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We present a model and algorithm for segmentation of images with
missing boundaries. In many situations, the human visual system fills
in missing gaps in edges and boundaries, building and completing
information that is not present. This presents a considerable challenge
in computer vision, since most algorithms attempt to exploit existing
data. Completion models, which postulate how to construct missing
data, are popular but are often trained and specific to particular
images. In this paper, we take the following perspective: We consider
a reference point within an image as given and then develop an
algorithm that tries to build missing information on the basis of the
given point of view and the available information as boundary data
to the algorithm. We test the algorithm on some standard images,
including the classical triangle of Kanizsa and low signalynoise ratio
medical images.

Consider the images in Fig. 1. It is apparent in all three images
that internal boundaries exist. In the image on the left, a solid

triangle in the center of the figure appears to have well defined
contours even in completely homogeneous areas; in the center
figure, a large rectangle is perceived; and, in the figure on the right,
a white square partially occluded by a gray disk is perceived. These
contours, which are defined without image gradient, are called
‘‘apparent’’ or ‘‘subjective’’ contours. Following convention, we
distinguish, perhaps arbitrarily, between ‘‘modal completion,’’ in
which the goal is to construct a perceived boundary, and (as in Fig.
1 Left and Center) and ‘‘amodal completion,’’ in which one recon-
structs the shape of a partially occluded object (as in Fig. 1 Right)
(see ref. 1).

Our goal is to extract these internal objects, a process known as
‘‘segmentation.’’ Since some information is missing, algorithms
typically complete the segmentation process by building models of
what happens between the available data. In this paper, we propose
a method for segmentation of images with missing boundaries. We
take the following perspective:

Y The observer is drawn to a reference point within the image; from
that reference point, the completion process is constructed.

Y Thus, starting from this given reference point, we devise an
algorithm that takes advantage of the available boundary data to
construct a complete segmentation. Thus, in our approach, the
computed segmentation is a function of the reference point.

We define a segmentation as a piecewise constant surface that
varies rapidly across the boundary between different objects and
stays flat within it. In ref. 2, the segmentation is a piecewise
smoothyconstant approximation of the image. In our approach, the
segmentation is a piecewise constant approximation of the point-
of-view or reference surface. To obtain it, we define the following
steps:

(i) Select a fixation point and build the point-of-view surface. (ii)
Detect local features in the image. (iii) Evolve the point of view
surface with a flow that depends both on the geometry of the
surface and on the image features. The flow evolves the initial
condition towards a piecewise constant surface. (iv) (Automatical-
ly) Pick the level set that describes the desired object.

During the evolution, the point-of-view surface is attracted by the
existing boundaries and steepens. The surface evolves towards the
piecewise constant solution by continuation and closing of the

boundary fragments and the filling in the homogeneous regions. A
solid object is delineated as a constant surface bounded by existing
and recovered shape boundaries. With this method, the image
completion process depends both on the point of view and on the
geometric properties of the image. This observation is supported by
experimental results on perceptual organization of the human
visual system, as pointed out by Kanizsa: ‘‘If you fix your gaze on
an apparent contour, it disappears, yet if you direct your gaze to the
entire figure, the contours appear to be real (ref. 1, p. 48).

Both the mathematical and algorithmic approach in our method
relies on a considerable body of recent work based on a partial
differential equations approach to both front propagation and to
image segmentation. Level set methods, introduced by Osher and
Sethian (3), track the evolution of curves and surfaces, using the
theory of curve and surface evolution and the link between front
propagation and hyperbolic conservation laws discussed in refs. 4
and 5. These methods embed the desired interface as the zero level
set of an implicit function and then employ finite differences to
approximate the solution of the resulting initial value partial
differential equation. Malladi et al. (6) and Caselles et al. (7) used
this technology to segment images by growing trial shapes inside a
region with a propagation velocity that depends on the image
gradient and hence stops when the boundary is reached; thus, image
segmentation is transformed into an initial value partial differential
equation in which a propagating front stops at the desired edge.

