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Chemokines are secreted peptides that exhibit
selective chemoattractant properties for target
leukocytes. Two subfamilies, a- and 3-cheemo-
kines, have been described, based on structural,
genetic, andfunctional considerations. In acute
experimental autoimmune encephalomyelitis
(EAE), chemokines are up-regulated systemi-
caUy and in central nervous system (CNS) tissues
at disease onset. Functional significance of this
expression was supported by other studies; in-
tervention with an antichemokine antibody abro-
gated passive transfer of EAE, and chemokines
expressed in brains oftransgenic mice recruited
appropriate leukocyte populations into the CNS
compartment Chemokine expression in the more
relevant circumstance of cbronic EAE has not
been addressed. We monitored the time course
and celular sources of chemokines (monocyte
chemoattractant protein-i, macrophage inflam-
matory protein-i a; interferon-v-inducible pro-
tein of 10 kd, KC, and regulated on activation,
normal T-ceU expressed and secreted cytokine)
in CNS and peripberal tissues during spontane-
ous relapses of chronic EAE. We found coordi-
nate chemokine up-regulation in brain and spi-
nal cord during clinical relapse, with expression
confined to CNS tissues. Monocyte chemoattrac-
tant protein-1, interferon-v-inducible protein of
10 kd, and KC were synthesized by astrocytic

ceUs, whereas macrophage inflammatoiy pro-
tein-i aand regulated on activation, normal T-ceU
expressed and secreted cytokine were elabo-
rated by infitrating leukocytes. The results
demonstrate stringent regulation ofmultiple che-
mokines in vivo during a complex organ-specific
autoimmune disease. We propose that chemo-
kine expression links T-ceU antigen recognition
and activation to subsequent CNS inflammatory
pathology in chronic relapsing EAE. (Am J
Pathol 1997, 150:617-630)

Chemokines (chemoattractant cytokines) are se-
creted peptides that are produced by numerous cell
types in vitro and in vivo during inflammatory pro-
cesses. Two major subfamilies of chemokines have
been proposed, based on chromosomal localization,
structure, and functional characteristics. These sub-
families are the a- and f-chemokines: a-chemokines
are encoded on human chromosome 4, exhibit a
conserved C-X-C motif near the N terminus, and
chemoattract primarily neutrophils, whereas 3-che-
mokine genes are clustered on chromosome 17 and
possess a C-C motif and chemoattract monocytes
and lymphocytes.' Recently, a third y-chemokine
subfamily was characterized with biologically similar
chemoattractant properties but with a unique struc-
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ture and a distinct genetic locus.2'3 Chemokines are
encoded by immediate response genes, the tran-
scripts of which accumulate to high levels after a
diversity of stimuli, and several family members were
initially identified as cytokine-inducible cDNAs dur-
ing differential cloning experiments.4-11 Other che-
mokines were discovered through biochemical puri-
fication of chemoattractant components in cell
culture. The convergence of these two lines of ex-
perimentation provided a substantial foundation of
information about chemokine structure, in vitro func-
tion, and regulation.9 12-14 The functional spectrum
of chemokine-mediated activities has expanded to
include modulation of angiogenesis, inhibition of he-
matopoiesis, regulation of T-cell activation, and se-
lective mitogenic properties.15
The role of chemokines in vivo in inflammatory

processes has come under intensive investigation.
Chemokines are expressed in a wide variety of or-
gan-specific inflammatory states, including those af-
fecting the skin, lung, kidney, peripheral nervous
system, and central nervous system (CNS). 16-24
Both acute and chronic processes feature chemo-
kine expression, reflecting the requirement for leuko-
cyte recruitment in inflammatory pathologies.25 Che-
mokine expression correlates with target-specific
leukocyte infiltration in acute and chronic lung injury,
inflammatory and ischemic renal pathology, and cu-
taneous inflammation.2627 In model pulmonary pa-
thologies, chemokine antibodies abrogated leuko-
cyte entry.20'21'28

