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of Chronic Infections and the Development of
Hepatocellular Carcinoma

Mark A. Feitelson* and Ling-Xun Duant
From the *Department ofPathology, Anatomy, and Cell
Biology and tDorrance H. Hamilton Laboratories, Center
for Human Virology, Division ofInfectious Diseases,
Department ofMedicine, Th-omas Jefferson University,
Philadelphia, Pennsylvania

Chronic infection with hepatitis B virus is asso-
ciated with a high incidence of liver diseases,
including hepatocelular carcinoma. Hepatitis-B-
virus-encoded X antigen (HBxAg) stimulates vi-
rus gene expression and replication, which may
be important for the establishment and mainte-
nance ofthe chronic carrier state. Integration of
viral DNA encoding HBxAg during chronic infec-
tion results in increased X antigen expression.
HBxAg overexpression may alter signal trans-
duction pathways important for the regulation
of ceU growth during hepatocelular regenera-
tion. Theflnding that HBxAg binds to and inacti-
vates negative growth-regulatory molecules,
such as the tumor suppressor p53, suggests ad-
ditional ways that HBxAg may act in hepatocar-
cinogenesis. HBxAg may also stimulate the ex-
pression ofpositive growth reg#ulators, such as
insulin-like growth factor II and the insulin-like
growthfactor I receptor. Thefinding thatHBxAg
may compromise DNA repair and that it may
effect the normal turnover ofgrowth-regulatory
molecules in theproteasome may also contribute
to its carcinogenic properties. Hence, HBxAg
may contribute to the pathogenesis of chronic
infection and developnment ofhepatocelular car-
cinoma in a variety ofways. (AmJPathol 1997,
150:1141-1157)

An estimated 300 million hepatitis B virus (HBV) car-
riers worldwide1 are at increased risk for the devel-
opment of chronic active hepatitis (CAH), cirrhosis,
and hepatocellular carcinoma.2 3 Although a highly
efficacious vaccine for HBV is now available,4 recur-
ring bouts of CAH and the development of cirrhosis
among chronic carriers, combined with the relatively
few treatment options available,5 continue to present
formidable threats to public health. HBV-associated
HCC is among the 10 most frequent cancers world-
wide. At least 250,000 cases of HCC are diagnosed
annually6; less than 3% of these patients survive 5
years. The relative risk of HBV carriers developing
HCC approaches 200:1, which is one of the highest
relative risks known for a human cancer.2 Given
the high frequency and mortality of HCC worldwide,
elucidation of the mechanism(s) whereby HBV
brings about chronic liver diseases, including HCC,
will have a profound impact on the prevention and
treatment of chronic HBV infections.

Association of HBV with Chronic Liver
Diseases, Including HCC
There are multiple lines of evidence that HBV and
related hepadnaviruses9 in nature are major etiolog-
ical agents of chronic liver diseases, including HCC.
1) For example, chronic liver diseases and HCC
appear only after the appearance of HBV markers in
blood,210 suggesting cause and effect. 2) Among
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human carriers, HCC often appears after episodes of
CAH and the development of cirrhosis.11 The iden-
tification of the carrier state and CAH as major risk
factors for the development of HCC has been shown
to be statistically significant in independent stud-
ies, suggesting that HBV replication, gene expres-
sion, and hepatocellular turnover are critical factors
in the pathogenesis of HCC. 3) Chronic infection of
woodchucks with the related woodchuck hepatitis
virus (WHV) results in CAH and HCC in up to 100%
of carrier animals 2 to 3 years after infection.12'13
HCC has also been observed in up to 30% of ground
squirrels chronically infected (for 4 to 5 years) with
the related ground squirrel hepatitis virus.14 Infection
of woodchucks with GSHV, however, resulted in only
about 40% of the animals developing HCC at 4 to 5
years of age,15 suggesting that the differences in
tumorigenicity are in the viruses themselves, and that
these viruses make a genetic contribution to HCC.
The finding that WHV is a complete carcinogen in
experimentally infected animals13 further under-
scores the etiological relationship between chronic
infections and the development of HCC. 4) Most
HCC tissues and derived cell lines from chronically
infected patients and woodchucks contain detect-
able virus antigens,16-18 the expression of which
may contribute to the development of HCC. Accu-
mulating evidence suggests that expression of the X
antigen is particularly relevant (see below), although
the mechanism(s) by which HBxAg mediates trans-
formation are still not well understood. 5) HBV and
WHV DNA have been found integrated, often highly
rearranged, at one or more sites within host DNA in
tumors and tumor-derived cell lines.619 22 These
observations suggest that chronic hepadnavirus in-
fections are associated with genetic instability. Over-
all, then, the balance of evidence strongly supports a
close association between chronic hepadnavirus in-
fection and the development of HCC.

Putative Roles for X Antigen in the
Development of Chronic Infections and
Chronic Liver Diseases
It is generally thought that the pathogenesis of CAH
is mediated by immune responses against virus-
infected cells.23 Accordingly, the importance of dif-
ferent virus antigens as immunological targets may
vary during the course of chronic infection. For ex-
ample, during the first few years, chronic infection is
often characterized by high levels of virus replica-
tion, suggesting that immune responses would be
directed against the corresponding virus gene prod-

ucts in cells that support virus replication (Figure
1).17.18,24 These potential targets include epitopes
from all of the gene products of HBV, since products
from each of the four virus genes are expressed
during the period of virus replication. After virus is
cleared from serum and liver, the persistence of
CAH, as well as its progression to cirrhosis and HCC,
would be expected to be associated with immune
responses directed against virus gene products ex-
pressed from fragments of virus DNA that have be-
come integrated into host chromosomal DNA. Inte-
gration is thought to occur most readily during
hepatocellular regeneration, which follows each bout
of hepatitis (Figure 1).25.26 The role of hepatocellular
destruction and regeneration in the development of
HCC is strongly supported by epidemiological stud-
ies that have identified the most important risk fac-
tors for HCC as the chronic carrier state and the
presence of chronic liver disease2'7 and by docu-
mentation from several transgenic mouse systems in
which HCC develops in association with prolonged
periods of hepatocellular regeneration.27'28 Hepato-
cellular destruction and regeneration may also pro-
vide the basis for the accumulation of genetic muta-
tions, which contribute to multistep hepato-
carcinogenesis.6'29 Hence, the persistence of virus
antigens in the liver and their immunological recog-
nition make up important elements that contribute to
the pathogenesis of HCC.

