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Abstract
Protein transduction with cell penetrating peptides over the past several years has been shown to be
an effective way of delivering proteins in vitro and now several reports have also shown valuable in
vivo applications in correcting disease states. An impressive bioinspired phenomenon of crossing
biological barriers came from HIV transactivator Tat protein. Specifically, the protein transduction
domain of HIV-Tat has been shown to be a potent pleiotropic peptide in protein delivery. Various
approaches such as molecular modeling, arginine guanidinium head group structural strategy,
multimerization of PTD sequence and phage display system have been applied for taming of the
PTD. This has resulted in identification of PTD variants which are efficient in cell membrane
penetration and cytoplasmic delivery. Inspite of these state of the art technologies, the dilemma of
low protein transduction efficiency and target specific delivery of PTD fusion proteins remains
unsolved. Moreover, some misconceptions about PTD of Tat in the literature require considerations.
We have assembled critical information on secretory, plasma membrane penetration and transcellular
properties of Tat and PTD using molecular analysis and available experimental evidences.
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1. Introduction
The past decade has witnessed tremendous advances in the field of protein transduction, aiming
to correct defects for proteins involved in a variety of disease processes. At present, it is possible
to produce a given protein molecule by recombinant DNA technology for in vivo therapeutic
applications. Nevertheless, it still remains a challenge to deliver the recombinant proteins to
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desired targets in vivo, although small molecules or peptides capable of crossing cellular
membranes have been successfully designed to deliver small or moderately large proteins.
Despite developments in the area of protein transduction peptides, the classical delivery
methods of protein coding genes via adeno-associated virus (AAV) [1,2], adenovirus (AV)
[3,4], lentivirus [5], herpes virus (HSV) [6,7] vectors, and plasmid expression vectors [8,9]
remain the preferred choice for expression of proteins.

Because of their natural abilities in delivering the specific genes to permissive cells, viral
vector-mediated gene expression is considered the most efficient and reliable approach for
expressing functional proteins de novo in mitotically active or postmitotically blocked cell
types (HIV viral vectors). Nonetheless, viral vectors invariably are required in large doses to
achieve therapeutic expression levels of intended protein (s). Moreover, viral vectors integrate
with the host chromatin material. These properties may have consequences from long term
effects on host genetic systems, and therefore, safety remains a serious concern for their
ultimate clinical application [10-13].

An alternative approach that appears to be the safest is to produce recombinant proteins
exogenously and then deliver them systemically or by localized injections into the target
organs. The delivery and bioavailability of recombinant proteins into cells or tissues need
further improvements, however. Discovery of the HIV-Tat protein transduction domain (PTD)
has opened avenues for directing in vitro and in vivo delivery of proteins into cells. Several
studies have shown the potential of PTD in drug delivery [14,15] and transduction of proteins
as large as 110 kDa into different cells [16]. In vivo injection of fusion proteins systemically
has demonstrated the effectiveness of the PTD in protein delivery [15,16]. In the present review
we discuss the current status of the protein transduction focusing mainly on the PTD domain
of HIV Tat.

2. Cell penetrating peptides (CPPs) for protein delivery
Various approaches have been designed to develop CPPs for introducing recombinant proteins
into the cells. Penetratin [17], polylysine [18,19], polyarginine [20], Tat PTD [16,21], HSV
VP22 [22-24], Kaposi FGF [25], Syn B1 [26], FGF-4 [27,28], nuclear localization signal (NLS)
[29], and anthrax toxin derivative 254-amino acids (aa) peptide segment [30], diphtheria toxin
‘R ’ binding domain [31], MPG (HIV gp41/SV40 Tag NLS) [32], pep-1 [33], WR peptide
[34], and exotoxin A [35] have all been used successfully in protein transductions. The first
cargo transduction was achieved by using a homeodomain of Antennapedia (Antp) [36], which
transduced neurons and other cells. Antp-fusion proteins work well for proteins smaller than
100 amino acid residues but toxicity is always a concern with these peptides. The transduction
by penetratin-fusion proteins also revealed toxicity in the brain [37]. Recently penetratin
peptide has been introduced commercially for delivery of siRNA. It is possible that lower
concentrations of this peptide may be required for siRNA delivery, where toxicity can be
avoided.

Another important molecule which has shown potential in protein transduction is VP22, a part
of the viral tegument in HSV-1 virus that is secreted from infected cells and has been shown
to enter cells through its C-terminal region [38]. Though documented evidence exists for cell
permeability of VP22 [23,38-41], many studies could not verify this property and have shown
failures in transcellular activity [22,42,43]. It seems possible that fusion of VP22 with different
proteins will attain a different conformation every time, which obviously will affect the
transduction behavior. Further investigations, however, are required to verify the limited
protein transduction property of VP22 upon fusion with various proteins. Interestingly, a new
fusion peptide ‘MPG ’ has been described for efficient transduction of nucleic acids. This
peptide is a bipartite amphipathic peptide obtained by combining the fusion domain of HIV-
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gp41 protein and the NLS domain of SV40 large T antigen [44,45], but its potential in protein
transduction has not yet been demonstrated. This peptide is being used as a nanoparticle for
transduction of siRNA in vitro and is also available commercially. This peptide may have great
potential for siRNA delivery in vivo.

The most intensely studied yet less understood peptide in protein transduction is the PTD of
HIV Tat. In the first exon of HIV Tat (Fig. 1), a region coding for the basic domain from 48-56
amino acid residues is responsible for nuclear localization and protein transduction [21,46,
47]. Several studies have reported strong protein transduction property in vivo and in vitro after
fusion with various full length or truncated proteins [15]. Surprisingly, the protein transduction
property of PTD is currently looked with skepticism due to failures in protein transduction as
well as misinterpretation of post cell fixation procedures during immunofluorescence studies.
The general consensus is that Tat is secreted from the expressing cells and reenters the cells
through its PTD domain. Several misconceptions about Tat and PTD in the literature need to
be considered. Perhaps the most significant is that Tat or PTD has a transcellular behavior, i.e.,
intracellular PTD can spread from producer cells to the non-producer cells by an unknown
mechanism. The transcellular behavior of PTD is discussed in more detail in a separate section
“transcellular property of PTD”. Taken together, CPPs appears weakly potent in protein
transduction and require extensive further modifications to improve their protein transduction
property with minimum toxicity.

