50). Free LDH in the medium (shown on the top of each lane;
nd, LDH release was not determined) and DNA fragments were analyzed as

described. Lane M, DNA molecular size standards.

rous channels (diameter, -20 to 30 nm) analogous to
those produced by complement.27 Treatment with sapo-
nin and SLO resulted in necrotic morphology (not shown)
and complete release of intracellular LDH within a few
minutes, followed by progressively increasing fragmen-
tation of DNA in the typical ladder pattern (Figure 5, A
and B). As expected, glycine could not prevent the in-
duction of membrane permeabilization by either the pore-
forming toxin SLO or the detergent saponin; neither could
it inhibit the formation of DNA ladders (Figure 5, A and B,
lane 6).

Our results showing the formation of DNA ladders in
necrotic cells appear to be at variance with earlier re-
ports.7 8 The difference might lie in the diversity of cells
examined. Therefore, we analyzed DNA from a variety of
cells after detergent lysis. Without exception, permeabi-
lization of the plasma membrane resulted in DNA ladder-

Involvement of Serine Proteases but Not
Cysteine Proteases in Necrotic DNA Laddering
The ICE family of cysteine proteases or caspases play
important roles in apoptosis and may trigger biochemical
events that eventually result in endonuclease activa-
tion.32-36 Cleavage-site-directed inhibitors of caspases,
namely, Z-VAD.FMK and Z-DEVD.FMK, completely
blocked Fas-antibody-triggered apoptotic morphology
(not shown) as well as DNA laddering in Jurkat cells37
(Figure 7A, lanes 3 and 4). However, neither compound
inhibited necrotic DNA laddering in saponin-treated
MDCK cells (Figure 7B, lanes 7 and 8), even at much
higher concentrations (not shown). When Jurkat cells
were exposed to Fas antibodies in the presence of io-
doacetic acid (IAA), a general inhibitor of cysteine pro-
teases, they developed necrotic, rather than apoptotic
morphology (not shown). This was accompanied by DNA
laddering (Figure 7A, lane 8). Likewise, IAA failed to
inhibit saponin-induced necrotic DNA laddering in MDCK
cells (Figure 7B, lane 6). On the other hand, active site
inhibitors of serine proteases, DCI and PMSF, had no
effect on apoptotic DNA laddering (Figure 7A, lanes 5
and 6) but markedly suppressed the formation of necrotic
ladders (Figure 7B, lanes 3, 4, and 9). Of interest, the
cleavage-site-directed chymotryptic protease inhibitor,
N-tosyl-L-phenylalanylchloromethyl ketone (TPCK),
blocked apoptotic as well as necrotic DNA laddering
(Figure 7A, lane 7, amd 7B, lane 5).

IV I 2 J 4 ;f O
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tease inhibitors, including TPCK (Figure 8A). However, as
indicated above (Figure 7), although TPCK did not pre-
vent PARP breakdown, it did suppress the formation of
DNA ladders, whereas IAA did prevent PARP breakdown
but did not inhibit DNA laddering.

Discussion
The results of our studies show that cleavage of DNA into
oligonucleosomal fragments occurs early during different
types of experimentally induced necrotic cell death and
that necrotic DNA laddering is coupled to the loss of
plasma membrane integrity. Being not confined to the
apoptotic process, internucleosomal DNA cleavage may
thus be a generalized response of cells to lethal injury.
Moreover, the biochemical circumstances under which
DNA ladders were formed or inhibited in our experiments
suggest the existence of important differences as well as
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C Saponin
- - ATA FA EB Zn2+
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Figure 6. Internucleosomiial DNA cleavage in saponin-permeabilizec cells. A:
Ca2+, Mg2t dependence. MDCK cells were permeabilized by 60 minuLtes of
incLibation in KRB containing 0.2 mg/ml saponin, with (+) or withouLt (-)
1.25 mmol/L Ca2t or I mmol/L Mg.2+ When Ca2t or Mg2+ was omitted, 5
mmol/L EGTA or 1 mmol/L EDTA was inclicided in the buffer. EDTA alone
was sufficient to chelate both Ca2+ and Mg2+ and inhibit DNA laddering (not
shown). B: Effects of endonuclease inhibitors. MDCK cells were permeabil-
ized by 60 minutes of incuLbation in KRB containing 0.2 mg/ml saponin alone
or saponin in the presence of 50 ,umol/L auLrintricarboxylic acid (ATA), 100
,cmol/L fuchsin acid (FA), 10 ,ug/ml Evans blue (EB), or 50 ,umol/L ZnCl2
(Zn2+). Free LDH in the mediuLm (shown at the top of each lane) and DNA
fragments were analyzed as described. C, control without exposure to sapo-
nin; lane M, DNA molecuLlar size standards.

