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We consider many-body problems in classical mechanics where
a wide range of time scales limits what can be computed. We
apply the method of optimal prediction to obtain equations that
are easier to solve numerically. We demonstrate by examples that
optimal prediction can reduce the amount of computation needed
to obtain a solution by several orders of magnitude.

1. Stiff Oscillatory Mechanics

T here are many problems in classical mechanics where what
can be computed is limited by the simultaneous presence

of both fast and slow motion: some variables oscillate rapidly
while others change slowly, so standard numerical methods can
require a large number of time steps to give accurate answers.
Stiffness of this type limits calculations of planetary motion,
drift in high-frequency electronic oscillators, and the dynamics
or large molecules (1).

For instance, in molecular dynamics it is standard (2) to model
the motion of many atoms as a mechanical system with a Hamil-
tonian of the form

H = 1
2

N∑
j=1

p2
j

2mj

+ V �q1� 	 	 	 � qN�

+ 1
2

N∑
j=1

N∑
k=1

gj�q�Ajkgk�q�� [1]

where �qj� pj� are the coordinates and momenta of the atoms
and N is the number of atoms, commonly in the range 104 to
105. Here V denotes a smoothly varying potential energy of
interaction among coordinates, the g’s are bond angles or in-
teratomic spacings (functions of the coordinates), the m’s are
masses, and A is a matrix of spring constants. Such models are
used to describe both the large-scale motion that takes place
over milliseconds and the rapid vibrational motions at chemical
bonds that are measured in terahertz.

In a recent paper (3), Stuart and Warren considered a partic-
ular stiff Hamiltonian problem of the form 1 that was originally
meant to model a particle interacting with a heat bath (4), and
they constructed numerical schemes that worked well with large
time steps. They were able to compute the motion of slowly
varying quantities accurately, even when most of the dynamics
was grossly underresolved in time (i.e., even when their time
step was much longer than the periods of most normal modes
of oscillation).

This observation, that a scheme may be optimized to work
well even when the resolution is poor, is similar to the results
of optimal prediction (5–7); optimal prediction is a method for
reducing the resolution required to solve a large system of equa-
tions. A smaller system is constructed, designed to yield expec-
tations of solutions of the larger system and to be computation-
ally practical even when the larger system is not. Since Stuart
and Warren have found schemes for some large, stiff systems
that work with big time steps, it is natural to ask whether there
are smaller systems of differential equations (just describing the
slower modes) that would work at these big time steps.

In this paper, we show how optimal prediction may be applied
to a class of large, stiff Hamiltonian systems like 1 to yield effec-
tive equations that are smaller and slower. We demonstrate the

method on the Stuart–Warren model and on a generalization
of it that more closely approximates realistic models of molecu-
lar dynamics. The benefits are longer time steps, lower dimen-
sionality (hence fewer force evaluations per time step), and a
systematic approach that may may be broadly applied.

2. Optimal Prediction
Optimal prediction is a method that takes a large system of dif-
ferential equations together with a probability distribution for
the dependent variables, and produces a smaller system of equa-
tions for the expectations of some selected variables while aver-
aging over all the others. The method is described in refs. 5–7.
Error bounds for the method can be found in ref. 8.

Suppose we are given a large dynamical system

u̇i = Ri�u1� 	 	 	 � uN�� i = 1� 	 	 	 �N [2]

for dependent variables u1� 	 	 	 � uN , and we are also given a nor-
malized probability density P�u1� 	 	 	 � uN� which is invariant un-
der 2,

N∑
j=1

∂P

∂uj

Rj�u1� 	 	 	 � uN� A 0	 [3]

The first step in the optimal prediction procedure is to iden-
tify “collective variables,” meaning a small number of functions
of the dependent variables whose evolution we would like to
predict. We denote these collective variables by v1�u� · · · vn�u��
where n + N . The idea in optimal prediction is to treat the u’s
as random, treat their combinations in the v’s as known, and to
estimate the rates of change of the v’s by conditional expecta-
tions.