3. Potential of PTD-fusion protein transduction in vitro
Several years ago, Frankel and Pabo [48] and Green and Lowenstein [49] demonstrated that
extracellular HIV Tat can cross the plasma membrane and enter the cell, reaching the nucleus.
The successful entry of extracellular Tat was investigated by others and has become a common
test to monitor HIV-LTR promoter activity. Subsequently, more detailed analysis of Tat protein
[21,47,50,51] identified a PTD of 9-11 aa residues, a basic domain that can transduce itself, as
well as the bigger proteins fused with it, into the cells [15,16,46,52]. In vitro PTD-fusion protein
is used by direct addition to the cell culture medium, which resulted in [53-57] efficient
transduction of PTD-AT1 receptor domain and PTD-BCL-x in neurons [58,59]. In another
example, PTD-PDX1 fusion protein (PDX1 is a transcription factor that plays a central role in
pancreatic development) has shown remarkable biological activity and induction of insulin
production in human embryonic stem cells [60]. It suggests that protein transduction through
PTD occurs in mitotically active, non-dividing or embryonic cells, which is indeed a useful
property to be exploited. Precisely, the principle of Tat entry is not understood. However, it
has been demonstrated that the RGD domain present in the second exon of Tat bind integrin
receptor on the cell membrane [61]. Alternatively, Tat bind through HSPG followed by LRP
receptor mediated endocytosis to enter the cells [62]. In particular, entry of PTD is least
understood and the possible mechanism of PTD entry is described in “mechanism of PTD
internalization” section below.

Despite successful applications, questions about potency of PTD mediated protein transduction
still remain unsolved. Further, Brask et al. [63] have shown PTD and Tat-mediated transduction
of non-structural protein (NS1) and nucleoprotein (NP) of influenza virus into neuroblastoma
cells and primary neurons. Even after using a high level of recombinant PTD-fusion proteins
extracellularly (∼35-60 μg/ml), transduction efficiency was never achieved to the extent
reported by others [21]. Further investigations revealed that extracellular application of PTD-
fusion proteins just a day after seeding of cells was successful albeit with low transduction
efficiency. Surprisingly, with relatively older and confluent cells, no transduction was
observed. However, scrape loading followed by chloroquine treatment facilitated the protein
transduction in these old cultures [Chauhan et al, unpublished]. In particular, efficiency of
denatured PTD-fusion protein has been recommended for successful protein transduction in
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earlier studies. Indeed, simple but regaining biological activity of denatured protein is
questionable. Nonetheless, this seems unlikely when Tat protein expression is examined in
vivo. Soluble Tat protein enters the cells more efficiently compared with its denatured
counterpart [48,49].

Furthermore, some studies have also demonstrated failures in PTD-mediated fusion protein
transduction in vitro/in vivo as well as an inability to induce an immune response [64-67]. It
is not yet understood why PTD-mediated fusion protein transduction failed, but clearly, the
overall conformation of the fusion protein must be involved or change in fusion properties after
addition to the cultures. It is also possible that PTD might have been rendered ineffective during
purification or treatment of cells. In particular, PTD is responsible for nuclear retention of Tat
protein due to the presence of strong nuclear localization signal (NLS) (Figs. 1, 2, 3, 4 and 5;
Table 1, 2 and 3) and hence will direct the fusion protein to the nucleus, which might be the
explanation for low immune response.

To study in greater detail, we analysed the PTD protein sequence to derive a proteolytic map.
It is predicted that PTD is prone to degradation by the host proteolytic system (Fig. 1). Also,
PTD has been shown to be susceptible to furin [68] and thus one should consider these
possibilities while designing potent PTD mutants. Overall, it is concluded that PTD and Tat
enter the cells under certain situations, but that in other situations, PTD-fusion proteins may
simply stick to the surface of cells probably via heparan sulphate-(HS)-proteoglycans (HSPG)
or by some unknown receptors. Further studies are needed on different primary cell cultures
to establish the universal protein transduction property of PTD upon fusion with different
proteins. In conclusion, we have summarized basic properties of Tat-PTD in Table 1.

4. Potential of PTD-fusion protein transduction in vivo
In 1999 Schwarze et al. [16] showed that PTD-beta-gal fusion protein applied intraperitoneally
entered the brain after crossing the blood-brain-barrier (BBB). Subsequently, several other
studies have also reported effective biodistribution of therapeutically important proteins in
vivo by using PTD [52,69-75]. In a previous study, however, no PTD mediated transduction
in brain was observed, [46] possibly because beta-gal was chemically conjugated to PTD
instead of recombinant fusion protein. Similarly, another study also failed to deliver
PTD-99Tc to the brain [76]. Since PTD is conjugated to Tc or beta-gal, this might have resulted
in structural modifications in the PTD and hence no transduction was observed. Nevertheless,
in a different approach, when PTD-beta gal expression plasmid vector was injected directly
into liver, enzymatic expression was observed in the liver and heart but not in brain [15].
Mechanistically, intracellular PTD-beta-gal expression is totally different from addition of
recombinant protein to cultures and possibly in the former, no secretion of fusion protein
occurred owing to the NLS of PTD. Therefore, intracellular expression of PTD-beta-gal or
other non-secretory protein might not achieve the same biodistribution as recombinant protein.
Indeed, more studies are needed for further verifications.

Of interest, PTD-BCLx fusion protein injected via intraperitoneal injection resulted in protein
transduction in neurons in different regions of the brain. Further, PTD-Bcl-xL demonstrated
prevention of neuronal death resulting from transient focal ischemia [69]. In another successful
in vivo study, Kilic et al. [71] demonstrated that intravenous inoculation of PTD-GDNF fusion
protein protected neurons from focal cerebral ischemic injury. Similarly, in a non-neurological
model, Hotchkiss et al. [77] showed that Tat-Bcl-xL fusion protein and PTD-BH4 peptide
prevented E.coli-induced human lymphocyte apoptosis ex-vivo and markedly decreased
lymphocyte apoptosis in an in-vivo mouse model of sepsis.