The finding that HBV (and WHV) DNA fragments are
integrated into the cellular DNA of carriers6'19-21,30-32
suggested that viral integration at one or a few sites in
host DNA may result in the deregulated expression of
oncogenes and/or tumor suppressor genes. This
model seems to hold true for WHV-mediated carcino-
genesis, in which cis-activation of N-myc and c-myc
oncogenes by promoter insertion of viral DNA in or
around these genes seems to be a common fea-
ture.335 In HCCs associated with ground squirrel
hepatitis virus infections, overexpression of the c-myc
gene was caused by gene amplification and not pro-
moter insertion.36 However, the apparently random
patterns of HBV integration into host DNA makes it
unlikely that cis-acting mechanisms are common fea-
tures of HBV-associated hepatocarcinogenesis, al-
though integration near V-erb-A, cyclin A, or the retinoic
acid receptor genes, for example, has been report-
ed.37-9 In addition, HBV integration has been associ-
ated with the loss of heterozygosity in many chromo-
somes,30-32 suggesting that integration promotes
genomic instability,40 the latter of which is a common
feature of carcinogenesis. Hence, although these re-
sults support the idea of multiple mechanisms whereby
hepadnaviruses bring about hepatocellular transfor-
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Figure 1. Pathogenesis ofchronic HBVinfection. Susceptible hepatocytes are infected with HBV(1) and express HBxAg mostly in the cytoplasm (gray)
and membranes (spikes). Most HBxAg is associated with virus replication complexes in the cytoplasm of infected cells. (2) In the presence of
appropriate immune responses (IRs), the cells supporting virus replication are eliminated, resulting in the recoveryfrom acute infection. In the event

that immune responses are inadequate or inappropriate or do not appear soon enough (3), the virus spreads throughout the liver, and the chronic
carrier state is established (4). Cytotoxic cytokines target and remove some ofthe virus-infected cells. Thisprocess is thenfollowed by regeneration and
infection of new cells, and the cycle is repeated many times during the course of chronic liver disease (5). The alteration of signal transduction
pathways by HBxAg and the corresponding changes in hostgene expression patterns may yield an increasing number ofHBxAg-positive hepatocytes
with phenotypes that are resistant to cytokine-triggered apoptosis and less able to support virus replication. The continued accumulation of
intracellular HBxAg eventually inactivates negative growth-regulatory pathways, as examplified by its binding to p53, resulting in proliferation and
accumulation ofmutations in theplace ofcontrolled regeneration and appropriateDNA repair. It isproposed that such cells are mostprone to develop
into HCC as additional hits accumulate (6).

mation, further research is beginning to reveal common
denominators in these different systems.

Although the sites of viral integration with regard to
the host genome seem to be random, there are
preferred sites within the viral genome. During virus
replication, the origin of replication for each viral
DNA strand consists of an 11-bp direct repeat se-
quence.41 Since the direct repeat sequences are at
the end of the growing linear viral DNA strands and
overlap the X gene of the virus, the X region be-
comes the most frequently integrated sequence

(Figure 2). Most primary tumors and tumor-derived
cell lines have some or all of the X region and up-
stream pre-S/S sequences integrated.32 In addition,
most primary tumors made X region transcripts,
whereas relatively few made transcripts from other
regions of the genome.42'43 Many of these integrated
fragments make hepatitis-B-virus-encoded X antigen
(HBxAg) capable of trans-activation both in vitro44'45
and in vivo46 although the natural targets of HBxAg
trans-activation in liver diseases, including HCC, re-
main to be clearly identified. Furthermore, immuno-
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Figure 2. Diagram ofthe HBVgenome showing the direct repeat (DR)
sequences at the end ofeach viralDNA strand. Most integration occurs

at DRI, with the integrated template containing most or all of the X
region sequences and, in many cases, the upstream S andpre-S/Sgene
sequences as well. Theproximity oftheX region to the end of the viral
genome that integrates into host DNA suggests that this region will
integrate most often, the upstream pre-SIS region less often, and the
core region only rarely. These observations may provide the rationale
for the patterns of virus gene expression in chronically infected livers
most often seen among patients with chronic liver disease who are no

longer replicating HBV.

