ORIGINAL ARTICLE

Expression profiling and prediction of distant metastases in head and neck squamous cell carcinoma

B J M Braakhuis, A Senft, R de Bree, J de Vries, B Ylstra, J Cloos, D J Kuik, C R Leemans, R H Brakenhoff

Additional information can be obtained at http:// www.jclinpath.com/ supplemental

See end of article for authors' affiliations

Correspondence to: B J M Braakhuis, Section of Tumor Biology, Department of Otolaryngology/Head and Neck Surgery, Room 1D 116, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands; bjm.braakhuis@vumc.nl

Accepted for publication 5 February 2006 **Published Online First** 5 May 2006 **Background:** For breast and prostate cancer, a gene expression signature of the tumour is associated with the development of distant metastases. Regarding head and neck squamous cell carcinoma (HNSCC), the only known risk factor is the presence of \geq 3 tumour-positive lymph nodes.

Aim: To evaluate whether a HNSCC gene expression signature can discriminate between the patients with and without distant metastases.

Methods: Patients with HNSCC with and without distant metastases had >3 tumour-positive lymph nodes, and did not differ with respect to other risk factors. Statistical analysis was carried out using Student's t test, as well as statistical analysis of microarrays (SAM), to assess the false discovery rate for each gene. These analyses were supplemented with a newly developed method that computed deviations from gaussian-order statistics (DEGOS). To validate the platform, normal mucosa of the head and neck was included as control.

Results: 2963 genes were differently expressed between HNSCC and normal mucosa (t test; p < 0.01). More rigorous statistical analysis with SAM confirmed the differential expression of most genes. The comparison of genes in HNSCC with and without metastases showed 150 differently expressed genes (t test; p < 0.01), none of which, however, could be confirmed using SAM or DEGOS.

Conclusions: No evidence for a metastasis signature is found, and gene expression profiling of HNSCC has seemingly no value in determining the risk of developing distant metastases. The absence of such a signature can be understood when it is realised that, for HNSCC in contrast with breast cancer, the lymph nodes are a necessary in-between station for haematogenous spread.

ead and neck squamous cell carcinoma (HNSCC) is the fifth most common type of carcinoma worldwide.¹ Despite improvement in local control, survival has only marginally increased during the past three decades. A major negative factor in this respect is the development of metastatic disease at distant sites. Distant metastases occur in 10-20% of patients with HNSCC2-5 and the incidence may increase in the near future.6 Although new screening modalities have improved the detection rate of distant metastases at initial evaluation, these metastases continue to emerge during follow-up in several patients. In all, 50% distant metastases are detected clinically within 9 months of treatment and 80% are detected within 2 years.7 The presence of distant metastases has dismal consequences for the patient. Adequate treatment is often not possible and life expectancy is dramatically decreased. It is important to better predict whether a patient will develop distant metastases during follow-up, as this influences the decision on how to treat the patient for the initial HNSCC. In that case, unnecessary extensive treatment of the primary tumour can be omitted. The only option for this group of patients is effective local treatment in combination with adjuvant systemic treatment. Adjuvant systemic treatment, however, is still in the stage of development at present. To determine whether a patient will develop distant metastases during the

course of the disease, an accurate marker that predicts distant metastases is urgently needed. Patients with multiple lymph node metastases, especially >3, have a relative high (up to 50%) risk of developing distant metastases.^{2 &-10} Unfortunately, this histopathological feature is still of little value for the individual patient, as <50% of these patients will develop distant metastases.

Over the past few years, gene expression profiling using microarray hybridisation, analysing thousands of genes simultaneously, has provided new insights into carcinogenesis and cancer dissemination. HNSCC has previously been studied with expression arrays by various authors as reviewed by Akervall,¹¹ and in a few reports an association was shown between gene expression changes and clinically relevant variables, such as the presence of lymph node metastasis¹² or patient survival.¹³ ¹⁴. Chung *et al*¹⁴ reported a set of genes proposed to be predictive for lymph node metastases, which showed marked similarities with a gene set that was associated with metastatic disease in breast cancer.¹⁵ Recently, Roepman *et al*¹⁶ also identified a set of genes associated with the occurrence of lymph node

Abbreviations: DEGOS, deviations from gaussian-order statistics; HNSCC, head and neck squamous cell carcinoma; SAM, statistical analysis of microarrays metastases. Although an indication was found that this gene set holds promise of predicting the process of lymphatic metastatic disease, no analysis of survival, which is known to be strongly related to the development of distant metastases, was presented.