PTD-fusion protein introduction through intravenous, intraperitoneal or direct injection in the
target organs have shown promise for therapeutic and effective vaccination applications. Most
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importantly, PTD-fusion protein systemic delivery has shown crossing of BBB [16], itself a
great achievement to deliver therapeutic molecules effectively. Indeed, a great property to
deliver proteins into the brain; however, entry of PTD through BBB remains elusive. In
particular, it is difficult to conceive, how PTD-fusion protein will infiltrate between the closely
spaced layers of endothelial and astrocytes as well as tight junctions between them. Therefore,
it is not an accepted dogma yet and requires further studies.

Intriguingly, in vaccination studies [64], an enhanced immune response to NP of LCMV upon
fusion with PTD was shown. Despite increased immune response to NP, the authors ruled out
a role for PTD by suggesting that more PTD-NP is deposited on the cell surfaces, and hence
NP was readily available to the antigen-presenting cells. In contrast, other studies on pulsing
of dendritic cells with PTD-fused antigens revealed robust induction of antigen-specific CTL
response and TH1-mediated antitumor immunity in immunized mice [78,79]. Based on the Tat
and PTD properties, it is inferred that fusion protein will enter the cell and then either retained
in the endosomes or if released will be trapped in the nucleus and hence not available to mount
an immune response. Therefore, it may not be a wise strategy to fuse PTD with the antigen of
interest and expect a better immune response especially in DNA vaccinations. Although the
tamed PTDs (variants) could show better plasma membrane penetration and immune response
to antigen of interest because of the cytoplasmic but not nuclear delivery of the fusion protein.

Further efforts on “taming” the PTD peptide for more effective delivery were achieved by
amino acid substitutions (Table 2). In particular, Dowdy ’s group has described PTD peptide
variants by molecular modeling approach and a better tamed PTD variant was identified [80].
This variant ‘PTD-4 ’ wherein 3 arginines and two lysines were substituted with alanines,
revealed robust transduction in vitro and in vivo than to wild type PTD. Better transduction of
tamed PTD-4 was reasoned on obtaining a robust α-helical structure by substituting alanines
for basic amino acids in the wild type PTD [80]. Further, another variant of PTD generated by
substitutions, known as cytoplasmic transduction peptide (CTP), effectively delivered the
cargo into the cytoplasm [81] (Table 2). Interestingly, CTP fusion protein in vivo showed
delivery of fusion protein to liver and lymph nodes, but native PTD (as a fusion protein) failed
to do so [81,82]. Moreover, “tamed” PTD i.e., CTP, delivered the fusion protein more
efficiently than did PTD. Nevertheless, PTD-based delivery was found to be more efficient for
brain, while CTP demonstrated tropism mainly for liver, spleen, and lymph nodes. Paul
Wenders group [83] applied arginine guanidinium head group structural strategy for taming
the PTD and identified isomers/analogs with better membrane penetration behavior. Further
taming of PTD for better cell penetration is possible by phage display system where a library
of PTD-peptides fused with indicator protein was screened and the most aggressive cell
penetrating mutant ‘YM-3 ’ identified (Table 2) [84].

In brief, PTD-fusion protein does provide in vivo protein transduction application and
importantly potential in crossing the BBB. More detailed studies are needed, however, to
confirm BBB property and to dissect the distribution pattern of fusion proteins in different
organs of the body by using sensitive radioactively labeled PTD-fusion proteins.

5. Mechanism of PTD internalization
It has been observed that histones and cationic polyamines such as polylysine stimulate the
uptake of albumin by tumor cells in culture [85,86]. But, the cellular uptake mechanism(s) of
CPPs is currently unknown. CPPs are structurally diverse and highly variable in nature.
Nonetheless, their common feature is the high density of basic amino acid residues (Arg and
Lys): the presence of basic amino acids in the PTD is considered the hallmark of transduction
peptides. There are exceptions, however; for example, a recently described transduction
peptide contains 11 amino acid residues [80,87] having 3 arginines and 6 alanines with 33
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times more transduction activity than did conventional PTD. Moreover, the transduction
activity, similar to that of other CPPs, was also attributed to be through the α-helical
configuration of the peptide [80]. In general, high charge at physiological pH excludes the
passive diffusion of CPPs across the lipid bilayer. The guanidine head group of arginine has
been predicted to be a critical structural component responsible for the biological activity of
CPPs including PTD [83,88]; further hydrogen bonding between the highly basic arginine
guanidine groups and the phospholipids in the membrane lipid bilayer may be involved in
protein transduction. Additionally, cationic amphiphilic α-helical peptides (CPPs), which
display a hydrophilic and, on the opposing side, a hydrophobic face, are efficient transducers
of DNA into cells [89,90]. With amphipathic peptides and a lipid bilayer, it is known that side
chains of cationic peptides bind to anionic lipid bilayers [91].

Cell surface heparan sulphate (HS) proteoglycans (HSPGs) have been shown to play a role in
the transduction of Tat proteins [92-95]. HS is present in almost all cells and Tat PTD fusion
proteins bind heparin [96,97], a soluble analogue of heparan sulphate glycosaminoglycans
(GAGs) that inhibit uptake of Tat-fusion protein. The role of HS in PTD entry has been
described but has not been well characterized. PTD-fusion proteins bind to HSPGs or unknown
receptor on the plasma membrane and are then taken up by endocytosis [93,98-100]. In the
endocytosed vesicles HS is degraded by heparinase, which releases the PTD-fusion protein
[101]. The influence of HS on PTD-fusion protein has been demonstrated in two ways. In the
first, cells treated with heparinase III, which removes the HS, had drastically reduced uptake
of PTD [98], although some activity of PTD was still observed and was assigned to chondroitin
sulphate, which could not be removed with heparinase III. In the second, HS was added with
PTD, which impaired aggregate formation and the uptake of PTD [98].