histochemical staining of livers from more than 200
carriers with CAH or cirrhosis and from more than
100 carriers with HCC demonstrated that HBxAg
was more prevalent than the other gene products of
HBV.25 47 In many cases, it was the only HBV antigen
detectable by staining. The close correlation be-
tween X antigen staining and hepatitis in chronically
infected woodchucks,26 and its persistence at high
levels in the livers of X transgenic mice that go on to
develop liver tumors,48-50 also suggest that the per-

sistent expression of HBxAg is consistent with the
development of HCC. Hence, a common feature of
pathogenesis in chronic HBV infection is not where
the viral DNA integrates, but that in most cases the
integrated sequences make HBxAg. Recent obser-
vations have also detected X antigen in chronically
infected livers of woodchuck carriers that develop
HCC,51 suggesting that here, too, the persistent ex-

pression of X antigen is associated with the carrier
state and the development of associated chronic
liver diseases.
HBxAg has been widely studied as a trans-acti-

vating protein that seems to act promiscuously in the
stimulation of a variety of virus and host gene pro-

moters.52 It has been suggested that the pleiotrophic
effects of HBxAg on transcription may reflect its

binding to a variety of other transcription factors,
thereby acting as a coactivator in infected cells.53'54
The consequence of HBxAg transcriptional coacti-
vation during infection may be to stimulate HBV gene
expression and replication,55'56 which would be im-
portant for the establishment and persistence of vi-
rus replication during chronic infection. The finding
that X-negative WHV DNA is not capable of estab-
lishing the chronic carrier state in experimentally
infected animals,57'58 combined with the finding that
HBV with naturally occurring deletions within the X
gene is the predominant viral genotype in patients
with HBV-seronegative non-A, non-B hepatitis,59
also suggests that the persistent expression of X
antigen may be required for the establishment and
maintenance of the chronic carrier state.60 During
the period of virus replication, however, HBxAg is
either sequestered in the replication complex of the
virus61 62 or secreted into serum as a soluble
polypeptide, in which it often appears with HBeAg
and virus particles (Figure 1).63.64 In hepatocytes
supporting virus replication, then, the amount of
HBxAg accumulating intracellularly is relatively low
(Figure 1).47 Under these circumstances, the major
roles of HBxAg seem to be in the support and main-
tenance of virus replication. Hence, one way HBxAg
may contribute to the development of HCC is by
helping to maintain the chronic carrier state and, in
doing so, may provide the environment (ie, cells
replicating virus and expressing virus antigens) in
which chronic hepatitis and eventually cirrhosis may
develop.
The inverse correlation between HBxAg staining in

the liver and markers of virus replication in the serum
suggests that HBxAg could be made independently
from virus replication, probably from integrated tem-
plates of viral DNA (Figure 1).65 The immunological
recognition and removal of cells replicating virus,
combined with the regeneration of cells harboring
mostly or entirely integrated HBV DNA, results in the
clonal expansion of hepatocytes.19 The expansion of
HBxAg-positive cells in the liver by continued viral
DNA integration and clonal expansion and the in-
creased expression levels of HBxAg, which are likely
to accompany such expansion,25'47 result in a liver
increasingly dominated by HBxAg-positive cells,
which are then ripe for additional "hits" that contrib-
ute to the process of multi-step carcinogenesis. Pro-
posed characteristics that allow for the outgrowth of
HBxAg-positive cells include: 1) the direct stimula-
tion of cell growth by HBxAg,66-70 2) the inactivation
of negative growth regulators, such as tumor sup-
pressor p53 by HBxAg,71 '3 3) the increased resis-
tance of HBxAg-positive cells to apoptosis mediated

*eA



HBxAg and Hepatocarcinogenesis 1145
AJP April 1997, Vol. 150, No. 4

by cytotoxic cytokines released during CAH, and 4)
the apparent inactivation of one or more DNA repair
pathways by HBxAg, which permits the accumula-
tion of additional mutations in cellular DNA during
regeneration.72 The presence of HBxAg on or near
the plasma membrane of hepatocytes from patients
with chronic hepatitis and cirrhosis47 is also consis-
tent with it being a classical human-leukocyte-anti-
gen-associated immune target, but there are no firm
data to support this. In contrast, the lack of membra-
nous staining and large increase in the nuclear stain-
ing of HBxAg among patients with cirrhosis and dys-
plasia25'47 suggest that HBxAg may act as a
promiscuous coactivator within liver lesions that are
present just prior to the appearance of HCC. The fact
that more than 95% of the patients with cirrhosis and
dysplasia were HBxAg positive in the liver, com-
pared with less than 70% of patients with HCC,25
suggests that the action of HBxAg is important at the
time that tumors appear, but that once tumors form,
the actions of HBxAg are no longer rate limiting, and
the antigen is no longer selected for among infected
cells. Hence, an understanding of the role of HBxAg
in the infected hepatocyte just prior to the appear-
ance of a tumor should take into consideration the
possibility that the effectors of HBxAg co-trans-acti-
vation in the nuclei of hepatocytes need to be iden-
tified.

It is clear that HBxAg is not an acutely transform-
ing oncogene product, since HCC appears some 30
to 50 years after infection. Part of the reason for this
may be that HBxAg is secreted into blood or seques-
tered in viral replication complexes, leaving little free
HBxAg in the cell during the early phases of chronic
infection (Figure 1). Low levels of free HBxAg in the
cell also seem to promote the arrest of hepatocytes
in the G1 stage of the cell cycle (H. Reis, J. Pan, X. L.
Duan, and M. A. Feitelson, unpublished results),
which would favor virus replication even during a
bout of CAH, in which virus-infected cells are being
removed and the regenerating cells do not support
virus replication.7475 Furthermore, the predominant
cytoplasmic localization of HBxAg in hepatocytes
during periods of infection characterized by CAH
and cirrhosis may alter signal transduction path-
ways, which results in a correspondingly altered sen-
sitivity of hepatocytes to the action of cytotoxic cyto-
kines, such as increasing the resistance of infected
hepatocytes to apoptosis76 and/or temporaily down-
regulating virus gene expression in the presence of
cytokines so as to allow infected cells to "escape"
otherwise eliminating immune responses.77'78 In
contrast, the predominantly nuclear localization of
HBxAg in the livers of patients with cirrhosis and