To further clarify the role of proteases in DNA ladder-
ing, we examined the degradation of PARP, an endoge-
nous substrate of caspases.8 In apoptotic Jurkat cells,
PARP was specifically cleaved, releasing fragments of Mr
85,000 (Figure 8A, lane 2). However, PARP remained

intact during necrosis due to ATP depletion or saponin
permeabilization in MDCK cells (Figure 8B). Apoptotic
PARP degradation was completely abolished by cysteine
protease inhibitors, including IAA, but not by serine pro-
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Figure 7. Effect of protease inhibitors on internucleosomal DNA cleavage
dulring apoptosis (A) and necrosis (B). After 20 minuLtes of preincubation
withouLt or with 10 rLmol/L Z-VAD-FMK, 14 gumol/L Z-DEVD-FMK, 100
pcmol/L DCI, 1 mmol/L PMSF, 100 ,umol/L TPCK, or 1 mmol/L IAA, 100 ng/ml
Fas antibody was added to JuLrkat cells for 5 hours to induce apoptosis (A),
and 0.2 mg/ml saponin was added to MDCK cells for 1 hour to induce
necrosis (B). Free LDH in the medium (shown at the top of each lane) ancl
DNA fragments were analyzed as described. C, control without exposure to

Fas antibodies or saponin; lane M, DNA molecular size standards.
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did not develop apoptotic features at ar

entire period of treatment, including theem

B. MDCK Cells the other hand, with the onset of plasma membrane
TC IC ICG-Sep breakdown, shown by leakage of LDH, the cells rapidly
_ _ _ _ developed necrotic morphology, after which DNA lad-

ders were seen. In addition, the rapidity of membrane
permeabilization in cells exposed to SLO and detergents
precluded the occurrence of apoptosis. Cells permeab-
ilized in this manner developed the morphological fea-
tures of necrosis rapidly, but DNA laddering took 15 to 30
minutes to be fully manifest.

1 2 3 4 To further verify that plasma membrane damage but
not an apoptotic process was required for necrotic DNA~crotic (B) cells. A:
a d rn ,sp rt ru s fclsw r aial eapoptosis in jurkat ldeig eaaegop fclswr aial e

MDCK cells were pleted of ATP for prolonged periods under conditions that
)onin (Sap) or for 3 preserved membrane integrity, ie, in the presence of

In5 mmol L glycine glycine. These cells should have been incapable of ap-
electrophoresis in 9 optosis, which is an active, energy-dependent pro-

ith antibody C-210. cess.31,32 As expected, cells in this group did not exhibit
apoptotic morphology or DNA cleavage as long as
plasma membranes were intact but became necrotic

ired for the ac- within minutes of treatment with the permeabilizing agent
;)during necro- saponin. Only after membrane permeabilization was
tosis. Unlike in complete were DNA ladders evident. These results and
iy a role during other observations indicated that the inhibitory actions of
ase sensitive to glycine on DNA ladder formation were only indirect and

depended strictly on the known membrane protective
ierging contro- effects of the amino acid. 17-23,25,26 Previous studies have
ternucleosomal shown that development of membrane defects during
ical techniques ATP depletion is related to loss of cell-associated glycine,
nsferase-medi- an amino acid that is accumulated by energy-dependent
o detect strand transport. Restoration of glycine by adding the amino
ese uncertain- acid exogenously prevents membrane damage, although
nalysis of cell ATP remains maximally depleted.44 That prevention by
iely to be asyn- glycine of DNA laddering was strictly dependent on its
J long after the membrane-protective actions was also shown by its in-
tending on the ability to inhibit DNA fragmentation in SLO- or detergent-
ell populations treated cells, in which plasma membranes were perme-
f sampling, the abilized regardless of the presence of the amino acid.
-es that reflect The decisive role played by plasma membrane damage
or a confusing in necrotic DNA laddering was further established by
phenomena. results displayed in Figure 3B. When intracellular Ca2+
A laddering de- was allowed to increase uncontrollably during ATP de-
s subjected to pletion by incubation with ionophore in 1.25 mmol/L Ca2+
h an apoptotic medium, extreme swelling of cells occurred, mechani-
necrosis. Sev- cally damaging the plasma membranes despite the pres-
mption is valid. ence of glycine; these cells showed typical DNA ladders.
hology that is On the other hand, if cell swelling had been attenuated by
shrunken and the cell-impermeant solute sucrose, plasma membrane

id fragmented integrity was preserved, as long as glycine was also
Icells depicted present. Concomitantly, DNA laddering was also pre-