Cationic peptides such as polyornithine, polylysine, arginine-rich histones, spermine, and
DEAE dextran [15,102] have directed the import of macromolecules such as proteins into
eukaryotic cells [86]. This led to the prediction that the minimal mass of a polycationic peptide
needed to produce a nominal level of protein import into cells was on the order of ∼500-900
Da, a molecular mass range corresponding to a peptide chain of about 6 or 7 aa residues
[103]. Further, internalization and cellular trafficking events are particularly sensitive to
valency effects as well [104]. Thus, the efficiency of nuclear import of proteins has been shown
to increase with the number of NLS inserted into such conjugates [105]. Furthermore, in many
situations PTD fusion peptides are unknowingly present perhaps in multiple copies as a
consequence of the quaternary structure of their protein cargo itself or as a result of the strategy
involved in linking them to macromolecules [106]. Also it has been observed that particles
smaller than 300 nm do not enter the cell through endosomal pathways [107,108], in contrast
to particles of 500-700 nm, which are taken up by endocytosis [109].

In vitro evidences have suggested that Tat/PTD-fusion proteins or Tat peptides enter via an
energy-dependent endocytotic (including caveolae) process [110-114], because the membrane
inhibitor sodium azide inhibits ATP production and impairs endocytosis [115,116]. Further,
protein transduction was strongly inhibited by energy depletion in cells at low temperature
[110,112]. Also, some studies have pointed to an energy-independent process of uptake of PTD
fusion proteins [117-120] which might have resulted from the presence of experimental
artifacts during fixation of cells [113,115,121]. Moreover, internalized peptides were found to
be in the acidic compartment, and the inhibition of endosomal acidification resulted in a marked
decrease in peptide internalization [115]. The mechanism of entry by clathrin-coated vesicles
has been ruled out, however, and entry is suggested to be mediated by lipid rafts, but not by
caveolae-mediated endocytosis [122-124]. Fittipaldi et al [125] have suggested a caveolar
endocytic pathway for Tat-fusion proteins entry. Indeed, different internalization pathways
such as clathrin mediated and caveolae endocytosis are equally popular in PTD/Tat-fusion
proteins entry. However, the particular internalization pathway is dependent on characteristics
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of the protein fused, conformation attained after fusion with PTD or Tat, cells and experimental
conditions.

The receptor-independent endocytosis known as macropinocytosis has been demonstrated for
Tat and PTD fusion peptides [126,127]. It was observed that PTD-fusion protein was localized
and sequestered in endosomes. Upon treatment with endosomal releasing polymer, poly-
(propylacrylic acid), the fusion protein is released in the cytoplasm [128]. Similar to PTD, CTP
(a variant of PTD)-mediated delivery was inhibited by treatment of cells with heparinase III
and the entry mechanism has currently been assigned to lipid raft mediated endocytosis [81].
On the other hand, CTP-mediated transduction was not affected by chloroquine, which
markedly enhanced PTD transduction, indicating that CTP-based fusion protein is released
into the cytoplasm while PTD-fusion protein is retained in endosomes and lysosomes [81].
Interestingly, a recent study has also shown localization of PTD-NP fusion protein in the trans-
Golgi network as well, where efficient processing of influenza virus-NP fusion protein for
antigen presentation by the proteolytic protease furin in the trans-Golgi occurred [129].

It has been suggested that transduction of proteins in cells is efficient only when denatured
recombinant PTD-fusion proteins are used [16,21,70,120,130-132]. Possibly, denaturation of
PTD-fusion proteins attains the optimal conformation for plasma membrane penetration.
However, it is not necessary that every protein fused to His-PTD after denaturation will
guarantee its entry because of the inherent nature and final conformation attained by the purified
fusion protein. Also, for successful transduction, optimization of protein sequences between
His-Tag and PTD is required because of the interference by 6 histidine residues. The possible
interference by His-Tag can be overcome by inserting a spacer of 1-3 glycine residues [126].
In our studies, we found that when a His-PTD-NS1 recombinant protein was used, no protein
transduction was observed. Interestingly, insertion of the 3-glycine spacer between His-tag and
PTD resulted in efficient transduction (Fig. 5). This spacer probably permitted the required
overall folding needed for fusion protein entry [63]. It is concluded from the above studies that
Tat and PTD fusion proteins enter cells via energy dependent endocytosis, which is possibly
enhanced upon treatment with lysosomal disrupting agents (Fig. 6).

6. Role of lysosomotropic agents in PTD-mediated protein transduction
Some studies have reported inefficient delivery of PTD-based fusion proteins in vitro [66,
113,133]. The failure of PTD-mediated protein transduction was explained in two ways. First,
nuclear translocation of fusion proteins deposited on the plasma membrane after fixation of
cells has been the common explanation, and hence PTD actually does not transduce proteins.
Second, deposits of PTD-fusion proteins on the cell surface with no biological activity were
demonstrated. These studies may explain, in part, what might be occurring, but the reason for
inefficient entry may not be because PTD is incapable of protein transduction, but because of
the way in which the fusion protein entered the cell (endocytic) and the overall conformation
attained by fusion protein. In particular, the inefficient delivery of fusion proteins in these
studies may also be due to the absence of lysosomotropic agents [134].

Many studies on Tat as well as PTD fusion proteins, including our own, have demonstrated
that these proteins function only when lysosomotropic agents are used [63,135], although this
may not be the case with every protein. Endocytosed PTD-fusion proteins are retained in
endosomes. In order to release and prevent degradation of the fusion proteins in endosomes,
lysosomal inhibitors or disruptors such as bafilomycin, chloroquine, endosomal releasing
polymer poly(propylacrylic acid), or influenza virus HA2 hemagglutinin subunit are required
[127,136]. Bafilomycin A specifically prevents the acidification of early endosomes, by
inhibiting a proton pump known as vacuolar ATPase [137].
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Chloroquine is a weak base that inhibits the maturation of the transport vesicles into the late
endosomes and neutralizes their pH [138]. Further, Wadia et al. [127] have shown that Tat-
Cre fusion protein was trapped in macropinosomes even after 24 hours of treatment and was
released only when chloroquine at 100 μM or 200 μM was applied, thus strongly implicating
lysosomal inhibitors in efficient targeting of PTD-fusion proteins. We found, however, that
the doses of chloroquine used in these studies were toxic within a few hours of treatment. The
most effective and safest dose was found to be 50 μM [63,136]. Similarly, it has been shown
that transduction of PTD-Smac (Smac, which suppress the activity of X-linked inhibitor of
apoptosis protein) in different cell lines increases significantly upon chloroquine treatment,
while transduction of CTP (a variant of PTD which delivers the fusion protein into the
cytoplasm) as CTP-Smac fusion protein was insignificantly affected by chloroquine treatment
[81].