dysplasia may alter patterns of host gene expression
relevant to carcinogenesis. It is postulated that the
uncoupling of HBxAg with virus replication during
chronic infection results in increased levels of
HBxAg only in cells in which some negative growth-
regulatory circuits have already been inactivated,
either through mutation or by the fact that regener-
ating hepatocytes in an increasingly abnormal liver
architecture are no longer fully differentiated, as are
resting hepatocytes in a normal liver. The evidence
that is consistent with this idea is that high levels of
HBxAg in normal hepatocytes inhibits cell growth
(X. L. Duan and M. A. Feitelson, unpublished data),
and that HBxAg is much more likely to stimulate DNA
synthesis and unregulated growth only in cells that
are already close to transformation. The latter point is
exemplified by documentation that HBV DNA in gen-
eral, and the X product in particular, can transform
NIH 3T3 cells66 and a mouse hepatocyte cell line,
FMH202,8779 into lines that acquire the ability to
grow as tumors in nude mice. The FMH202 line was
also transformed following transfection with DNA
from a human HCC nodule that contained integrated
viral sequences.80 Again, transformation was depen-
dent on the presence of X gene sequences.80 Sub-
cellular fractionation of transformed FMH202 cells
showed that HBxAg was detected exclusively in the
cell nuclei,67 which is consistent with its role as a
transcriptional coactivator.5354 One possibility for
the shifting patterns and properties of HBxAg may lie
in the discovery and characterization of different X-
binding proteins, which may alter both the subcellu-
lar localization and function of HBxAg at different
points during infection.
HBxAg does not bind nucleic acids directly but

instead seems to mediate its effects on cell behavior
by protein-protein interactions.81 The observation
that HBxAg can bind to cAMP response element-
binding protein, activating transcription factor-2,81
Oct-1,82 TATA-binding protein,83 a subunit common
to RNA polymerases,84 and other elements of the
transcriptional machinery,53'54 combined with obser-
vations that such binding often results in altered DNA
binding and activity of these components, provides a
common denominator from which some of the pro-
miscuous trans-activation properties of HBxAg could
be explained. In the context of chronic infection,
these interactions probably become important with
the increasing intracellular accumulation of free
HBxAg and increasing severity of liver disease, sug-
gesting that at least some of these interactions may
be relevant to pathogenesis. Further work needs to
be carried out to understand the genes, the differ-
ential expression of which, as a consequence of
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these interactions, plays a role in the pathogenesis of
HCC.

Analysis of WHV DNA integration patterns showed
that in chronically infected livers the integrated WHV
DNA was often co-linear with that of virus DNA,
whereas in HCC nodules the WHV DNA was often
partially deleted and rearranged at the integration
site.21 22 In addition, the rearrangement of integrated
HBV DNA in transgenic mice over time,40 combined
with the frequent loss of heterozygosity that accom-
panies the development and progression of HCC,30
suggests that chronic hepadnavirus infections are

associated with a considerable amount of genetic
instability. The finding that HBxAg binds to and pre-

sumably inactivates an ultraviolet-light-induced DNA
damage binding protein, which seems to be impor-
tant for the recognition step of the excision repair
pathway,85 suggests that HBxAg may promote ge-
netic instability in this way. Independent work has
also shown that HBxAg disrupts the functional integ-
rity of the p53-ERCC3 complex in vitro.72 Since the
latter complex is important for transcription-coupled
repair, its inactivation may also contribute to the
accumulation and propagation of mutations relevant
to hepatocarcinogenesis. Although these results are

provocative, it is not known whether these mecha-
nisms are operative in vivo.

Additional evidence that HBxAg contributes to
hepatocarcinogenesis is the appearance of altered
foci, adenomas, and HCC in X-transgenic mice with
persistently high levels of HBxAg expression.4850
These observations have not been reproducible in
other X-transgenic mice,8' but the levels and dura-
tion of HBxAg expression seemed to be much less in
the latter studies. The striking observation that the
X-transgenic mice that develop HCC do so in a

background in which there is no hepatocellular turn-
over and no regeneration may be due to the fact that
such mice have X gene sequences integrated into
every cell, and that this may short circuit the need for
hepatocellular turnover in promoting virus integra-
tion. These observations, combined with those in
which HBxAg transforms only tissue culture cells that
have already been through most of the steps re-

quired for transformation,666779 supports the idea
that HBxAg only contributes a few steps in multistep
hepatocarcinogenesis. The fact that HBxAg stimu-
lates DNA synthesis when transiently introduced into
fibroblast and liver cell lines70.87 also suggests that
to do so, HBxAg needs to overcome natural negative
growth-regulatory pathways in the cell. This seems to
occur when there are transiently high levels of
HBxAg in tissue culture cells and when there are

persistently high levels of HBxAg in the livers of

chronically infected people and transgenic mice.
Furthermore, the observation that HBxAg overcomes
p53-mediated apoptosis in fibroblasts,76 and that
HBxAg stimulates the NF-KB88-91 and Ras-Raf-mito-
gen-activated protein kinase68-70.92 signal transduc-
tion pathways important to the controlled regulation
of cell growth, may give cells a survival advantage
over the 20 to 50 years it takes to develop HCC. In
this context, sustained and increasingly elevated lev-
els of intracellular HBxAg25'47 would be necessary
but not sufficient for hepatocellular transformation.
Hence, HBxAg may be a prognostic marker associ-
ated with the development of HCC.93