In ref. 8, Sochen et al. view image processing as the evolution of
an image manifold embedded in a higher dimensional Riemannian
space towards a minimal surface. This framework has been applied
to processing both single- and vector-valued images defined in two
and higher dimensions (see ref. 9). We follow some of these ideas
in this paper and view segmentation as the evolution of an initial
reference manifold under the influence of local image features.

Our approach takes a more general view of the segmentation
problem. Rather than follow a particular front or level curve that
one attempts to steer to the desired edge (as in refs. 7 and 10), we
begin with an initial surface, chosen on the basis of a user-supplied
reference fixation point. We then flow this entire surface under
speed law dependent on the image gradient, without regard to any
particular level set. Suitably chosen, this flow sharpens the surface
around the edges and connects segmented boundaries across the
missing information. On the basis of this surface sharpening, we can
identify a level set corresponding to an appropriate segmented
edge. We test our algorithm on various figures, including those
above, as well as medical images in which the signal-to-noise ratio
is truly small and the most part of the edge is missed, as in the case
of ultrasound images.

The paper is organized as the following. In the next section, we
review past work in segmentation of images with missing bound-
aries. In the subsequent section, we discuss the mathematical
problem, and we present a numerical method to solve it. In the final
section, we discuss results of the application of the method to
different images, and we discuss both the modal and amodal
completion scenarios.

*To whom reprint requests should be addressed. E-mail: sarti@math.berkeley.edu.

Article published online before print: Proc. Natl. Acad. Sci. USA, 10.1073ypnas.110135797.
Article and publication date are at www.pnas.orgycgiydoiy10.1073ypnas.110135797

6258–6263 u PNAS u June 6, 2000 u vol. 97 u no. 12



Past Work and Background
In this section, we review some of the other work that has attempted
to recover subjective contours. In the work by Mumford (11), the
idea was that distribution of subjective contours can be modeled
and computed by particles traveling at constant speeds but moving
in directions given by Brownian motion. More recently, Williams
and Jacobs (12, 13) introduced the notion of a stochastic completion
field, the distribution of particle trajectories joining pairs of position
and direction constraints, and showed how it could be computed.
However, the difficulty with this approach is to consistently choose
the main direction of particle motion; in other words, do the
particles move parallel (as needed to complete Fig. 1 Left) or
perpendicular (as needed to complete Fig. 1 Center) to the existing
boundaries, i.e., edges? In addition, in this approach, what is being
computed is a distribution of particles and not an explicit contoury
surface, closed or otherwise. In this paper, we are interested in
recovering explicit shape representations that reproduce that of the
human visual perception, especially in regions with no image-based
constraints such as gradient jump or variation in texture.

A combinatorial approach is considered in ref. 14. A sparse graph
is constructed whose nodes are salient visual events such as contrast
edges and L-type and T-type junctions of contrast edges, and whose
arcs are coincidence and geometric configurational relations among
node elements. An interpretation of the scene consists of choices
among a small set of labels for graph elements. Any given labeling
induces an energy, or cost, associated with physical consistency and
figural interpretation. This explanation follows the classical 2 1y2 D
sketch of David Marr (15).

A common feature of both completion fields, combinatorial
methods, as well as variational segmentation methods (2), is to
postulate that the segmentation process is independent of observ-
er’s point of focus. On the other hand, methods based on active
contours perform a segmentation strongly dependent on the usery
observer interaction. Since their introduction in ref. 16, deformable
models have been extensively used to integrate boundaries and

extract features from images. An implicit shape modeling approach
with topological adaptability and significant computational advan-
tages has been introduced in (6, 7, 10). They use the level set
approach (3, 17) to frame curve motion with a curvature-dependent
speed. These and a host of other related works rely on edge
information to construct a shape representation of an object. In the
presence of large gaps and missing edge data, the models tend to
go astray and away from the required shape boundary. This
behavior is due to a constant speed component in the governing
equation that helps the curve from getting trapped by isolated
spurious edges. On the other hand, if the constant inflation term is
switched off, as in refs. 18 and 19, the curve has to be initialized
close to the final shape for reasonable results. Recently, in ref. 20,
the authors use geometric curve evolution for segmenting shapes
without gradient by imposing a homogeneity constraint, but the
method is not suitable for detecting the missing contours shown in
Fig. 1.