Moreover, in another approach, endosomal release of transduced protein was enhanced by
exposure to fluorescent light, suggesting the importance of photoactivation in protein
transduction [139,140]. It appears that the intracellular route of PTD-fusion protein is
dependent on the overall conformation of a mosaic (PTD) fusion protein. It is essential for
successful transduction to determine which route (endosomal or non-endosomal) would be
followed by PTD-fusion protein in a given study (Table 2 and Fig. 6). It is important to include
lysosomotropic agents to facilitate protein transduction; however, exceptions to this rule can
not be ruled out.

7. Transcellular property of PTD
Successful protein transductions have resulted in the investigation of the transcellular effect
on bystander cells. Limited studies have shown that PTD is conferred with transcellular
property [125,141]. Indeed, this behavior is extremely valuable in delivering therapeutic
proteins to surrounding cells. Therefore, it is important to know whether a preformed PTD-
fusion protein or a DNA expression vector for the PTD-fusion protein is involved in
transcellular transduction. Of note, Tat-PTD is suitable for protein transduction when it is
included as a recombinant fusion-protein. Nonetheless, in a DNA expression system, PTD is
not directly useful since the expressed PTD-fusion protein will be held in the nucleus until or
unless the cargo protein has a strong NES. It has been demonstrated that Tat binds strongly in
the nuclei (Fig. 2,3 and 4) and hence its exit from the nucleus would be difficult unless the cell
ruptures [135,142-148].

The authors own observations revealed that although PTD is capable of entry into different
cell systems (Fig. 5), the overall efficiency depends on the type and density of cells as well as
the mode of introduction such as scrape loading or loading immediately after attachment of
trypsinized cells [63, Chauhan et al., unpublished]. Damage to the cell membranes during
trypsinization of cells could explain the enhanced transduction of PTD into the cells. Moreover,
failure of the Tat protein to enter the cells when added on the 2nd or 3rdday after seeding of
cells could be because the cell membranes are repaired, and the cells have become confluent.
Furthermore, the development of tight junctions between cells does not allow PTD-fusion
proteins to enter, even though the apical side of cell monolayers is exposed to the culture
medium. Importantly, Tat protein does not show full biological activity unless chloroquine is
added to the culture medium, which implies that after entry into the cells, Tat stays in the
endosomes and is released into the cytoplasm upon chloroquine treatment. The released Tat
enters the nucleus and displays its biological activity. Transcellular delivery of PTD remains
uncertain and is not well investigated. Nonetheless, it has not been established definitively that
PTD has transcellular property. Owing to the strong NLS property of PTD [135,146] (Figs. 2,
3, 4 and 5), it should not be used for transcellular delivery nor for cytoplasmic targeting of
fusion proteins unless prior testing in expression experiments reveals that fusion protein has
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strong cytoplasmic localization domain(s) that can overcome the PTD ’s NLS strength (Table
3).

Earlier studies with Western blotting, immunoprecipitation, and ELISA showed that the
extracellular medium of Tat-expressing Jurkat cells was devoid of Tat [144,149]. The possible
reasons given by these authors to explain the results were that Tat could not be secreted by
these cells and that Tat may be degraded by proteases, or that extracellular Tat could bind to
the surface of the cells and fail to get internalized. Upon co-culture of Jurkat-Tat cells with
Hela-LTRCAT cells, however, transactivation of LTR and expression of CAT enzyme
occurred. Surprisingly, anti-Tat antibody did not inhibit the LTR transactivation in these
experiments.

Intriguingly, in our investigations on stable SVGA-Tat cells, co-culture with SVGA-LTRCAT
or SVGA-LTRGFP did not result in LTR activation [135]. This may be due either to low
production of Tat in stable cells or astrocyte-to-astrocyte transcellular Tat blockage. Further,
cells transiently transfected with Tat-plasmid upon co-culture with SVGA-LTRGFP revealed
sporadic LTR-mediated expression of GFP-positive reporter cells. We also observed that stable
HIV-Tat-expressing astrocytic cells (SVGA-Tat) upon co-culture with lymphocytic-LTRGFP
cells (D3R5) did not display LTR transactivation. When transiently Tat-transfected SVGA
cells were co-cultured with D3R5-LTRGFP cells [150], however, we observed sporadic LTR-
mediated GFP expression. Upon treatment with Tat antibody, partial inhibition of LTR activity
was observed [135]. These results may be explained, at least in part, by the following: Tat
expressed in high concentrations may be secreted from these cells and taken up by the bystander
reporter cells but not transcellularly [144] (see supplemental data in ref. 144) or, alternatively,
the concurrent mild cell death of the transiently Tat expressing cells might be the potential
source of Tat released into the culture medium.

A recent study has clearly shown that upon expression through an adenoviral vector, PTD-
fused GFP protein did not demonstrate transcellular behavior [142], which is supported by
another study in which PTD-GFP or Tat-GFP expression de novo did not show cell to cell
movement [64,144]. Further, thus far, only few studies are available on PTD transcellular
behavior, one with adenoviral vector-mediated expression [151] and the other with PTD-TK
expression [152]. In the first study, Xia et al. [151] showed that beta-glucuronidase (GUS)
fused with PTD, and expression through adenoviral vector upon direct injection in brain
significantly increased distribution of the expressed protein. In contrast, another study [153],
however, found no evidence that GUS-Tat crossed the BBB when injected intravenously. The
same study also found that overall distribution of GUS alone or GUS-Tat did not differ, but
that the clearance rate was slower for GUS-Tat.