HBxAg Functions Associated with
Hepatocarcinogenesis
The most well-characterized property of HBxAg is its
ability to mediate trans-activation of many cellular
and viral promoters.52 Among the natural targets of
HBxAg trans-activation are the virus genes them-
selves, in that HBxAg function is important for main-
taining wild-type levels of virus gene expression and
replication both in vitro and in vivo.55-58 HBxAg stim-
ulation of virus gene expression may elicit antiviral
immune responses capable of removing infected
cells on one hand and providing regenerative stim-
ulus in the liver on the other. Sustained, high levels of
viremia may increase the number of infected hepa-
tocytes, thereby increasing the magnitude of the
cellular inflammatory responses (Figure 1). If true,
then persistent HBxAg expression may accelerate
the pathogenesis of HCC by encouraging persistent
hepatocellular regeneration associated with bouts of
chronic liver disease. There is experimental support
for this view.93

The finding that HBxAg may be a protein kinase
with apparently autophosphorylating activity,94 and
that it readily becomes phosphorylated in human
hepatoma cells,95 implies that phosphorylation may
contribute to carcinogenesis. Although the targets
for HBxAg phosphorylation are not known, the phos-
phorylation of tumor suppressor gene products and
cell cycle proteins are known to alter their activities in
the control of cell growth.96 More recent work, how-
ever, has failed to demonstrate that HBxAg is a
protein kinase, although HBxAg had ATPase and
deoxy-ATPase activities in vitro.97 These activities
may be coupled to HBxAg-mediated trans-activa-
tion, since ATP hydrolysis is known to facilitate un-
winding of the DNA template at the site of transcrip-
tion initiation98 and to activate a preinitiation complex
in transcription through the phosphorylation of RNA
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Figure 3. Signal transduction pathways, thefunction ofwhich may be altered by HBxAg. HBxAg may up- or down-regulate thesepathways (dashed
lines) by directly binding one or more critical components ofthepathways, such as the TATA-bindingprotein (7TBP), activating transcriptionfactor-2,
cAMP response element-binding protein (CREB), p53, or AP-1 and -2. Alternatively, or in addition, HBxAg may indirectly stimulate the ras and/or
NE-KB signal transduction pathways by mechanisms that are not yet clear. In any event, the altered patterns ofgene expression may result in an
increased resistance ofsuch cells to apoptotic signals provided by the immune system in theform of cytotoxic cytokines. The survival advantage of
HBxAg-positive cells would then be a prerequisite for additional changes, also mediated by HBxAg, which would promote the accumulation of
mutations which contribute to the development ofHCC.

polymerase 11i99 Given that HBxAg trans-activation
seems to be mediated through phosphorylation-de-
pendent signal transduction pathways (Figure 3), if
HBxAg stimulates the activity of one or more key
protein kinases in these pathways or inhibits the
activity of corresponding phosphatases, signal
transduction may be altered in HBxAg-positive com-

pared with negative cells. Since alterations in host
gene expression are often mediated by changes in
the activity of signal transduction pathways, the pu-
tative pleiotrophic effects of HBxAg in carcinogene-
sis may be explained, in part, by the inappropriate
activation of these pathways. For example, in F9
teratocarcinoma cells, which lack the protein kinase
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C (PKC)-dependent transcription factor AP-1 (which
consists of Jun and Fos), HBxAg trans-activation was
dependent on the cotransfection of Jun and Fos
expression plasmids (Figure 3).8889 The observation
that HBxAg increased the binding of AP-1 to cognate
DNA sequences in a human liver-derived cell line
(CCL13), and that this binding was abolished by
treatment of the cells with a PKC inhibitor, suggests
that HBxAg trans-activation may depend on PKC.88
HBxAg transfection also resulted in an increase in
the endogenous PKC activator 1,2-diacylaglycerol
(Figure 3). Since PKC and AP-1 function through
NF-KB-dependent signal transduction pathways, as
do Src and Ras, for example, HBxAg may inappro-
priately activate some of the same pathways regu-
lated by cellular oncogene products. The fact that
both AP-1 and NF-KB are normally stimulated by
cytokines and growth factors is also consistent with
their induction by HBxAg. Independent observations
also suggest that HBxAg stimulates the activities of
the AP-1- or AP-2-associated signal transduction
pathways.89 Hence, HBxAg has some features in
common with growth-regulatory proteins. However, it
remains to be seen whether any of these pathways
are altered in vivo, and if they are, whether these
alterations are relevant to the development of HCC.
HBxAg has also been found to mediate activation

of NF-KB in PKC-independent pathways.90'91 In
PKC-associated signal transduction, NF-KB exists
complexed to its inhibitor (IKB) in the cytoplasm, in
which it remains inactive. When IKB becomes phos-
phorylated, active NF-KB is released for transport
and functions in the nucleus. The recent demonstra-
tion that activated NF-KB prevents apoptosis,100 101
that NF-KB is required for hepatocellular viability and
growth during embryogenesis,102 and that HBxAg
stimulates NF-KB"-91 suggests that X antigen may
promote the survival of both infected and mutated
cells during repeated bouts of chronic liver disease.
This may contribute importantly to the development
of HCC. Furthermore, in PKC-independent path-
ways, IKB becomes phosphorylated by kinases (oth-
er than PKC) stimulated by the generation of reactive
oxygen intermediates (ROls)103104 resulting from
the action of some cytokines. If HBxAg is a protein
kinase or is physically bound to a cellular protein
kinase (which may result in HBxAg phosphorylation),
it may also activate NF-KB-dependent pathways by
stimulating phosphorylation of IKB. The finding that
HBxAg trans-activation of NF-KB-controlled reporter
genes is inhibited by antioxidants105 suggests that
HBxAg may promote NF-KB genes in the presence
of ROI in infected cells. Independent work, showing
that the CAH in hepatitis-B-surface-antigen-overpro-

ducing transgenic mice destined to develop HCC is
associated with extensive oxidative DNA dam-
age,106 also suggests a role for ROls in pathogene-
sis. The central role of free radicals in the initiation
and progression of multistage carcinogenesis107,108
may be one of the ways whereby HBxAg contributes
to this process. The combination of elevated ROls
and increased HBxAg expression in the liver may
also provide a partial explanation for the increased
susceptibility of HBV-transgenic mice to chemical
carcinogen-induced tumors.109 In this context, the
detection of sustained aflatoxin consumption in re-
gions of the world with a high frequency of both
chronic carriers and HCC1 10'111 also implies synergy
between HBV and this potent hepatocarcinogen.
However, the relationship among elevated ROls,
chronic HBV infection, and aflatoxin in the pathogen-
esis of HCC remains to be clarified.