Chemokine function in vivo has been addressed
elegantly by construction of mice with targeted de-
letion of individual chemokine genes. Mice that
lacked macrophage inflammatory protein-la (MIP-
la) were susceptible to viral infections of the heart
and lung because of deficient leukocytic inflamma-
tory responses, indicating a specific chemokine re-
quirement for competent host defense.29 Additional
information has come from overexpression experi-
ments in transgenic (tg) mice. Studies using KC and
monocyte chemoattractant protein-1 (MCP-1) dem-
onstrated that chemokines exert appropriate target-
specific chemoattractant function in vivo for neutro-
phils and monocytes.30 Interestingly, chronic
chemokine stimulus in vivo by MCP-1 resulted in
desensitization of monocyte target cells and host
defense impairment, further supporting the concept
that chemokine functions during host defense are
nonredundant.31 Chemokine expression has been
reported in ischemic, traumatic, and infectious pro-
cesses of the CNS, with demonstrable functional
competence in the latter setting.18,32-34 Overexpres-
sion of chemokine MCP-1 in the brains of tg mice

produced a monocytic infiltrate in the perivascular
space, indicating unexpected potency for recruiting
target leukocytes into the subarachnoid compart-
ment.35 In recent experiments, we found that tg mice
with targeted expression of KC in oligodendroglia
exhibited remarkable neutrophil infiltration of CNS
tissues, indicating that selected chemokines could
mediate all functions needed to recruit leukocytes
from vasculature to the CNS parenchyma.36

Murine experimental autoimmune encephalomy-
elitis (EAE) is a well-characterized example of auto-
immune pathology directed against CNS myelin pro-
teins.37 Disease is initiated in susceptible strains by
immunization with myelin components and can be
modified to exhibit chronic relapsing or acute prop-
erties depending on immunogen and strain of ani-
mal. Chronic-relapsing EAE (Ch-R EAE) after active
immunization is an incisive model for the human
disorder multiple sclerosis.38'39 EAE can be trans-
ferred by T-cell lines, affording both active and pas-
sive models of disease. Reagents that block inflam-
matory cell recruitment to the CNS, such as very late
antigen-4 antibodies or antigen-peptide analogues,
strongly suppress EAE, indicating a need for leuko-
cyte migration into the CNS for demyelination to
occur.40-42

Initial investigation of chemokine expression in
EAE suggested a role for these cytokines in the
inflammatory process. Berman et a143 and Hulkower
et a144 first demonstrated chemokine up-regulation in
studies of acute EAE in Lewis rats. This report was
confirmed and extended by Godiska, et al,45'46 who
showed up-regulation of multiple chemokines in
acute EAE of SJL mice; reimmunization produced
clinical worsening accompanied by enhanced che-
mokine expression. Karpus and colleagues47
showed that passive transfer of EAE was accompa-
nied by impressive and selective up-regulation of
MIP-ia in the CNS of recipient mice. Anti-MIP-ia
antibodies delivered in vivo blocked disease,
whereas treatment of T cells with MIP-1 a antibodies
during in vitro stimulation was ineffective.47 These
results indicated that a single ,B-chemokine could
exert an essential, nonredundant function in passive
transfer EAE. We previously demonstrated MCP-1
expression by astrocytes in vivo in acute EAE.48-51
MCP-1 expression was also produced by astrocytes
after penetrating cerebral mechanical trauma, a non-
immune inflammatory stimulus.34 Godiska et al45'46
showed that activated encephalitogenic T cells ex-
press MIP-i a, regulated on activation, normal T-cell
expressed and secreted (RANTES) and T-cell acti-
vation gene 3 in vitro, and RANTES was shown in vivo
to be expressed in inflammatory foci. These results
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were supported by Hayashi and coworkers,52 who
demonstrated that cultured astrocytes synthesized
MCP-1, whereas MIP-1a was expressed by micro-
glia, the CNS macrophage-like cells. Additionally,
expression of T-cell activation gene 3 correlated with
encephalitogenic potential for individual T-cell
clones.53

In the present investigation, we determined the
temporal profile of expression and cellular sources
for five chemokines from both a- and ,8-subfamilies
during spontaneous relapses of Ch-R EAE. We ob-
served synchronous chemokine up-regulation in
brain and spinal cord during clinical relapse, with
expression confined to the CNS. MCP-1, interferon
y-inducible protein of 10 kd (IP-10), and KC were
synthesized by astrocytic cells, whereas MIP-la and
RANTES were elaborated by leukocytes within in-
flammatory foci. The stringent, lineage-specific reg-
ulation of individual chemokines in this complex in-
flammatory process may provide a model system for
addressing tissue-specific control of gene expres-
sion. These observations identify local chemokine
production as a component of the immune-mediated
inflammatory cytokine cascade that leads to symp-
tom formation in Ch-R EAE.