Intriguingly, upon NES analysis (www.cbs.dtu.dk/services), we found that wild type
glucuronidase enzyme has an NES sequence at positions 514-521 (LELIQLQL) with a signal
strength of 0.925, which is quite strong; upon fusion with PTD the overall strength of NES
will be decreased. More precisely, the fate of PTD-GUS localization is decided by masking or
unmasking of NES (GUS) or NLS (PTD) upon folding of fusion protein. Further, to determine
the NLS domain of Tat, we found that upon deletion [Chauhan et al, in communication], PTD-
deleted Tat protein is expressed throughout the cell (diffuse) and was not expressed in the
nucleolus (Fig. 3 and 4). It is also possible that upon fusion with other proteins, PTD directs
the proteins to the nucleus [64,137,148], (Fig. 5, Table 2). Nevertheless, when the protein under
study has NES(s) that is strong enough to overcome PTD ’s NLS, the PTD-fusion protein will
be directed to the cytoplasm rather than to the nucleus. Moreover, when the fusion protein has
a secretory signal it will be secreted, and could impart a transcellular property. Overall, the
NES and secretory properties of a protein will be weakened upon fusion with PTD (Table 3).
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Thymidine-kinase (TK) expressing cancer cells are highly susceptible to cell death upon
treatment with ganciclovir (GCV). Upon fusion of PTD with TK, however, TK has been shown
to have a mild increase in bystander cell death due to its transcellular effect [152]. In contrast,
in another study, intracellular PTD-TK-GFP expression showed no transcellular activity in rat
glioma cells. Interestingly, cells expressing PTD-TK-GFP confer the bystander effect on rat
glioma and human ovarian carcinoma cells in the presence of GCV, but had only a slight effect
on human prostate carcinoma [154,155]. It is possible that the bystander PTD-TK effect is due
to the presence of extracellular PTD-TK concentrated on plasma membranes that has diffused
to the cells in the vicinity upon reseeding of second target cells after 4 hours of fusion protein
treatment. Moreover, in vivo bystander effect might be possible because of a more vigorous
immune response, such as infiltration of macrophages and T-lymphocytes generated by PTD-
TK as compared to TK alone [156]. We further analysed this situation and found that TK has
a week NES property as judged by NES sequence program analysis (value 0.697) at positions
227-232 (LDLAML). Upon PTD fusion with TK, however, there is either competition between
NLS and NES sequences or one of the signals is masked by final conformation attained by the
fusion protein, and can only be verified through further testing in cell culture.

Therefore, it is inferred that PTD itself does not possess any transcellular property but, upon
fusion with test protein, it would change the efficiency of NES if present. The expected outcome
upon fusion of a cytoplasmic protein with PTD will be that it may be retained solely in the
nucleus of the cell when expressed either intracellularly or applied as PTD-fusion protein
extracellularly (Table 2 and 3). Further evidence is required by investigating fusion of PTD
with other proteins to strengthen the generalized transcellular phenomenon. Most important,
after PTD-TK treatment, cells should be treated either with trypsin or heparinase III to remove
fusion protein that has been concentrated on the surface of the cells in order to avoid undesirable
effects on cells in the vicinity [120,157]. Ideally the best approach would be to express stable
PTD-fusion proteins intracellularly to monitor the resultant transcellular effect in vitro which
otherwise in vivo would be difficult to differentiate from immune infiltration effect as described
above. Overall, it is clear that PTD does not have transcellular property and its fusion with
protein of interest will target the cargo to the nucleus and simultaneously will weaken the net
nuclear export of the cytoplasmic protein.

8. Validation of true PTD-mediated protein transduction
PTDs are promising tools for transducing presynthesized proteins across the plasma membrane.
Nonetheless, because artifacts result from fixation and endosomal entrapment, true cytosolic
distribution or targeting to nucleus is hampered by use of nonvisual methods [134]. There are
limited numbers of approaches that can verify the true nature of PTD-fusion protein
transduction in vitro. The one most commonly employed is trypsin treatment, which removes
the surface-bound fusion proteins and reduces the chances of nonspecific migration of proteins
upon fixation of cells during immunostaining. In addition, some studies have shown successful
transduction of PTD-fusion proteins into cells without fixation [47,98,158-161]. Further, many
of these studies have also shown biological effects upon treatment with PTD-fusion proteins,
which could be due to the interactions with surface receptors [162] or due to the release of
proteins from lysosomes into the cytoplasm and nucleus. It has been demonstrated that PTD
entry occurs via endosomal pathways through either caveolae [163,164] or macropinocytosis
where lysosomotropic agents are required [126,157].

It is emphasized that for targeting PTD-fusion protein to bystander cells, thorough analysis of
NES and secretory signal should first be performed to determine the overall score of NES or
secretory value after fusion of PTD with the protein of interest. In particular, after verification
in cell culture, an additional NES signal sequence, if required, should be used for cytoplasmic
delivery. It is also advisable to include the proteolytic sequence between PTD and the protein
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of interest so that upon endosome-mediated breakdown of fusion protein, the protein of interest
is released into the cytoplasm without further influence from PTD. This should be undertaken
with caution, to ensure that the proteolytic sequence remains unprocessed in the bacterial
system.

Recently, an ubiquitin-specific C-terminal protease method has been described 134]. It was
shown that Tat PTD-fusion protein failed to reach the cytosol in many cell types, except
dendritic cells, where antigens are taken up efficiently [134]. The assay is based on the
processing of PTD-linked proteins by deubiquitin enzymes (DUBs), which are localized in the
nucleocytosol. In this method, PTD is fused to an ubiquitin moiety and a protein of interest as
a C-terminal extension. This demonstrates that PTD fusion proteins are efficiently taken up by
cells but are localized in endocytic vesicles. Nonetheless, dendritic cells were capable of
sending the cargo into the cytosol [165]. The best example for verifying PTD behavior is the
ultra-sensitive cre-lox reporter assay that allows easy detection of transduced cells [126]. Here,
treatment with Tat-cre recombinase fusion protein induced GFP expression via cre-mediated
excision of the loxP-stop codon-loxP intervening region in the nuclei of the cells.

9. Cytotoxicity of PTD
There are limited toxicity studies on PTD peptide. Tat peptide of 48-85 aa encompassing a
PTD domain did not show neurotoxicity in cultures in vitro [166], but prolonged exposure (24
hours) of Hela cells to Tat peptide containing alpha helical sequence (37-60) resulted in necrosis
of 60% of cells [47] while Tat peptide (43-60) revealed 10-15% toxicity. Short exposure of
cell cultures with 20-100 μM concentrations of PTD did not exhibit any adverse effects [47,
167], whereas a 500 μM dose of PTD resulted in functional alterations of living fibroblasts
even after short time periods [98]. The use of PTD concentration at or less than 100 μM has
been suggested and a concentration above 100 μM tends to cause toxicity [122]. The studies
that reported toxicity of PTD utilized very high concentrations of peptide or PTD-fusion
proteins. Therefore, lower concentrations of peptide and/or PTD-fusion protein should be
considered but the relative total amount could vary from one protein molecule to another.