One writes out a formula for the rate of change of the v’s
induced by 2,

v̇µ�u� =
N∑
j=1

∂vµ

∂uj

Rj�u1� 	 	 	 � uN�	 [4]

Then one uses P�u� to compute the expectation of this expres-
sion subject to conditions that vµ�u� = vµ for some n numbers
v1 · · · vn,

�v̇µ�v1···vn =

∫
v̇µ�u� P�u�

n∏
ν=1

δ�vν�u� − vν� du

∫
P�u�

n∏
ν=1

δ�vν�u� − vν� du

	 [5]

Finally, one hypothesizes that the mean evolution of the v’s is
approximated by the solutions vµ�t� of the new system,

v̇µ�t� =
〈

N∑
i=1

∂vµ

∂uj

Rj�u1� 	 	 	 � uN�
〉
v1�t�···vn�t�

	 [6]

The new system (6) is a closed system of equations for the v’s,
and it is n-dimensional instead of N-dimensional.
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Eq. 6 approximates the evolution of the mean values of the
v’s. The idea of the approximation is that at every moment in
time, the u’s are distributed according to their invariant prob-
ability density subject to conditions on the values of collective
variables. All that changes in time is the conditions, according
to our hypothesis (6). Actually, if the v’s were given and the
u’s were distributed according to a conditioned invariant dis-
tribution at time t = 0, then at a future time t , 0� the v’s
would be indeterminate and the u’s would become distributed
in some more general way. Average values of the v’s at all times
t , 0 would still be well-defined though, and they would be de-
termined by the values of the v’s at t = 0. The system (6) is
meant to approximate such exact mean evolutions of collective
variables from initial values.

Although Eq. 6 is conjectural, some general results are known
about its accuracy. First, it clearly gives an asymptotically exact
prediction of mean futures for short times. Second, it appears
in an exact formula for mean futures due to Zwanzig [ref. 9; re-
cently studied by others (10)] that reveals corrections in terms of
history integrals and noise-like functions which are statistically
uncorrelated with the collective variables. Third, error bounds
for the method have been established in the case of Hamiltonian
dynamical systems (8).

There are two technical challenges in the application of 6: col-
lective variables must be selected, and the conditional expecta-
tions on the right-hand side must be explicitly evaluated, usually
requiring approximations of the integrals in Eq. 5. Both steps
are critical to accuracy. In complex problems, therefore, the best
way to determine the usefulness of the approximation (6) is em-
pirically: one generates large random ensembles of initial condi-
tions for 2, integrates each initial condition, and then averages
the results to determine a mean future. One then compares the
answer to an integral of 6.

In the present paper, we will consider Hamiltonian equa-
tions where the dependent variables are canonical coordinate
pairs �q1� p1� · · · �qN�pN�. Hamiltonian equations preserve the
canonical probability density, e−H , so we will use this as our
probability density. We assume that the first n coordinate pairs
�q1� p1� · · · �qn� pn� are of interest, and we will take the remain-
ing dynamical variables as random.

The optimal prediction procedure is to take the full system of
Hamilton’s equations,

q̇j =
∂H

∂pj

� ṗj = −∂H

∂qj

� j = 1� 	 	 	 �N� [7]

discard the equations with indices j , n, and replace the right-
hand sides of the remaining equations with their expectations
with respect to e−H conditioned by the selected variables:

q̇µ =
〈
∂H

∂pµ

〉
n

� ṗµ =
〈
− ∂H

∂qµ

〉
n

� µ = 1� 	 	 	 � n [8]

where �·�n denotes the conditioned expectation,

�f �n = Z−1
∫ N∏

j=n+1

dqj dpj e
−Hf �q1� 	 	 	 � qN 
p1� 	 	 	 � pN�

[9]

with Z a normalization constant. For any function f of the
canonical variables, �f �n is a function of q1 · · · qn, p1 · · ·pn only,
so the 2n-dimensional system of Eqs. 8 is closed.