Table 1. PCR Primers Used in this Study

MCP-i
Forward 5'-AGAGAGCCAGACGGAGGAAG-3'
Backward 5'-GTCACACTGGTCACTCCTAC-3'

IP-1 0
Forward 5'-CAACCCAAGTGCTGCC-3'
Backward 5'-GGGAATTCACCATGGCTTGACCA-3'

KC
Forward 5'-TCGCTTCTCTGTGCAGCGCT-3'
Backward 5'-GTGGTTGACACTTAGTGGTCTC-3'

RANTES
Forward 5'-TTTGCCTACCTCTCCCTAGAGCTG-3'
Backward 5' -ATGCCGATTTTCCCAGGACC-3'

MIP-1 a
Forward 5'-TTCTGCTGACAAGCTCACCCTC-3'
Backward 5'-GAGGAACGTGTCCTGAAGTCTTTC-3'

a single day. Mice were sacrificed by cervical dislo-
cation, as approved by the Animal Research Com-
mittee of the Cleveland Clinic Foundation, in compli-
ance with the Public Health Service policy on
humane care and use of laboratory animals. Half of
the brain and spinal cord and pieces of liver, spleen,
and muscle were fixed in neutral 10% phosphate-
buffered formalin and stained with hematoxylin and
eosin and Luxol fast blue for histological evaluation.

RNA Extraction

Materials and Methods

Induction and Clinical and Histological
Evaluation of Ch-R EAE
Female (SWR x SJL/J)F1 mice were bred in the
animal facility of the Cleveland Clinic Foundation.
They were immunized between 8 and 10 weeks of
age with an encephalitogenic proteolipid protein
(PLP) peptide representing residues 139 to 151
(PLPp:139-151) as previously described.39 Seven
control animals were immunized with bovine serum

albumin (BSA). Additionally, three unimmunized an-

imals of the same age and sex were used as en-

zyme-linked immunosorbent assay (ELISA) controls
for chemokine protein studies. After immunization all
mice were weighed and examined daily for clinical
signs of EAE. The following clinical scoring scale
was used: 0, no disease; 1, decreased tail tone or

slightly clumsy gait; 2, tail atony and/or moderately
clumsy gait and/or poor righting ability; 3, limb weak-
ness; 4, limb paralysis; and 5, moribund state.39
Relapse onset was defined as the day when new

clinical signs appeared, and onset of remission was
defined as the day when clinical signs improved.
Confirmatory evidence of attack onset and remission
onset was loss or gain of 5 to 10% of body weight in

Animals (two to four per each time point) were sac-
rificed at days 1 to 4 relative to onset of the first
relapse (second attack of the disease) and at days 1,
2, 4, 6, and 8 relative to onset of the following remis-
sion (second remission). Two animals were sacri-
ficed during remission preceding the first relapse
(first remission). BSA-immunized animals (n = 7) did
not develop any abnormal clinical signs and were
sacrificed at similar time points after immunization as
PLP-immunized animals. Half of each brain and spi-
nal cord and pieces of liver, spleen, and muscle
were homogenized in guanidinium isothiocyanate for
preparation of total cellular RNA by centrifugation
through a cesium chloride cushion, as described.49
Chemokine mRNA expression in two CNS sites (spi-
nal cord and brain) was determined. Systemic im-
mune activation was monitored by assay of hepatic,
splenic, and muscle chemokine mRNA expression.