In breast cancer, van't Veer et al¹⁵ found an expression signature that correlated with the presence of distant metastases and that can possibly be applied to predict the occurrence of such a metastasis, although in a later study¹⁷ it was shown that the classifying gene set is strongly dependent on the way the data are analysed. Ramaswamy et al18 identified a gene expression signature of adenocarcinoma metastases (breast cancer, prostate cancer, medulloblastoma and large B cell lymphoma), which was present in some primary tumours and could therefore be used to predict which tumours have metastatic potential. On the basis of such studies, it was interpreted that some tumours already harbour a metastatic signature at an early stage, and that this persists in all or most cells in the primary tumour with metastatic potential during their lifetime.¹⁹ The implication is that, in some tumour types, such as breast cancer, cells with metastatic potential are able to directly disseminate from the primary tumour to distant sites, where they progress to overt metastases without previous passage through the lymph nodes.²⁰ For HNSCC, the situation is possibly different. As there is a strong association between the presence of positive lymph nodes and the presence of distant metastases,² it is conceivable that the lymph node is a necessary passing station for the ultimately haematogenously spreading cells.²⁰ We analysed whether gene expression profiling can predict the development of distant metastases in patients with HNSCC with >3 lymph node metastases, a patient group with a 50% risk of developing distant metastases.⁸⁻¹⁰ To avoid the influence of confounding factors as much as possible, strict criteria were applied to the selection of patients with HNSCC. So, both groups consisted of patients with >3tumour-positive lymph nodes, and, to exclude the possibility that a negative result was due to the choice of platform or analytical methods, a panel of normal mucosal specimens was added.

PARTICIPANTS AND METHODS Patients and samples

The source of this study was a panel of liquid nitrogen-stored HNSCC specimens that were collected during the past 10 years. We selected tumours from patients who either developed distant metastases during follow-up (case group) or who remained disease free for a minimum follow-up period of 3 years (control group; table 1). Further selection criteria were \geq 4 tumour-positive lymph nodes, histologically tumour-negative surgical margins, localisation in the oral cavity, oropharynx, hypopharynx or larynx, and no recurrent disease other than distant metastases. This selection was carried out to obtain a case-control with identical clinical features on a groupwide basis and a similar risk of developing distant metastases. The habits of smoking and drinking alcohol were scored, and, when information was available, tobacco use was calculated in pack-years (number of packs per day, 25 cigarettes per pack, multiplied by years of active smoking) and alcohol consumption as unit-years (glasses of beer, wine or liquor per day, multiplied by years of consumption).

Several patients with tumours were not eligible because of lower risk nodal status (<4 positive lymph nodes), nonsurgical treatment, tumour-positive surgical margins, distant metastases from other primary tumours or a too short disease-free follow-up period. Of the total 424 frozen tumours available for analysis, 11 were found eligible for the case group and eight for the control group; also eight normal mucosa specimens, obtained from the uvula of healthy controls without cancer were added for comparison and validation of the platform and analysis.

The Institutional Review Board of the VU University Medical Center, Amsterdam, The Netherlands, approved the study protocol, and written informed consent was obtained from all the patients.

RNA preparation

All samples were snap frozen in liquid nitrogen and stored at -80°C. Tumour percentage was estimated on 5-µm-thick sections stained with haematoxylin and eosin, with a mean tumour percentage of 62% in the case group (range 20-90%) and 60% in the control group (range 10-90%). In all, 15-20 30-µm-thick frozen sections were prepared with a crvomicrotome and carefully transferred to a chilled 1.5-ml tube containing RNAbee (Campro Scientific, Veenendaal, The Netherlands) for intact RNA isolation according to the manufacturer's protocol. Quality control of total RNA samples was carried out with the RNA 6000 Pico LabChip kit (Agilent Technologies, Palo Alto, California, USA) and analysed on the Agilent 2100 Bioanalyzer. As a common reference for array hybridisation, the Universal Human Reference RNA from Stratagene (La Jolla, California, USA) was used.

Synthesis and labelling of cDNA

Because of possible non-linear amplification of small amounts of RNA, we used non-amplified total RNA for hybridisation on the arrays. The amounts of total RNA varied from 5 to 15 µg, depending on the size of the sample. Details of the preparation of labelled cDNA are provided in a previously published protocol.²¹ Cell samples were labelled with Cy3 (Fluorolink Cy3 Monofunctional Dye; Amersham, Freiburg, Germany) or Cy5 (Fluorolink Cy5; Amersham) for common reference.