The reduced system (8), the first approximation in optimal
prediction, defines an approximate solution to a Liouville prob-
lem for the evolution of a probability measure on phase space.
At least for short times, the system (8) is guaranteed to give the
expectations of the selected variables, averaging over all possible
initial data for the discarded variables.

We need to evaluate the conditional expectations in 8. This is
easy if e−H is a Gaussian distribution (i.e., if H is quadratic, or
equivalently if the equations of motion are linear). If e−H is not
Gaussian, perturbative techniques are available to approximate
its expectations by Gaussian expectations. Thus the following
results for Gaussian distributions will be sufficient for our pur-
poses, see refs. 5–7 for details.

Let x1� 	 	 	 � xN be Gaussian random variables distributed with
density

P�x1� 	 	 	 � xN� 9 exp


−1

2

N∑
j=1

N∑
k=1

xjAjkxk +
N∑
j=1

bjxj


 	

[10]

We denote expectations with respect to this density by �·�, and
�xi� =

∑N
j=1 A

−1
ij bj . Now suppose that x1 · · ·xn are given for all

n + N . The conditional expectations of xn+1 · · ·xN conditioned
by x1 · · ·xn are denoted �xi�n, i = n + 1� 	 	 	 �N and are given
explicitly by

�xi�n = �xi� +
n∑

µ=1

n∑
ν=1

A−1
iµ M−1

µν �xν − �xν���

i = n+ 1� 	 	 	 �N� [11]

where Mµν = A−1
µν for µ� ν = 1� 	 	 	 � n and M−1 is the inverse of

the n 3 n (not N 3 N) matrix M .
The conditioned covariances, Covn�xi� xj� = �xixj�n −

�xi�n�xj�n are given in terms of the unconditioned expectations
Cov�xi� xj� = �xixj� − �xi��xj� by

Covn�xi� xj� = Cov�xi� xj� −
n∑

µ=1

n∑
ν=1

A−1
iµ M−1

µν A
−1
νj 	 [12]

The conditioned expectation of any polynomial in x1 · · ·xN

may be found from these formulae by Wick’s theorem.

3. Generalizations of the Stuart–Warren Experiments
Stuart and Warren (ref. 3; see also refs. 4, 11, and 12) considered
a one-dimensional collection of particles connected by springs.
There was one distinguished particle with mass 1, coordinate Q
and momentum P . The distinguished particle was connected by
springs of spring constant k to N other particles with masses
k/j2, coordinates qj and momenta pj , j = 1 · · ·N , representing
a heat bath.

The motion of this collection of particles and springs is de-
fined by the Hamiltonian

H
(
Q�P
 q1� 	 	 	 � qN 
p1� 	 	 	 � pN

)
= 1

2
�V �Q� + P2� +

N∑
j=1

[
p2

j

2mj

+ 1
2
k�Q− qj�2

]
� [13]

where �Q�P� and �qj� pj� are canonically conjugate dynamical
variables for j = 1� 	 	 	 �N and mj = k/j2. The equations of
motion are

Q̇=P Ṗ = −V ′�Q� + k

N∑
j=1

�qj −Q�

q̇j =pj/mj ṗj = k�Q− qj�� j = 1� 	 	 	 �N	

[14]

This system is of the form 1 (with an extra pair of coordinates
�Q�P�), and it is chosen so that fast and slow motion are sep-
arated: lighter particles will move faster, heavier particles will
move slower, and the mass mj goes down as j goes up.
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A central result of ref. 3 is that if all the heat bath particles
start out randomly, with statistics determined by the canonical
distribution, and then in the limit N → : the coordinate of the
distinguished particle obeys the stochastic equation,