Reverse Transcription-Polymerase Chain
Reaction (RT-PCR)
First-strand cDNA was synthesized using 1 jug of
total cellular RNA. RT with avian myeloblastosis virus
reverse transcriptase (Boehringer Mannheim, India-
napolis, IN) was performed as previously de-
scribed49 for IP-10, MCP-1, and KC using gene-
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specific backward primers (Table 1). For MIP-1 a and
RANTES, oligo(dT) primers were used (Life Technol-
ogies, Inc., Gaithersburg, MD). The product of this
reaction was amplified by PCR using Taq DNA poly-
merase (Boehringer Mannheim). Before amplifica-
tion, cDNA templates were denatured at 940C for 3
minutes (MCP-1, IP-10, and KC) or 30 seconds
(MIP-la and RANTES) and then amplified. PCR con-
ditions were: MCP-1, IP-10, and KC, 20 cycles (940C
for 2 minutes, 600C for 2 minutes, and 720C for 2
minutes); for MIP-la, 35 cycles (940C for 30 sec-
onds, 580C for 1 minute and 720C for 1 minute); and
for RANTES, 25 cycles (940C for 30 seconds, 570C
for 1 minute, and 720C for 1 minute). PCR cycle
numbers that provided a linear relation between PCR
products and cDNA input were determined empiri-
cally as previously described.49 Negative technical
controls (without the RT product) were used for each
set of reactions. Amplification of tubulin transcripts
confirmed intact RNA in all samples.

Dot-Blot Hybridization Analysis of
Chemokine cDNA
PCR reaction products were denatured (2 mol/L
NaOH, 1 mol/L Tris-HCI, pH 8.0, 800C, 15 minutes),
diluted in 6 x standard saline citrate (three fourfold
dilutions), transferred to a nylon membrane (Gene-
Screen; DuPont, Boston, MA) using a vacuum blotter
(V&P Scientific, San Diego, CA), ultraviolet cross-
linked (Stratalinker 1800; Stratagene, La Jolla, CA),
and air dried. Membranes were subjected to DNA
hybridization analysis by prehybridization for 3 hours
at 420C, followed by hybridization with cDNA probes
in hybridization solution for 16 hours at 420C and
washing at high stringency.50 Hybridization probes
were radiolabeled with [32P]dCTP (DuPont, Wilming-
ton, DE) by nick translation. The hybridization signal
was quantitated with a Phosphorlmager (Molecular
Dynamics, Sunnyvale, CA). We previously showed
that in our assay hybridization, signal intensities for
individual samples obtained by Southern blotting
and dot-blot hybridizations were identical.49 Data
were analyzed using the Kruskal-Wallis test for non-
parametric data.

ELISA Analysis of Chemokine Expression
Chemokine mRNA and protein were assessed in
separate groups of mice that were immunized and
monitored in parallel. Tissues for chemokine protein
analysis were obtained from animals during different

stages of Ch-R EAE. Four mice were sacrificed dur-
ing first remission, eight mice during the first relapse,
and four mice during the second remission. Tissues
from three nonimmunized animals of the same age
served as controls. The posterior half of each right
brain hemisphere, including the cerebellum and
brainstem, the lumbar half of each spinal cord, and a
piece of liver were snap frozen in liquid nitrogen.
Specimens were homogenized in antiproteinase
buffer (500 [lI/sample), containing 1 x PBS, 2
mmol/L phenylmethylsufonyl fluoride (Sigma Chem-
ical Co., St. Louis, MO), and 1 ,ug/ml each antipain
(Sigma), aprotinin (Sigma), leupeptin (Sigma), and
pepstatin A (Sigma), using a tissue tearer, and son-
icated on ice. Debris was removed by centrifugation,
and the aqueous extract was decanted and stored at
-70°C until chemokine ELISA and total protein de-
termination. ELISA was performed by a modification
of the procedure described previously.54 Using the
total protein determination, results for chemokine
ELISA were normalized and expressed as nano-
grams per milligram of tissue. The analyses were
performed on coded samples.