10. Limitations in PTD-mediated protein transduction
Since the inception of protein delivery studies, cell-to-cell movement of transduced fusion
protein has not been thoroughly studied. Further, in reality, PTD-based delivery of fusion
proteins will invariably result in nuclear targeting [63,135,142-148,168] which may not be
required in every case. It is useful, however, in some cases such as expression of single chain
antibody fragment, where the product is required in the nucleus to inhibit Tat-mediated HIV-
LTR transcription [169,170]. It is also not possible for all fusion proteins under study to be
produced in bacteria because of the requirement for secondary post-translational modifications.
Additionally, denaturation of fusion proteins for delivery may impose other limitation, as it
will restrict fusion proteins from having optimal biological activity. Nonetheless, very few
reports are available on this aspect.

The specific targeting of different cell organelles is possible by engineering a directing signal
which otherwise is absent in the native protein sequence. Further, it will be challenging to target
every given protein into the cell since it would depend on cell type as well as the nature of
protein under investigation. Most of the studies have reported successful transduction of PTD-
fusion proteins. One caveat is that in some cases the results may be misinterpreted, because a
significant amount of fusion protein simply resides on the cell surface. This is true for Tat-
PTD-attached diphtheria toxin A-fragment. The fusion molecule was not found to be cytotoxic
on transduction, implying that it did not get transduced at all [171]. Moreover, diphtheria toxin
is only 21 kDa in size, far smaller than beta-gal protein which has been shown to be transduced
efficiently in neurons and in vivo in the brain [16]. Similarly, His-tag, which is also charged,
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makes protein entry into the cell difficult. In our experience, when PTD was attached without
a spacer to His-tag, PTD-fusion protein failed to transduce neuroblastoma and primary rat
neurons. Insertion of a 3-glycine spacer (Fig. 5) led to efficient transduction of fusion protein
[63]. Whether a spacer is mandatory for all proteins for transduction is currently unknown.
Besides, cluster of more cationic residues contributed by His-tag could make the PTD-fusion
protein stickier, thereby, entrapped on the plasma membrane [118], however, needs to be
confirmed.

It has been shown that when Tat or its basic domain was fused to GFP and expressed in
eukaryotic cells, secretion and uptake were not observed in bystander cells [64,172,173]. It
seems likely that this is because PTD is an NLS and will direct the cargo to the nucleus.
Moreover, if PTD-GFP-positive cells are lysed and the lysate is applied to freshly seeded cells,
Tat-GFP fusion protein was not taken up [172]. The failure of Tat-GFP protein uptake may
also be due to the change in conformation and improper folding of GFP during protein
purification, so that fluorescence is not observed after entry of fusion protein in the cell [142,
174]. Prior denatured PTD-fusion proteins might enter the cells because of the different but
transduction-compatible conformation of the protein. Studies have been performed where even
small molecules could not be transduced using Tat-PTD [175].

High extracellular concentrations of PTD fusion proteins of the order of 10 μM or above are
needed to have observable effects, however [176]. Even if uptake is demonstrated, the protein
may not be active inside the cell if it remains within the endocytic compartment. This was
observed when Tat-calpastatin fusion protein was taken up by primary cortical neurons which,
however, could not inhibit calpain-mediated spectrin breakdown because Tat-calpastatin was
retained in the vesicles [177]. This study, did not involve use of any lysosomotropic agents.
Similarly, when Tat-GFP was injected intramuscularly, efficient uptake in muscle cells was
not observed, and intra-arterial application also failed to show distribution of GFP fluorescence
in surrounding vessels [178].

PTD-linked 99Tc was unable to pass through confluent layers of tight junctions formed by
epithelial cells. Similarly, PTD-99Tc administered in vivo failed to cross the epithelial lining
of the urinary bladder [179]. Importantly, several years ago Melan and Sluder [180] emphasized
that misleading apparent localization of soluble proteins can result from their redistribution
during the preparation of cells for immunostaining. The use of different fixatives could lead
to a redistribution of proteins and thereby an overestimation of transduced cells. The basic
fusion protein that binds to the cell membrane could be translocated into the cells upon fixation.
Similarly, the endocytosed protein upon fixation could enter the nucleus, implying that
membranes get damaged and become permeable upon fixation, especially with methanol and
acetone [64,67,113,120,181].

Although the chance of an immune response to PTD-fusion protein is expected to occur after
repeated injections, little information on tamed PTDs is currently available from in vivo studies.
Intriguingly, upon our human protein data bank homology search on four of the Tat-PTDs,
wild type PTD, PTD-4 and PTD-YM3 revealed 75-95 percent homology while the CTP
revealed no significant homology (Table 2). Therefore, the chances of immune response with
the first three PTDs are low while with CTP it seems maximum. This must be verified in vivo,
however.

11. Challenges and future of PTD
PTD fusion proteins have great potential, especially for in vitro studies. Application of PTD-
directed protein delivery in vivo could prove useful under certain situations, where immediate
administration of presynthesized proteins is required. But because of limited evidence and lack
of a uniform means of producing proteins, and the poor protein transduction property of PTD,
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its wide scale use is likely to be delayed. Furthermore, because of inherent variations in the
properties of different proteins, PTD-fusion proteins may not be useful for delivery in every
case. Although all fusion proteins cannot be expressed in bacteria, PTD-fusion proteins can be
expressed efficiently as His-tag in eukaryotic cells and subsequently be purified by affinity
chromatography if post-translational modifications are required. Since there is precedence for
penetration of the BBB by PTD, the major potential of PTD may be the delivery of therapeutic
molecules to the central nervous system. Nevertheless, to gain more insight into the BBB
penetration and other organ distribution, more detailed investigations with PTD-fusion proteins
must be performed by using sensitive and quantitative techniques such as in vivo radio-imaging
[182].