Q̈+ kπ

2
Q̇+ V ′�Q� − k

2
Q = F� [15]

where F�t� is a stochastic process related to white noise. This
equation for Q is remarkable because it makes no reference to
the history of Q—it is a differential equation, not an integro-
differential equation. In a general Hamiltonian problem, if one
variable Q is fixed initially and the others are random, at future
times there is no time-invariant relationship among the expec-
tation of Q and its time derivatives (13–15). The first approxi-
mation of optimal prediction 8 may be characterized as the as-
sumption that the values of the selected variables do determine
their own future expectations. In general this assumption is not
exactly true, but in the Stuart–Warren model it is true exactly in
the N → : limit.

Stuart and Warren proceeded to integrate their model with
large time steps. If Q were fixed, then each qj would oscillate
harmonically with frequency ωj = j. This implies that a dis-
cretization of the 2N + 2 equations (14) would be resolved in
time if N$t � 1. If this condition on $t were violated, then
the result of the computation would depend on how the equa-
tions were discretized. The intriguing result of ref. 3 is that some
schemes will give the right evolution for Q and P when N$t� 1
and others will not. For instance, if the scheme is

Qn+1 −Qn

$t
=Pn+1

Pn+1 − Pn

$t
=−V ′�Qn� + k

N∑
j=1

�qn+σ
j −Qn�

qn+1
j − qn

j

$t
=pn+1

j /mj

pn+1
j − pn

j

$t
=k�Qn − qn

j � j = 1� 	 	 	 �N�

[16]

then σ = 0 (a symplectic method) gives the right answer for Q
and P , but σ = 1 (another convergent method) does not.

For concreteness, we pick V �Q� = 1
2Q

2. Since H in 13 is then
quadratic, the canonical probability density is Gaussian, and for-
mula 11 gives the conditioned expectations as

�qj�n = Q� �pj�n = 0 �n + j < N�	 [17]

Taking the conditional expectations of the right-hand sides of 14
and evaluating them by using these results, we find that the
equations of optimal prediction are

Q̇=P Ṗ = −Q+ k

n∑
µ=1

�qµ −Q�

q̇µ =pµ/mµ ṗµ = k�Q− qµ�� µ = 1� 	 	 	 � n	

[18]

These are identical in form to the original equations (14). It
comes as no surprise, therefore, that the motion of Q can be
computed with large $t: pick the $t desired, find an n � N
such that n$t � 1, and perform a resolved integration of 18
with this n and $t. Reasonable approximations for the selected
variables are guaranteed, at least for short times.

Fig. 1 shows a fully resolved calculation (N$t = 10−2) of P�t�
starting from P�0� = 0, Q�0� = 1	5, with qj�0� and pj�0� cho-
sen randomly from the canonical ensemble (i.e., chosen with

Fig. 1. The evolution of P(t) determined in two ways: by solving the equations
of motion (14) with N = 10�000 particles and random initial data (exact evolution,
$t = 10−2/N); and by solving the reduced equations (30) with n = 100 particles
and a time step 100 times longer (optimal prediction, $t = 1/N = 10−2/n). For
these calculations, k = 1.

probability density e−H) conditioned by Q�0� and P�0�. It also
shows the solution to the same problem as computed by a re-
solved integration of 18, which was achieved with n$t = 10−2.
The optimal prediction calculation accurately duplicates the low-
frequency behavior of the exact solution, and it does so in fewer
dimensions with a larger time step. In this case, with N = 104
and n = 102, the optimal prediction curve was about 10� 000
times faster to compute than the resolved solution. The optimal
prediction has the further advantage that it did not use the ini-
tial data qn+1�0� · · · qN�0�, pn+1�0� · · ·pN�0� and may claim to
be an average answer over all possible values of these data.

4. More General Models
Realistic applications, such as molecular dynamics, involve more
complex interactions than are present in the model (14). In par-
ticular, we may expect that every particle would interact with
every other, and that the interactions would be nonlinear.