In Situ Hybridization (ISH) Analysis of
Chemokine mRNA Expression
IP-10 and MCP-1 cDNA transcription templates were
previously described.50'55 For the other probes,
cDNA for kC,56 MIP-1a57, and RANTES58 served as
transcription templates. In vitro transcription to gen-
erate sense and antisense hybridization probes in-
corporating tritiated UTP and CTP were performed
as described.48'50 For ISH, probe concentrations
were normalized for probe length, with the mass of
the probe per tissue section held constant. Hybrid-
izations were performed at the predicted melting
temperature -250C, washes at melting temperature
-80C, and emulsion autoradiography for 4 weeks;
after development, sections were lightly counter-
stained with hematoxylin. Sense strand probes were
used for each tissue section to establish baseline
hybridization to genomic DNA and nonspecific back-
ground. To avoid selection bias, slides were initially
read in a blinded fashion regarding hybridization
probe, hybridization probe polarity, and day of sac-
rifice relative to immunization or disease onset. Initial
ISH using a 3-actin probe was used to confirm the
presence of detectable mRNA in all cell types and to
verify that the quality of tissues and technical as-
pects of ISH were uniform.
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Figure 1. Elevated chemokine mRNA and protein expression in the brain during relapses of Ch-R EAE. Parallel cohorts of mice were evaluatedfor
brain content of chemokine mRNA and protein during the course of Cb-R EAE. Mice were sacnficed at thefollowing stages of disease: remission I
(clinical improvement after the acute first attack), first relapse (spontaneous, second disease attack), and remission II (improvement after thefirst
relapse). Mice sacnftced at the time ofpeak severity ofsymptoms, days 2 and 3 after symptom onset, were characterizedfor chemokine expression
during relapse. For mRNA analysis, sample sizes were: remission I, n = 2; relapse, n = 5; and remission II, n = 8. Tissuesfrom seven mice immunized
with BSA served as controlsfor mRNA analysis. Chemokine mRNA accumulation was evaluated by semiquantitative RT-PCR dot-blot hybridization
assay with subsequent PhosphorImager analysis, with results shown in arbitrary densitometric units X 10-5. Forprotein analysis, a separate cohort
ofmice was studied, and sample sizes were: remission I, n = 4; relapse, n = 7; and remission II, n = 4; homogenatesfrom three nonimmunized mice
provided controlsforprotein assays. The chemokineprotein content was assessed by ELISA, and results arepresented as nanograms ofchemokineper
milligram of brain homogenate. A and B: show individual data pointsfor brain MCP-1 mRNA andprotein content, respectively. C and D: IP-10; E
and F: KC (KCprotein was assayed by ELISA with antibodies to human GRO-a); G and H: RANTES; I and J: MIP-la.

Colocalization of ISH Signal with
Immunohistochemistry for Glial Fibrillary
Acidic Protein

To confirm that cells expressing mRNA for selected

chemokines were astrocytes, we combined ISH
analysis with immunohistochemistry for the astro-
cytic marker glial fibrillary acidic protein as de-
scribed previously.48

Results

CNS Chemokine Expression during
Relapses of EAE

Mice were sacrificed at varying stages of Ch-R
EAE, based on neurological symptoms. Chemo-
kine expression was monitored at the mRNA level
with semiquantitative RT-PCR dot-blot hybridiza-
tion assays that were optimized for each tran-
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Figure 2. Elevated chemokine mRNA expression
in spinal cord duing relapses ofCh-R EAE. RNA
preparedfrom spinal cord was examined in a
subset of mice described in Figure 1 at the fol-
louwng stages of disease: remission I (n = 2),
relapse (n = 6), and remission II (n = 7).
Spinal cord RNA from seven mice immunized
with BSA served as controls. Chemokine mRNA
accumulation was evaluated by semiquantita-
tive RT-PCR dot-blot hybridization assay with
subsequent PhosphorImager analysis, with re-
sults shown in arbitrary densitomettic units X
10-5. A: MCP-1 mRNA expression; B: IP-lo; C:
RANES; D: MIP-la.
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script. Chemokine protein was assayed by ELISA
and normalized to the protein content of the total
brain homogenate. By the time that mice had re-
covered from the acute first attack of EAE, brain
chemokine protein levels returned to baseline. This
regulation was mirrored at the mRNA level (Figure
1, compare control with remission 1). Results were
highly uniform for all chemokine mRNAs except
MIP-la, which showed increased intersample vari-
ability, as individual mice occasionally exhibited
very high levels of MIP-la mRNA in the brain or
spinal cord during remission (Figures 11 and 2D,
remission and remission 11).