Recent work has also suggested that HBxAg
shares limited homology with Kunitz-type serine pro-
tease inhibitors,112 the latter of which play significant
roles in carcinogenesis by stimulating cellular
growth.113 Mutation of the region in HBxAg having
homology with the "Kunitz domain" of these protease
inhibitors also abolished its trans-activation function,
suggesting that HBxAg may bring about trans-acti-
vation by inhibiting the proteolytic cleavage and ef-
fectively increasing the half-lives of selected tran-
scriptional proteins. The association of HBxAg with
the proteasome is consistent with these findings.'14
More recently, HBxAg has been shown to bind and
inhibit the activity of the hepatic serine protease
tryptase TL2 without being degraded, implying that
HBxAg may act as a protease inhibitor.115 Inhibition
of the related tryptase TL1 was also observed.115
Given that the natural substrate(s) and inhibitor(s) of
these enzymes have not been identified, the signifi-
cance of the HBxAg-tryptase TL relationship to HCC
remains to be firmly established.
The possibility that HBxAg resembles a protease

inhibitor may have other ramifications relating to the
development of HCC. For example, it is well known
that the a1-antitrypsin deficiency in humans1 16 and in
transgenic mice,117 which often results in the ap-
pearance of HCC, is associated with the abnormal
accumulation of the antiprotease in the liver, with a
corresponding deficiency in the blood. This accumu-
lation is toxic, in that it results in the loss of hepato-
cytes, followed by regeneration, and the loss of the
transgene expression (in mice) among surviving
cells. Cell loss and regeneration are also prominent
in transgenic mice that develop HCC associated with
the overexpression of transformation growth factor
a,' 8 Simian virus 40 T antigen,119 or the hepatitis B
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surface antigen.2" If HBxAg acts as an antiprotease
in natural infection, it may stimulate both cell loss and
regeneration in a dose-dependent manner, indepen-
dent of antiviral immune responses, thereby contrib-
uting importantly to the pathogenesis of HCC.
The context of HBxAg expression at different

times during infection, which determine its subcellu-
lar localization, binding partners, and function(s), is
likely to critically determine how and when HBxAg
contributes to the development of HCC. One hint
may lie in the observation that early on in chronic
infection the liver is composed largely of hepato-
cytes that are sensitive to HBV infection and support
virus replication (ie, quiescent and fully differentiated
cells or S cells), whereas late in chronic infection, the
liver is composed largely of hepatocytes that are
resistent to HBV infection and are largely nonpermis-
sive for virus replication (ie, regenerating, less-differ-
entiated R cells).120'121 Since HBV replication occurs
best in quiescent and fully differentiated liver cells
and cell lines,7475 the shift in the hepatocellular en-
vironment in which HBxAg is expressed will slowly
change during the course of chronic infection. If
these changes are reflected in different HBxAg-bind-
ing partners in S compared with R cells, the charac-
teristics of HBxAg may vary greatly in these different
circumstances. Although the existence of R and S
cells is not certain at the present time, systems are
available to test this hypothesis experimentally.

The Relationship between HBxAg and
p53 in the Pathogenesis of Chronic HBV
Infection and the Development of HCC
There is increasing evidence that tumor suppressor
proteins, such as p53, negatively regulate cell
growth, thereby acting to prevent the uncontrolled
cell proliferation characteristic of tumors.122'123 The
centrality of p53 to the maintenance of cellular ge-
nome integrity is highlighted by observations that
p53 expression is induced in cells that sustain radi-
ation-induced DNA damage124 125 and that this in-
duction prevents cell division until DNA repair is
completed. When p53 function is lacking, cells with
damaged DNA continue to replicate and usually die
or, rarely, transform. The importance of p53 is further
underscored by the fact that point mutations, which
inactivate this protein, have been found in many
tumor types.126 Among DNA tumor viruses, transfor-
mation involves the appearance of virus proteins,
which bind to and inactivate p53, and in some cases,
other tumor suppressor products as well.127 p53
knockout mice have an increased risk for the devel-

opment of many types of cancers.128 Hence, func-
tional inactivation of p53 is a common feature of
carcinogenesis.
The integrity of p53 is also important to the mech-