We therefore consider a generalization of the model (14)
where every q1 · · · qN is coupled to every other q1 · · · qN by a
spring, and the springs are nonlinear:

H�q1� 	 	 	 � qN 
p1� 	 	 	 � pN�

=
N∑
j=1

p2
j

2mj

+ 1
2
k�2�

N∑
j=1

N∑
l=j+1

�qj − ql�2

+ 1
4
k�4�

N∑
j=1

N∑
l=j+1

�qj − ql�4 [19]

q̇j =pj/mj

ṗj =−k�2�
N∑
l=1

�qj − ql� − k�4�
N∑
l=1

�qj − ql�3


 j = 1� 	 	 	 �N	

[20]

This model makes no reference to a distinguished particle; each
one of the N particles interacts with all of the others through
the same potential energy, which is parameterized by the new
spring constants k�2� and k�4�.
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We derive the optimal prediction equations of system 20 for
q1 · · · qn, p1 · · ·pn by averaging over qn+1 · · · qN , pn+1 · · ·pN .
Since the interactions are now nonlinear, the probability density
e−H is no longer Gaussian, so we must work harder to evaluate
the conditioned expectations.

Hald has observed, as reported in ref. 10, that optimal predic-
tion equations of the form 8 are always Hamiltonian, and that
their Hamiltonian is

H ′�q1� 	 	 	 � qn
p1� 	 	 	 � pn�

= − log

(∫ N∏
j=n+1

dqj dpj e
−H

)
	 [21]

We may therefore approximate the conditioned expectations
of 8 by first approximating H ′, and then deriving 8 by differen-
tiation:

q̇µ = ∂H ′

∂pµ

� ṗµ = −∂H ′

∂qµ

� µ = 1� 	 	 	 � n	 [22]

We decompose H into its quadratic part plus its higher-order
part,

H = H0 +H1

H0 =
N∑
j=1

pj

2mj

+ k�2�

2

N∑
j=1

N∑
l=j+1

�qj − ql�2 [23]

H1 =
k�4�

4

N∑
j=1

N∑
l=j+1

�qj − ql�4

and proceed by determining H ′ perturbatively as a power se-
ries in k�4�. An alternate method for perturbative treatment of
optimal prediction is described in ref. 16.

Hald’s formula (21) implies

H ′ = − log


∫ N∏

j=n+1

dqj dpj e
−H0




− log

(∫ ∏n
j=n+1 dqj dpj e

−H0e−H1∫ ∏N
j=n+1 dqj dpj e

−H0

)

= (H0-part)− log
〈
e−H1

〉
n� 0 � [24]

where the new average, �·�n� 0 denotes an average with respect to
the conditioned Gaussian measure, defined just as in definition 9
but with H0 replacing H. The “(H0-part)” term would be the
effective Hamiltonian if H1 were zero, and it contributes linear
terms to the equations of motion that are easily evaluated by
the regression formula (11). The other term in 24 is equal to a
power series in k�4�,

log�e−H1�n� 0 =
:∑

m=1

�−1�m
m!

�Hm
1 ��c�n� 0 [25]

where �Hm
1 ��c�n� 0 denotes the mth cumulant of H1 with respect to

the conditioned Gaussian measure. Each cumulant in this series
may be evaluated by Wick’s theorem, where only “connected”
pairings (in the sense of perturbation theory in physics) are in-
cluded.