During spontaneous disease relapse, brain lev-
els of chemokines rose in coordinate fashion (Fig-
ure 1, compare remission I with relapse). Compar-
ing relapse with control, the total brain content of
mRNAs encoding MCP-1 (P = 0.006), IP-10 (P =

0.012), and KC (P = 0.003) rose significantly.
RANTES mRNA showed a tendency (P = 0.086) to
significance. The brain content of chemokine pro-
tein increased twofold to threefold during EAE re-
lapse (Figure 1, B, D, F, and H). This magnitude of
increase in whole-brain homogenate was notable,
because CNS chemokine expression is highly fo-
cal (see ISH analysis below). During remission
from this first relapse, chemokine mRNA levels
rapidly declined (Figure 1, compare relapse with
remission 11). Protein levels decayed at varying
rates, with persistent elevations of KC and IP-10,
presumably reflecting differential stability of che-
mokine proteins in the CNS (Figure 1).

Four chemokine mRNAs (MCP-1, MIP-1a, RANTES,
and IP-10) were monitored in the spinal cord during
relapses. The patterns of chemokine mRNA expression

in the spinal cord and brain (Figure 2) were highly
similar, indicating coordinate chemokine regulation
throughout the CNS during relapses of Ch-R EAE, as
previously described for acute first attacks of EAE.

Hepatic, Spleen, and Muscle Chemokine
Expression during Relapses of EAE
To determine whether chemokine expression during
relapse was confined to the CNS, we monitored he-
patic chemokine mRNA and protein expression as
well as chemokine mRNA expression in the spleen
and muscle. Our prior studies showed that early
hepatic chemokine expression reflected systemic
immune activation: in mice immunized with PLPp:
139-151, hepatic chemokine expression preceded
clinical and histological signs of acute EAE by 2 to 7
days.49 Moreover, intravenous injections of inter-
feron y or tumor necrosis factor a up-regulated he-
patic chemokine expression.5559 We monitored he
patic chemokine mRNA and protein levels in parallel
with CNS chemokines in mice with Ch-R EAE. He-
patic chemokine expression was not elevated at any
time point of this study (Figure 3). Chemokine mRNA
levels in spleen and muscle also failed to rise during
relapses of EAE (not shown). The results indicated
that clinical relapse of EAE was dissociated from
systemic immune activation and was coupled to lo-
calized CNS-specific chemokine production.

Kinetics of Chemokine CNS mRNA
Expression during Relapse of Ch-R EAE
Brain mRNA expression for chemokines MCP-1,
IP-10, and KC on the first day of relapse was
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Figure 3. Chemokine protein exrsion in liver during Ch-R EAE. Mice were sacrificed at thefollowing stages of disease: remission I, relapse, and
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similar to that observed during the preceding re-

mission (day 0) (Figure 4A). On day 2 of relapse,
brain levels of these three chemokines peaked
and then declined by day 4 to concentrations typ-
ically seen during remission (Figure 4A). In the
spinal cord the MCP-1 level was already elevated
on day 1 of relapse (not shown), whereas IP-10
mRNA expression did not increase until day 2 of
relapse. RANTES mRNA expression in the brain
was already increased on day 1 of relapse and
later declined (Figure 4B). As noted above, MIP-1 a
mRNA was variably elevated in both the brain and
spinal cord at all times after immunization (Figure
4B). MIP-la demonstrated increased brain protein
content during relapse (Figure 1J). This difference
between mRNA and protein levels for MIP-la re-

flected animal-to-animal variability rather than se-

lective translational control, because distinct co-

horts of mice were assayed for protein and mRNA.