anism(s) operative in HBV-associated HCC. The fact
that HBV DNA integration into the human genome is
common, that it occurs in most chromosomes exam-
ined,33 that hepatocellular regeneration during bouts
of chronic hepatitis promotes integration, and that
integration is associated with chromosomal instabil-
ity,40'129 suggests that chronic HBV infection is as-
sociated with prolonged periods of DNA damage,
which may require the function of p53 to affect DNA
repair prior to mitosis. Hence, the integrity of p53
seems to be central to limiting DNA damage result-
ing from HBV integration events and the subsequent
development of HCC. ROls may also contribute to
DNA damage in patients with CAH. In this context,
HBxAg was found to increase the radiation sensitivity
of the human hepatoma line HepG2 to X irradiation,
implying that HBxAg may inactivate p53.130 An as-
sociation between HBxAg and p53 was observed in
human livers from carriers with HCC by co-immuno-
precipitation of both these polypeptides with anti-
HBx or anti-p53 and confirmed with similarly de-
signed experiments using in vitro-translated
products.71-73 Further work showed that HBxAg re-
lieved p53 suppression of transcription of promoters
lacking a p53-responsive element131"132 and stimu-
lated expression of promoters having one or more
p53-responsive elements.54 The latter result sug-
gests that HBxAg trans-activation of p53-responsive
genes may be mediated by HBxAg-p53 complex
formation. Further work showed that p53 suppres-
sion of individual HBV promoters was relieved by
HBxAg,133 but that when the virus promoters were
tested again in their natural context within the intact
virus genome, HBxAg and p53 acted synergistically
in the stimulation of HBV replication. Further analysis
showed that this phenomenon was associated with
the presence of a p53 binding site within HBV DNA
(X. L. Duan, M. Zhu, M. Feitelson, 1. Osak, B. Sun, J.
Guo, and R. Pomerantz, submitted for publication).
The finding that HBxAg inhibits the binding of p53 to
its responsive element in vitro,72 however, seems to
be in contrast to the results presented above, but this
discrepancy may be due to the HBxAg:p53 ratios
used in each case. It is proposed that at low HBxAg:
p53 ratios, HBxAg binds p53 at its responsive ele-
ment, further stimulating transcription, whereas at
high ratios, HBxAg displaces p53 from its responsive
element (Figure 4). Low HBxAg:p53 ratios seem to
predominate early in infection, when the small
amount of free HBxAg in the cell would act to stim-
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Concentration Dependence ofHBxAg Upon trans-activaition.

1. Infected Cells With Low Concentrations ofHBxAg in Nuclei.
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2. Infected Cells with High Concentrations ofHBxAg in Nuclei.
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Figure 4. Speculative model showing that thefunctions ofHBxAg may vary, depending on the amount ofHBxAg, which increases during chronic
infection. The binding ofHBxAg top53 is presented as an example, but the rationale could be extended to other transcription factors thatphysically
and/orfunctionally interact. At low HBxAg concentrations, the binding ofHBxAg to p53 stimulates the expression ofp53 target genes. With respect
to the virus, this would result in increased virus replication. With regard to the infected cell, this may result in G, arrest. Since quiescent cellsfully
support virus replication, this mayplay a role in thepersistence ofvirus replication and maintenance ofthe chronic carrier state. As viral integration
accumulates over time, and intracellular levels ofHBxAg increase, it ispostulated that thefunctional complexes between HBxAg and transcription
factors begin to break down, resulting in phenotypic changes among HBxAg-positive hepatocytes that are importantfor subsequent changes to occur
in the pathogenesis ofHCC.

ulate HBV gene expression and replication in a p53-
dependent fashion. High HBxAg:p53 ratios seem to
predominate late in infection when HBxAg is made in
relatively large amounts from integrated templates
and accumulates within infected cells. Additional
work has shown that HBxAg does not degrade p53 in
vitro,131 as does human papilloma virus 16 E6, sug-
gesting that the functional inactivation of p53 may
involve conformational changes in p53 on complex
formation or the displacement of p53 from some of its
usual substrates by HBxAg. These p53 substrates
may include the homolog of the oncogene product
mouse double minute 2,134,135 the deregulated ex-
pression of which is associated with some tumors,136
the growth arrest DNA damage complex promot-
er,137 TATA-binding protein,138 heat shock protein
70 and its corresponding promoter,139'140 and other
genes important in the regulation of cell growth and
differentiation. 134 Hence, HBxAg-p53 complex for-
mation may alter genetic stability and cell cycle con-
trol, both of which are central to multistep carcino-
genesis.
HBxAg-p53 complexes have been found in the

HCCs that develop in X-transgenic mice.50 Co-stain-
ing of HBxAg and p53 in the same cells from altered
foci, adenomas, and HCC nodules, further suggests
a close relationship between these proteins. In these
mice, HBxAg seems to inactivate p53 by sequestra-
tion of the latter in the cytoplasm. Suppression of
HBxAg expression by short-term interferon treatment

resulted in the loss of cytoplasmic p53 and reap-
pearance of p53 in the nuclei of hepatocytes. Se-
quence analysis of p53 exons 5 through 8 in these
mice did not reveal any evidence of inactivating
point mutations, suggesting that the inactivation of
p53 in HCC nodules was associated with HBxAg-
p53 complex formation. In human HCC, elevated
levels of p53 were observed in the nuclei of infected
cells, and in some cases, nuclear HBxAg was also
observed in the same cells.141 Exon sequencing
showed that the p53 staining was associated with
wild-type p53 in most cases. The results are com-
patible with the conclusion that HBxAg stabilizes p53
in either a wild-type or mutant conformation. Al-
though more work is required to test this hypothesis,
the normal turnover of p53 by ubiquitination in the
proteasome142 may be altered if HBxAg binds to p53
and acts as a protease inhibitor. In this context, the
recent demonstration that HBxAg binds to a subunit
of the proteasome complex, and that such binding
correlates with the ability of HBxAg to carry out trans-
activation,114 suggests that the proteasome may be
a functional target for HBxAg in infected cells. Al-
tered proteasome function would not only stabilize
molecules such as p53 and the cyclin-dependent
kinase inhibitor, p21WAF, but may also inhibit the
degradation of oncogene products and cellular
trans-activating proteins such as c-Jun, c-Fos, and
NF-KB, which are important in the regulation of cell
growth.143'144 In this light, it may be more than just
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coincidence that HBxAg trans-activation is associ-
ated with the increased activity of c-Jun, c-Fos,69'145
and NF-KB.146 There also exists the possibility that
the improper degradation of viral proteins in the pro-
teasome will alter their ability to interact with the
appropriate human leukocyte antigen molecules,147
which may contribute importantly to the escape of
virus infected cells from immune recognition and
elimination.