To first order in k�4�, we need to evaluate

�H1
1��c�n� 0 = �H1�n� 0

=
〈
k�4�

4

N∑
j=1

N∑
l=j+1

�qj − ql�4
〉
n� 0

= k�4�

4

[
n∑

µ=1

n∑
ν=µ+1

�qµ − qν�4

+
n∑

µ=1

n∑
l=µ+1

〈�qµ − ql�4
〉
n� 0

]

+ �constant�� [26]

where “�constant�” denotes terms that are independent of
q1� 	 	 	 � qn and p1� 	 	 	 � pn (and therefore do not affect equa-
tions of motion). The average �·�n� 0 may be deduced from the
expectations,

�qj�n� 0 =
1
n

n∑
µ=1

qµ

Cov0�qj� ql�=
1

Nk�2� �1+ δjl�
j� l = n+ 1� 	 	 	 �N [27]

together with Wick’s theorem. The result for H ′, to first order
in k�4�, is

H ′ =
n∑

µ=1

p2
µ

2mµ

+ C2

2

n∑
µ=1

n∑
ν=µ+1

�qµ − qν�2

+ C4

4

n∑
µ=1

n∑
ν=µ+1

�qµ − qν�4

+ D4

4

n∑
µ=1

(
qµ − 1

n

n∑
ν=1

qν

)4

+O
(
k�4�)2 � [28]

where the coupling constants to this order in k�4� are

C2 =
N

n
k�2� + 3

�N − n��n+ 1�
Nn

k�4�

k�2�

C4 = k�4�

D4 = k�4��N − n�	 [29]

We differentiate 28 to obtain the optimal prediction equations
for the new system 20 to O�k�4��2,

q̇µ = pµ/mµ

ṗµ = −C2

n∑
ν=1

�qµ − qν� − C4

n∑
ν=1

�qµ − qν�3

−D4
1
n

n∑
ν=1

[(
qµ − 1

n

n∑
σ=1

qσ

)3

−
(
qν −

1
n

n∑
σ=1

qσ

)3]

µ = 1� 	 	 	 � n	 [30]

We performed a more rigorous test of this new model, com-
paring it to an actual mean evolution. The results are shown
in Fig. 2. We once again picked q1 · · · qn, p1 · · ·pn (n = 10)
from the canonical distribution e−H for N particles (N = 1000
at k�2� = 1 and k�4� = 0	1). We then generated an ensemble of
100 sets of values for qn+1 · · · qN , pn+1 · · ·pN from the canoni-
cal distribution conditioned by q1 · · · qn, p1 · · ·pn, and for each
set integrated the equations (20). Averaging over all 100 solu-
tions yielded the solid curve for p1�t�. We then discarded the
ensemble and used the original q1 · · · qn, p1 · · ·pn as initial con-
ditions for the reduced system (30), which we integrated with
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Fig. 2. The average evolution of p1(t) determined in three ways: by solving the
equations of motion (20) for 100 different initial conditions, with N = 103 par-
ticles, $t = 10−2/N, and then averaging all 100 solutions (mean evolution); by
solving the reduced equations (30) once, with n = 10 particles, $t = 1/N =
10−2/n (optimal prediction); and by solving the original equations (20) once with
N = 10, $t = 10−2/N (naive prediction, just neglecting interactions with discarded
variables).

$t = 10−2/n = 1/N . This $t is small enough to resolve the
reduced dynamics but much too large to resolve the original dy-
namics. The solution for p1�t� from (30) is the dashed curve.
Finally, for comparison we performed the naive experiment of
simply truncating the big system (20) to n degrees of freedom,
effectively ignoring the lighter particles without changing the in-
teractions. This produced the dot-dashed curve.

The figure shows that the reduced system accurately predicts
the average evolution of p1�t�, and it does so with 1% of the
degrees of freedom and time steps that are 100 times larger.
The naive experiment shows that the new couplings are critical
to the answer. Since forces must be evaluated N�N−1�/2 times
per time step for N particles, optimal prediction speeds up the
calculation of p1�t� in this case by about a factor of 106.

5. Conclusions
We have shown that optimal prediction may be applied to large,
stiff Hamiltonian systems of differential equations to make new
systems that are smaller, better-conditioned, and approximate
the original equations in the mean. We have demonstrated that
the method gives accurate answers while allowing larger time
steps and requiring fewer force evaluations.
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