The approach in this paper relies on the perspective that seg-
mentation, regardless of dimensionality, is a ‘‘view-point’’-
dependent computation. The view-point or the user-defined initial
guess to the segmentation algorithm enters our algorithm via the
point-of-view surface. Next, we evolve this reference surface ac-
cording to a feature-indicator function. The shape completion
aspect of our work relies on two components: (i) the evolution of
a higher-dimensional function and (ii) a flow that combines the
effects of level set curve evolution with that of surface evolution. In
what follows, we will present a geometric framework that will make
this possible. Computing the final segmentation (a contour or
surface) is accomplished by merely plotting a particular level set of
a higher dimensional function.

Theory
Local Feature Detection. Consider an image (:(x,y)3 I(x,y) defined
in M , R2. One initial task in image understanding is to build a
representation of the changes and local structure of the image. This
often involves detection of intensity changes, orientation of struc-

Fig. 1. Three images with subjective contours.

Fig. 2. Local edge detection: The edge map g and its spatial gradient 2 ¹g.
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tures, T-junctions, and texture. The result of this stage is a repre-
sentation called the raw primal sketch (15). Several methods have
been proposed to compute the raw primal sketch, including mul-
tiscaleymultiorientation image decomposition with Gabor filtering
(21), wavelet transform (22), deformable filter banks (23), etc. For
the purpose of the present paper, we consider a simple edge
indicator, namely

g~x,y! 5
1

1 1 ~u¹Gs~x,y!,I~x,y!uyb!2

Gs~j! 5
exp~ 2 ~jys!2!

sÎp

. [1]

The edge indicator function g(x,y) is a non-increasing function
of u¹Gs(x,y) , I (x,y)u, where Gs(x,y) is a gaussian kernel and
, denotes the convolution. The denominator is the gradient
magnitude of a smoothed version of the initial image. Thus, the
value of g is closer to 1 in flat areas (u¹Iu 3 0) and closer to 0
in areas with large changes in image intensity: i.e., the local edge
features. The minimal size of the details that are detected is
related to the size of the kernel, which acts like a scale parameter.
By viewing g as a potential function, we note that its minima
denotes the position of edges. Also, the gradient of this potential
function is a force field that always points in the local edge
direction; see Fig. 2.

To compute ¹Gs(x,y),I(x,y), we use the convolution derivative
property ¹Gs(x,y),I(x,y) 5 ¹(Gs(x,y),I(x,y)) and perform the
convolution by solving the linear heat equation

­w

­t
5 ¹ 3 ~¹w! [2]

in the time interval [0, s] with the initial condition w(x,y,0) 5
I(x,y). We conclude this subsection by observing that there are
other ways of smoothing an image as well as computing an edge

indicator function or in general a feature indicator function (see
refs. 8–10, 18, and 24–26).

Global Boundary Integration. Now, consider a surface S:(x,y) 3
(x,y,F) defined in the same domain M of the image I. The
differential area of the graph S in the Euclidean space is given by:

dAE 5 Î1 1 Fx
2 1 Fy

2 dx dy . [3]

We will use the edge indicator g to stretch and shrink a metric
appropriately chosen so that the edges act as attractors under a
particular flow. With the metric g applied to the space, we have

dAg 5 g~x,y!Î1 1 Fx
2 1 Fy

2dx dy . [4]

Now, consider the area of the surface

Ag 5 E
M

g~x, y!Î1 1 Fx
2 1 Fy

2dx dy , [5]

and evolve the surface in order to (locally) minimize it. The
steepest descent of Eq. 5 is obtained with usual multivariate
calculus techniques and results in the following flow:

­F

­t
5 g

~1 1 Fx
2!Fyy 2 2FxFyFxy 1 ~1 1 Fy

2!Fxx

1 1 Fx
2 1 Fy

2 1 ~gxFx

1 gyFy! .† [6]

The first term on the right hand side is a parabolic term that
evolves the surface in the normal direction under its mean
curvature weighted by the edge indicator g. The surface motion
is slowed down in the vicinity of edges (g3 0). The second term

†Note that this is the mean curvature flow in a Riemannian space with conformal metric gdij.