There is also a correlation between p53 inactiva-
tion and defects in DNA repair,137'148 which together
may promote genomic instability. As mentioned ear-
lier, the normal binding of p53 to ERCC3, the latter of
which is a basic transcription factor involved in tran-
scription-coupled DNA repair,149,150 seems to be
disrupted by HBxAg.72 The likelihood that p53 sup-
presses transcription, in part, by inhibiting the activ-
ity of DNA helicases,151 and that ERCC3 has intrinsic
helicase activity,149 suggests that p53 inactivation
by HBxAg would result in unscheduled and unregu-
lated transcription (Figure 3). Replication and tran-
scription of damaged cellular DNA would result in
the propagation of mutations that contribute to mul-
tistep carcinogenesis. Emerging evidence that mu-
tations in cellular DNA are related to the slow repair
of ultraviolet-light-associated DNA damage in skin
cancer,148 and that mutations within DNA repair en-
zymes are associated with the development of the
hereditary form of colon cancer,152 further under-
scores the importance of the fidelity of DNA repair to
carcinogenesis. The fact that the rodent ERCC3
product corresponds to the human nucleotide exci-
sion repair gene XPBC, which in mutant form is as-
sociated with xeroderma pigmentosum,150 is consis-
tent with the finding that HBxAg increases the
radiation sensitivity of HepG2 cells.130 On the mo-
lecular level, HBxAg inactivation of p53 through
complex formation and the possible impairment of
ERCC3, then, may contribute to other chromosomal
alterations reported to be associated with HCC.30'31
The accumulation of chromosomal alterations during
tumor progression, including mutations in the p53
gene itself,153 suggest that HBxAg/p53 complexes
are rate limiting early in tumor formation, whereas the
appearance of chromosomal aberrations become
dominant later on. However, direct evidence of the
inactivation of one or more DNA repair enzymes in
infected livers remains to be established.

HBxAg and Insulin-Like Growth Factor 11
The finding that insulin-like growth factor 11 (IGF-II)
expression, which is normally expressed only in fetal

liver,154 is elevated in both human155-157 and wood-
chuck158 159 HCCs, suggests that this enhanced ex-
pression may be an important feature of hepatocar-
cinogenesis. Elevated IGF-Il expression has also
been detected in premalignant proliferative nodules
in both human and woodchuck HCCs,156'157'159 sug-
gesting that its reactivation is an early step in the
development of this tumor type. The elevation of
IGF-Il expression in HCCs from HBV-infected but not
uninfected patients suggests that HBV may stimulate
IGF-II expression. 156 Further work demonstrated a
correlation between IGF-I1 and HBxAg expression by
immunohistochemistry,160 suggesting that IGF-II
may be a natural target of HBxAg-mediated trans-
activation. However, the inverse correlation between
IGF-Il and WHV RNA levels in liver and tumors158
suggests that IGF-II can be made independent of
viral replication. In human hepatoma cell lines, IGF-11
was expressed strongly in growing cells but was
undetectable in confluent cultures,160 suggesting
that it is associated with cell proliferation, whereas
viral replication was not.75 The more recent finding
that HBxAg stimulates the expression of the IGF-I
receptor in human HCC cell lines,161 which binds
both IGF-I and IGF-11, suggests that HBxAg may set
up an autocrine loop that enhances cell growth. In-
dependent work strongly suggests that the IGF-I
receptor is required for the establishment and main-
tenance of the transformed phenotype, both in vivo
and in vitro, in many cell types.162 If IGF-I receptor
overexpression also occurs in the liver, it may con-
tribute significantly to the survival and growth of
HBxAg-positive cells and to the development of tu-
mors. In the context of WHV transformation, the in-
creased expression of N-myc in liver-derived cell
lines increases the propensity of these lines to un-
dergo apoptosis in the absence of serum. Addition of
IGF-1, however, blocked apoptosis and stimulated
cell growth in serum-free medium,163'164 further sug-
gesting the potential importance of this growth factor
to hepatocarcinogenesis.

Conclusions
The likely pleiomorphic functions of HBxAg may dis-
tribute themselves among multiple pathways in the
development of HCC. Alterations in any one pathway
may be necessary but not sufficient for hepatocellu-
lar transformation. Although many pathways may be
involved, as indicated above, those that are relevant
to the pathogenesis of HCC need to be firmly iden-
tified. Presently, it is not known whether any of the
HBxAg-associated functions are operative in the de-
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velopment of HCC. HBxAg-p53 complex formation
seems to be an important step in viral hepatocarci-
nogenesis, by analogy to other DNA tumor viruses,
but the significance of these complexes to transfor-
mation requires further characterization. Likewise,
the role of IGF-Il and IGF-I receptor expression in
hepatocarcinogenesis merits closer examination.
Cellular targets that are altered during transformation
can be identified, in part, by asking whether selected
biochemical pathways are stimulated or depressed
in preneoplastic or neoplastic tissues from wood-
chucks or patients and by developing additional ex-
perimental systems that closely mimic the disease
process and biochemical alterations likely to be af-
fected in human disease. In this way, research will
be able to move from the realm of the possible to the
realm of the relevant and, in doing so, to provide the
appropriate systems for therapeutic intervention.
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