vented.
tinely in Jurkat Our data appear to be at variance with older studies
:posed to mito- that failed to reveal DNA fragmentation in necrotic
or agents that cells.6-8 We could not attribute the apparent conflict to
cally displayed uniquely different responses by dissimilar cells, as our
ptosis could be observations on a variety of cell types suggest that ne-
Dn microscopy crotic DNA laddering could be a general phenomenon.
ioechst 33342. Possible reasons for the discrepancy might include dif-
wed that cells ferences in the conditions of incubation and composition
,a2+ ionophore of media. Furthermore, physical methods that have been
ny time during used to disrupt cells such as heating and freeze-thaw
arly stages. On cycles7 8 have the potential to inactivate critical enzymes
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required for the formation of DNA ladders. Another pos-
sible explanation is the masking of DNA ladders by less
specific forms of DNA breakdown. DNA smearing is com-
monly observed in gels after electrophoresis of extracts
from necrotic cells and tissues, and is in all likelihood
attributable to late postmortem autolytic processes,
which are superimposed on the more specific early ne-
crotic events. On the other hand, scattered observations
in the literature do indicate that necrotic cells develop
DNA ladders,lS15 but only in one instance have the
changes been documented under circumstances where
apoptosis has been rigorously excluded and necrosis
authenticated by electron microscopy."3 As indicated
earlier, failure to observe DNA ladders in necrotic tissues
may be related to the time of sampling and the presence
of a majority of cells with intact plasma membranes,
which would tend to dilute a positive signal from lysed
cells.
The observations reported here may be relevant to

internucleosomal DNA cleavage during apoptosis as
well. It is generally believed that DNA fragmentation in
apoptosis occurs before loss of plasma membrane integ-
rity, but the asynchrony of apoptosis in most model sys-
tems has made it difficult to precisely determine the
temporal relationship between increased plasma mem-
brane permeability and internucleosomal DNA cleavage.
Moreover, plasma membrane damage has been evalu-
ated only approximately in a number of studies of apo-
ptosis, such as by trypan blue staining.45'46 Using more
sensitive and accurate techniques, Ormerod et a147 and
Lizard et a148 showed recently that plasma membrane
permeability becomes increased during the early stages
of apoptosis, preceding the condensation and fragmen-
tation of cell nuclei.

Our results suggest that internucleosomal DNA cleav-
age during necrosis is accomplished by Ca2+/Mg2+-
dependent endonuclease(s) with properties similar to
those involved in apoptosis. Thus, necrotic DNA ladder-
ing was inhibited by Evans blue, Zn2+, and aurintricar-
boxylic acid but not by its analogue fuchsin acid, even at
high concentrations. Of great interest, the mechanism
leading to the activation of endonucleases in necrotic
cells appears to be significantly different from that seen in
apoptosis. In agreement with published data,37 inhibitors
of caspases suppressed not only the cleavage of PARP
into 85-kd fragments but also DNA laddering in Fas-
antibody-treated Jurkat cells. Concomitantly, morpholog-
ical changes of apoptosis were prevented. However,
DNA laddering could be dissociated from caspase acti-
vation under some conditions in our studies. The nonspe-
cific cysteine protease inhibitor IAA inhibited the cleav-
age of PARP in Fas-antibody-treated Jurkat cells, as
might be expected, but in accordance with its known
actions as a sulfhydryl-alkylating agent caused plasma
membrane damage and necrosis defined by morpholog-
ical criteria, and these changes were accompanied by
DNA laddering. Importantly, PARP was not cleaved dur-
ing necrosis, and caspase inhibitors were unable to pre-
vent necrotic DNA laddering. On the other hand, the
general serine protease inhibitors PMSF and DCI sup-
pressed DNA laddering in necrotic but not apoptotic

cells. The more specific cleavage-site-directed chymo-
tryptic inhibitor TPCK was able to block DNA laddering
both in necrotic and apoptotic cells. However, and of
much interest and importance to future lines of investiga-
tion, TPCK failed to suppress the cleavage of PARP in
Fas-antibody-treated Jurkat cells, showing the unabated
activity of caspases, although DNA laddering had been
suppressed. These observations are most consistent with
an important role for chymotryptic proteases both in ne-
crosis and apoptosis and suggest that cascades that
lead to endonuclease activation in necrosis and apopto-
sis might have overlapping features at least in this re-
spect, with important differences in upstream events.
Proteolytic triggers for endonuclease activation in apo-
ptosis are continuing to receive critical attention, and
enzymes of the cysteine protease and serine protease
families have been characterized, including a 24-kd
TPCK-sensitive enzyme.49 However, corresponding en-
zymatic events in necrosis remain to be studied. Our data
provide clear-cut evidence for the tight coupling between
plasma membrane damage and endonuclease activation
during necrosis and point to the requirement for future
characterization of the TPCK-sensitive protease(s) in-
volved in necrotic as well as apoptotic DNA laddering.
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