Cellular Sources of Chemokines during
Relapses of Ch-R EAE
ISH studies were used to identify cellular sources of
chemokines in CNS tissues of mice with relapses of
Ch-R EAE. Three chemokines (MCP-1, IP-10, and
KC) were expressed by parenchymal neuroepithelial
cells morphologically resembling astrocytes near in-
flammatory infiltrates (Figures 5, A-F, and 6, E-H).
Colocalization experiments with glial fibrillary acidic
protein immunohistochemistry and ISH indicated
that IP-10 and MCP-1 were expressed only by astro-
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cytes (Figure 5, G and H). In contrast, two chemo-
kines (MIP-la and RANTES) were expressed by leu-
kocytes within inflammatory infiltrates (Figure 6,
A-D).

Discussion
We analyzed time course and cellular sources for
chemokines in mice with spontaneous relapses of
Ch-R EAE. Surprisingly, five chemokines of both a-

and ,-chemokine subfamilies were up-regulated
during relapses. This enhanced chemokine expres-

sion took place within the brain and spinal cord
simultaneously and was confined to CNS tissues.
Notably, the up-regulation of chemokine mRNA in
spinal cords of mice with relapses was more uniform
than that observed within brains of affected mice.
This difference could reflect the preferential expres-

sion of EAE disease activity in the lumbar spinal cord
or the sampling error imposed by diluting chemokine
mRNA or protein (which was expressed focally) by
assaying the total brain RNA or homogenate.37 Che-
mokine mRNA and protein levels increased in con-

cert, indicating synthesis within the CNS. By ISH
analysis, there were two separate sources of chemo-
kines within affected CNS tissues: parenchymal neu-

roepithelial cells produced MCP-1, IP-10, and KC;
and leukocytes in inflammatory foci expressed
MIP-1 a and RANTES. Colocalization studies showed
that MCP-1 and IP-10 were expressed by astrocytes.
The nuclear morphology and location of KC-express-
ing cells suggested that they are astrocytes, al-
though the formal identity of cells that express KC
remains to be established. MIP-la and RANTES
were produced exclusively by mononuclear leuko-
cytes in perivascular cuffs. The results indicate strin-
gent regulation of chemokine expression in vivo by
factors that are present in the CNS during relapses of
Ch-R EAE and elicit a coordinate response from cells
of diverse lineage. These observations support the
possibility that chemokine expression may be inte-
gral to the pathogenesis of immune-mediated inflam-
mation in the CNS.
Chemokine function in Ch-R EAE was not directly

addressed in these studies. Several lines of evi-
dence favor an important function for chemokines in
CNS inflammation.18 Karpus and colleagues47

showed that injections of anti-MIP-la antibodies
could block passive transfer of EAE, indicating that
function of MIP-l a in the intact inflammatory environ-
ment was essential for passive transfer disease.
Studies in tg mice suggest unusual potency for che-
mokines in attracting cells from vasculature into the
CNS compartment. Fuentes and coworkers35 dem-
onstrated that expression of MCP-1 in oligodendro-
glia of tg mice could recruit monocytes into the
perivascular spaces of the CNS compartment, and
that these cells could be activated by intraperitoneal
injections of lipopolysaccharide to enter the paren-

chyma.35 We found that tg mice with targeted ex-

pression of KC in oligodendroglia exhibited a striking
phenotype of massive neutrophil entry into CNS pa-

renchyma.36 Therefore, we propose that chemokine
expression in the CNS of mice with Ch-R EAE is likely
to have functional consequences for leukocyte re-

cruitment during the pathological process.

We found that MCP-1, IP-10, and KC were ex-

pressed by astrocytes in this disease model. This ob-
servation is consistent with previous reports from our

laboratory in studies of acute EAE, as well as the tissue
culture studies of Hayashi et a152 and Vanguri.60 We
also found MCP-1 to be expressed by astrocytes after
penetrating cortical injury, suggesting that this cell type
may be specialized for MCP-1 expression after diverse
CNS insults.34 The finding that RANTES is expressed
by inflammatory cells in vivo was previously reported by
Godiska et al45'46 in mice with acute EAE; these work-
ers also found RANTES and MIP-l a expression by
mononuclear cells in vitro. Our current findings may

also amplify previous reports concerning relative levels
of CNS ,3-chemokines in EAE. Karpus et al47 found
high levels of MIP-la but not MCP-1 or MIP-2 protein in
brains of mice that received activated, primed T cells
during passive transfer. Our data suggest that MIP-la
was expressed in the passive transfer model by in-
jected cells that accumulated in the CNS after transfer.
In animals undergoing spontaneous relapse, we found
comparable levels of MIP-la and MCP-1 protein in
brain homogenates (0.1 to 0.13 ng/mg of tissue).