Fig. 3. Point-of-view surfaces: On the left, F0 5 2 a$, where $ is the distance function from the fixation point, and, on the right, F0 5 ay$.

Fig. 4. Three steps of the modal completion of the triangle of Kanizsa: On the left, the edge indicator 2 ¹g(I) is shown, in the center, a set of equispaced contour
lines of the point-of-view surface are drawn, and on the right is the level set of the subjective surface that corresponds to the triangle boundary.
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on the right corresponds to pure passive advection of the surface
along the underlying velocity field 2¹g, whose direction and
strength depend on position. This term pushesyattracts the
surface in the direction of the image edges. Note that g(I(x,y))
is not a function of the third coordinate; therefore, the vector
field 2¹g lies entirely on the (x,y) plane.

The following characterizes the behavior of the flow (Eq. 6):

(i) In regions of the image where edge information exists, the
advection term drives the surface towards the edges. The
level sets of the surface also get attracted to the edge and
accumulate. Consequently, the spatial gradient increases and
the surface begins to develop a discontinuity. Now, when
spatial derivatives Fx, Fy .. 1, Eq. 6 approximates to

­F

­t
< g

Fx
2Fyy 2 2FxFyFxy 1 Fy

2Fxx

Fx
2 1 Fy

2 1 ~gxFx 1 gyFy! , [7]

which is nothing but the level set f low for shape recovery (18, 27).
In addition, the (parabolic) first term in Eq. 7 is a directional
diffusion term in the tangent direction and limits diffusion across
the edge itself.

(ii) The region inside the objects where g 3 1,u¹gu 3 0
the surface is driven by the Euclidean mean curvature

motion towards a flat surface. In these regions, we observe
Fx, Fy ,, 1, and Eq. 6 approximates to:

­F

­t
< g~Fxx 1 Fyy! 1 ~gxFx 1 gyFy! . [8]

The above equation is non-uniform diffusion equation and
denotes the steepest descent of the weighted L2 norm, namely

E gu¹Fu2dxdy. [9]

If image gradient inside the object is actually equal to zero, then
g 5 1, Eq. 8 becomes a simple linear heat equation, and the flow
corresponds to linear uniform diffusion.

(iii) We now address the regions in the image corresponding to
subjective contours. In our view, subjective contours are
simply continuation of existing edge fragments. As we ex-
plained before, in regions with well defined edge information,
Eq. 6 causes the level curve accumulation, thereby causing an
increase in the spatial gradient of F. Due to continuity in the
surface, this edge fragment information is propagated to
complete the missing boundary. The main Eq. 6 is a mixture
of two different dynamics, the level set flow (7) and pure

Fig. 5. Four time frames showing the evolution of the point-of-view surface (upper left) towards the subjective surface (bottom right). In this visualization the original
image has been texture-mapped onto the surface.

Fig. 6. Modal completion of an image without any aligned gradient.
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diffusion (8), and, locally, points on the F surface move
according to one of these mechanisms. In steady state solution,
the points inside the objects are characterized by pure linear
diffusion while points on the boundary are characterized by
the level set edge enhancing flow. The scaling of the function
F weights the two dynamics. If F is ‘‘narrow range’’ (contains
a narrow range of values), then the derivatives are small and
the behavior of the flow (6) is mostly diffusive. In the opposite,
when F is ‘‘wide range,’’ the behavior is mostly like level set
plane curve evolution. We perform the scaling by multiplying
the initial surface (x, y, F0) (point-of-view surface) with a
scaling factor a.

Numerical Scheme. In this subsection, we show how to approximate
Eq. 6 with finite differences. Let us consider a rectangular uniform
grid in space-time (t, x, y); then, the grid consists of the points (tn,
xi, yj) 5 (nDt, iDx, jDy). We denote with Fij

n the value of the function
F at the grid point (tn, xi, yj). The first term of Eq. 6 is a parabolic
contribution to the equation of motion, and we approximate this
term with central differences. The second term on the right
corresponds to passive advection along an underlying velocity field
¹g whose direction and strength depend on edge position. This term
can be approximated by using the upwind schemes; here, we borrow
the techniques described in refs. 3 and 17. In other words, we check

the sign of each component of ¹g and construct one-sided differ-
ence approximation to the gradient in the appropriate (upwind)
direction. With this, we can write the complete first order scheme
to approximate Eq. 6 as follows:

Fij
n11 5 Fij

n

1 Dt5Fgij

~1 1 Dij
0x2

!Dij
0yy 2 2Dij

0xDij
0yDij

0xy 1 ~1 1 Dij
0y2

!Dij
0xx

1 1 Dij
0x2

1 Dij
0y2 G

2 F @max~gij
0x, 0!Dij

2x 1 min~gij
0x, 0!Dij

1x

1 max~gij
0y, 0!Dij

2y 1 min~gij
0y, 0!Dij

1yG 6 ,

[10]

where D is a finite difference operator on Fij
n, the superscripts

{2, 0, 1} indicate backward, central, and forward differences,
respectively, and the superscripts {x, y} indicate the direction of
differentiation. We impose Dirichlet boundary conditions by
fixing the value on the boundary equal to the minimum value of
the point-of-view surface.

Results
In this section, we present results of several computations aimed
at performing both modal and amodal completion of objects

Fig. 7. Amodal completion of the white square partially occluded by the gray disk. In the first row the original image (left) and the point-of-view surface (center, right)
are shown. In the second row, the edge map g1 (left), the subjective surface (center), and the occluding disk boundary (right) are shown. The amodal completion of
the square is shown in the third row. The new edge map g2 (left) is obtained from the previous one by simply removing the features corresponding to the occluding
object (disk). This new edge map allows the formation of a new subjective contour (center) and the square boundary (right). We use the value b 5 0.3 in the edge
indicator.
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with missing boundaries. The approach consists of a user-defined
point of view or a reference surface and an edge indicator
function computed as a function of the image. Different choices
exist for the reference surface; we show two of them in Fig. 3. In
the next examples, we use F0 5 ay$, where $ is the distance
from the initial point of view and a is a scaling factor; a 5 103

is the fixed value that we use. First, we consider the classical
triangle of Kanizsa (Fig. 1) and apply the algorithm in order to
perform a modal completion of the missing boundaries. We
compute the edge map as shown in the left image of Fig. 4 and
then choose a reference point approximately at the center of the
perceived triangle (center image of Fig. 4). The evolution of the
surface under the flow induced by Eq. 6 is visualized in Fig. 5.
The so-called subjective surface is the steady state piece-wise
linear surface shown at the end of this sequence. The triangle
boundary shown in the right image of Fig. 4 is found by plotting
the level set F# 5 {max (F) 2 «} of the subjective surface. Note
that, in visualizing the surface, we normalize it with respect to its
maximum.

Next, we present a series of results of computing subjective
surfaces. In Fig. 6, we show the subjective surface computation from
an image with little or no (aligned) edge information. We render the
perceived square in the final image of Fig. 6.

The subjective contours we have considered so far are called
‘‘modal’’ contours because they are ‘‘perceived’’ in the visual
experience. Now we consider ‘‘amodal’’ contours that are present
in images with partially occluded shapes. Consider the example of
a white square partially occluded by a gray disk as shown in Fig. 7.
Our goal is to recover the shapes of both the square and the disk.
We employ a three-step procedure: first, we build the edge map g1

of the image and choose a point of focus inside the disk and perform
the segmentation of the gray disk Odisk. Second, we build another
edge map g2 5

H1
g1

~x, y! [ Qdisk

otherwise
so that all the image features belonging to the first object are
inhibited in the new function. As the third step, we perform the
modal completion of the partially occluded square by using the
new edge map g2. Again, the process is completely automatic
after the initial point of reference and the entire process is shown
in Fig. 7.

Echographic images are difficult candidates for shape recovery
because they possess highly noisy structures, and large parts of the
boundary are often found absent, thereby making shape recovery
very difficult. We are interested in developing segmentation meth-
ods that deal with noncontinuous edges in extremely noisy images.
In Fig. 8, we show one such computation; we use a line initialization
instead of a fixation point, and the point-of-view surface is con-
structed to be the distance function from this initial line. The final
result, a particular level set of the subjective surface is shown in the
right image of Fig. 8.
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