Although great efforts have been done to “tame” the PTD by applying various approaches such
as molecular modeling and phage display system, however, the basic sequence of this peptide
is too short to play around. Indeed, some fruitful results of taming have been obtained wherein
new versions of PTDs have shown a stronger protein transduction property and cytoplasmic
delivery, which requires further verification, however. In another approach, taming of the PTD
for better delivery has been done by multimerization of PTD and attachment with protein of
interest [109]. Obviously, efficiency of protein transduction will be improved by
multimerization, but potential side effects may arise, especially toxicity. A further
improvement in transduction property of PTD is possible with the application of fine
knowledge of genomics, proteomics and computational chemistry. Despite possible future
improvements in PTD ’s penetration power, however, the most challenging task will be the
taming of the PTD for site specific delivery.

Conclusions
PTD of HIV-Tat protein is a nuclear localization signal which is conferred with mild protein
transduction property. PTD deliver the cargo to the nucleus but, lack transcellular property.
The taming of the PTD has resulted in more potent PTDs for cytoplasmic delivery. Finally,
PTD may be envisioned as a universal protein and nucleic acid transducer but obviously not
in the present form.
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Figure 1.
Proteolytic map of Tat-PTD with amino acid residues from 48-56 is shown. Full length Tat is
101 amino acids and PTD contains mainly charged amino acids lysines and arginines.
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Figure 2.
Nuclear expression of Tat in SVGA (astrocytic) cells. SVGA cells were transiently transfected
with 2 exon HIV-Tat (full length 101 amino acids) and immunostained 24 hours post
transfection by monoclonal Tat-antibody. (A) Nuclear localization of Tat in two daughter cells.
(B) DAPI nuclear staining corresponds to cells in panel (A).
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Figure 3.
Wild type Tat-GFP and mutant (Δ) Tat-GFP expression constructs are shown
diagrammatically. A, live cell fluorescence in SVGA cells transfected with Tat-GFP; B, light
phase of panel A; C, live cell fluorescence in SVGA cells transfected with mutant Tat (48-56)-
GFP showing green fluorescence throughout (diffuse) the cells; D, light phase of panel C.
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Figure 4.
SVGA cells transiently transfected with Tat-GFP or mutant Tat (dTat)-GFP wherein PTD
region (48-56) is deleted and immunostained for nucleoli by using nucleophosmin monoclonal
antibody. (A) Tat-GFP (green) expression in the nucleus under green filter; (B) same field as
in (A) Tat-GFP (green) and nucleophosmin (red) seen with double filter showing co-
localization of Tat and nucleoli; panel (C), DAPI nuclear staining corresponds to panels (A)
and (B); panel (D), mutant Tat-GFP shows green fluorescence throughout the cells (diffuse),
panel (E) same as (D) showing mutant Tat-GFP (green) and nucleoli (red) under double filter,
have lost nucleolar distribution of Tat; panel (F), DAPI nuclear staining corresponds to panel
(D) and (E); (G), control cells transfected with vector DNA and seen under green filter and in
(H) same as (G) showing nucleolar staining; (I), DAPI nuclear staining for panels (G) and (H).
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Figure 5.
Transduction of PTD-NS1 fusion protein into neuroblastoma cells and primary neurons. His-
PTD-NS1 containing a 3-glycine spacer was produced in bacteria. The affinity-purified protein
was added to the culture medium with 50 μM chloroquine. After 24 hours, cells were fixed
with 2% paraformaldehyde and immunostained using polyclonal rabbit antibody for NS1
protein (gift from Dr. A. Nieto, Spain). (A) PTD-NS1 protein transduction in N1E cells; (B)
PTD-NS1 fusion protein transduction in primary hippocampal neurons.
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Figure 6.
Schematic diagram showing mechanism of PTD-fusion protein entry into the cell. PTD-fusion
protein binds with the heparan sulphate or unknown receptors on the cell surface and enters
either via endocytosis or macropinocytosis. Endocytic vesicles fuse with lysosomal vesicles,
heparan sulphate from PTD-fusion protein complex is then removed by heparinase present in
endosomes, and protein is either released into the cytoplasm or degraded. Chloroquine
(lysosomotropic agent) treatment prevents degradation and aids release of fusion protein from
lysosomes. The released PTD-fusion protein either stays in the cytoplasm or enters the nucleus,
depending on the sequence and nature of the protein under study. Transcellular effect is not
possible either for cytoplasmic or nuclear protein, as PTD does not have secretory property.

Chauhan et al. Page 28

J Control Release. Author manuscript; available in PMC 2007 April 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chauhan et al. Page 29

Table 1
Principal features of Tat PTD

1. Strong basic amino acids lysine and arginine
2. Susceptible to furin and other proteases (Fig. 1)
2. Mild protein transduction property
3. Strong nuclear localization property
4. No nuclear export signal
5. No secretory signal
6. No transcellular property
7. No siRNA transduction property
8. PTD delivers fusion proteins into the nucleus except tamed PTDs which deliver into the cytoplasm (19, 80, 81, 84, 168)
9. PTD in combination with transfection reagents enhance transfection efficiency of plasmids and siRNAs
10. Least immunogenic possibly due to NLS and high homology with human proteins.
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Table 2
Amino acid composition and transduction destinations of the tamed PTDs.

Type of PTD [references] Protein sequence Protein transduction
(Nuclear or cytoplasmic)

Homology with human protein data
bank (%)

PTD [19] YGRKKRRQRRR Nuclear 85-95
PTD-4 [80] YARAAARQARA Cytoplasmic 75-85
YM-3 [84] THRLPRRRRRR Cytoplasmic 75-85
CTP [81] GGRRARRRRRR Cytoplasmic No significant homology
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Table 3
Possible effects of PTD fusion on different proteins

Nature of Protein Outcome (PTD-fusion protein)

Cytoplasmic Nucleusa
Nucleo-cytoplasmic Nucleusa
Secretory Nucleus/Extracellular
Membrane Membrane/Nucleus

a
= Outcome will depend upon the strength of NES if present on the cytoplasmic protein, conformation of the fusion protein and also upon how strongly

the protein binds in the cytoplasm.
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