Coordinate chemokine expression in relapses of
Ch-R EAE would be likely driven by one or more

common factors that act differently on cells of di-
verse lineage. It was shown recently that clinical
relapses in the Ch-R EAE model we used in this

Figure 5. Astrocytes express mRNA for chemokines MCP-1, IP-10, and KC during spontaneous relapse of Ch-R EAE. ISH analysis with radiolabeled
chemokine probes was performed on CNS tissuesfrom mice sacrificed on day 1 of disease relapse. MCP-1 ISH (A) (brightfield) and (B) (darkfield)
show thesamefield (magnification, X250). IP-10ISH. (C) (brightfield) and (D) (darkfield) (x 250). KCISHG (E) (brighbfield) and (F) (darkfield)
(x 250). Arrows on brightfield images indicate hybridization-positive cells; arrowheads show inflammatoryfoci, which do not contain chemokine-
expressing cells in this analysis. Darkfield images show the hybridization signal as white grains. G and H: Colocalization ofglialfibrillary acidic
protein immunohistochemistry, an astroglial marker, and ISH signalfor MCP-1 and IP-10, respectively (X 640). Arrows indicate cells that exhibit
colocalization.
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study are invariably associated with epitope spread-
ing, ie, the acquisition of new myelin-specific T-cell
reactivities.38 T cells that recognize spreading
epitopes express the T-helper 1 spectrum of proin-
flammatory products (V. K. Tuohy, unpublished ob-
servations). T-helper 1 cytokines include plausible
candidates for stimulating chemokine expression: in-
terferon 'y and tumor necrosis factor a and P.61 It will
be of interest to establish whether T cells of distinct
phenotype regulate CNS chemokine expression dif-
ferentially.

Chemokine up-regulation occurs after T-cell acti-
vation by "spreading" myelin determinants in this
model of Ch-R EAE, suggesting that chemokines
participate critically in events that culminate in de-
myelination and clinical signs.38 In this regard, MIP-
1 a, MCP-1, and RANTES are potent chemoattrac-
tants for cells responsible for demyelination,
including lymphocytes, monocytes and macro-
phages, and microglia.24'6263 Macrophage activa-
tion has also been attributed to MCP-1 and RANTES
and is implicated in antigen-independent T-cell stim-
ulation.6465 Other proinflammatory functions of che-
mokines include basophil degranulation for MCP-1
and chemoattraction of neutrophils for KC.646667
However, it is possible that individual chemokines
may exert opposing functions during CNS inflamma-
tion, not all of which need be proinflammatory. For
example, IP-10 was recently characterized as an
angiostatic agent that blocked the angiogenic ef-
fects of interleukin-8 (KC is a comparable murine
product).68 MCP-1 antibodies, but not MIP-la anti-
bodies, block the induction of oral tolerance to hu-
man y-globulin.69 Therefore, it is plausible that the
varied chemokines expressed during relapses of
Ch-R EAE could have distinct and even antagonistic
functions during the development and resolution of
inflammation. To address these issues, intervention
to block function of individual chemokines will be
needed, and safe, effective chemokine-directed
therapy for CNS disorders will require understanding
of the regulation and function of the individual che-
mokines.
Chemokine expression by cells of different lin-

eages establishes spatially distinct chemokine gra-
dients within the CNS parenchyma. Such gradient
separation provides a means for orchestrating differ-

ential inflammatory cell movement patterns within the
developing lesion.70 Selective disruption of individ-
ual components of the coordinated chemokine re-
sponse holds promise of defining the roles of single
chemokines in lesion formation and may ultimately
provide information needed for effective therapeutic
intervention in autoimmune demyelinating disease.
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