Array hybridisation and scanning

The Human Release V.1.0 oligonucleotide library, containing 18 861 60-mer oligonucleotides representing 17 260 unique genes as designed by Compugen (San José, California, USA) was obtained from Sigma-Genosys (Zwijndrecht, The Netherlands). Hybridisation was carried out as previously described.²¹ Spots were quantified by Imagene V.5.5.4 software (Biodiscovery, Marina del Rey, California, USA), using the default settings. Local background was subtracted to obtain the signal mean. The expression platform we used has been described previously in detail,²¹ and a good correlation between array and Taqman results was obtained for several genes regarding the level of expression intensities.

Analysis

All expression intensities were transformed to log₂ values and intensities <0 (below background) were classified as missing. Data were normalised by means of z score transformation.²² The expression intensity of each sample was calculated by subtracting the values of the Cy5 channel (reference) from those of the Cy3 channel (sample), yielding the Cy3:Cy5 ratio. The number of missing values varied per sample and had a mean of 13% of the values. To find potential classifying genes, differences in gene expression of HNSCCs with and without distant metastases were calculated with Student's t test (SPSS for Microsoft Windows). Only those genes with values of \geq 5 carcinomas per group were analysed. To confirm the findings, we additionally applied statistical analysis of microarrays (SAM) software V.1.21.23 A q value (%) and a false discovery rate value (%) was obtained for each gene. To validate our platform and analytical tools against existing

Patient code	Carcinoma				Patient							
	Localisation	TNM	Extra- capsular spread	No of tumour- positive lymph nodes	Age at diagnosis (years)	Sex	Follow-up	Smoking Yes/no	Pack-years	Alcohol Yes/no	drinking Unit-year	
M1	Oral cavity	T3N2b	Yes	5	71	Male	DM lung, DOD	Yes	25	Yes	400	
M2	Oral cavity	T3N2c	Yes	11	67	Female	DM liver, DOD	Yes	Unknown	Yes	unknown	
M3	Larynx	T4N3	Yes	27	52	Male	DM bone, DOD	Yes	47	Yes	35	
M4	Oral cavity	T4N2b	Yes	7	65	Male	DM lung, DOD	Yes	Unknown	Yes	Unknown	
M5	Oropharynx	T3N2b	Yes	5	52	Female	DM lung, DOD	Yes	35	Yes	280	
M6	Oral cavity	T2N2b	No	7	48	Male	DM pericardium, DOD	Yes	30	Yes	40	
M7	Oral cavity	T4N2b	No	5	74	Male	DM bone, DOD	Yes	37	No	0	
M8	Oral cavity	T4N2c	Yes	5	58	Male	DM liver, DOD	Yes	50	Yes	400	
M9	Oral cavity	T4N2c	Yes	4	65	Male	DM lung, bone, DOD	Yes	Unknown	Yes	Unknown	
M10	Hypopharynx	T1N3	Yes	5	54	Male	DM bone, DOD	No	0	No	0	
M11	Oropharynx	T2N2b	Yes	4	55	Female	DM bone, liver, DOD	Yes	30	Yes	Unknown	
NM1	Larynx	T4N2b	Yes	6	48	Female	df 68 months	Yes	Unknown	Yes	Unknown	
NM2	Oropharynx	T2N2b	Yes	8	48	Male	df 44 months	Yes	23	Yes	250	
NM3	Oral cavity	T2N2b	Yes	6	54	Male	df 59 months	Yes	48	Yes	560	
NM4	Oropharynx	T2N2b	Yes	4	52	Male	df 67 months	Yes	25	Yes	136	
NM5	Oropharynx	T4N2b	Yes	5	73	Male	df 110 months	Yes	26	No	0	
NM6	Hypopharynx	T3N2c	Yes	12	41	Male	df 56 months	Yes	10	Yes	150	
NM7	Oral cavity	T4N2c	Yes	6	49	Female	df 58 months	Yes	28	Yes	84	
NM8	Oropharynx	T2N2c	No	10	57	Female	df 47 months	Yes	40	Yes	400	

data, we also compared the expression profiles of all HNSCC samples versus the normal mucosal samples.

A second analysis was carried out on the dataset according to the principles of ordered statistics. For each gene, the computed t value was converted to its exact gaussian analogue (z value) via the p value. All these z values were ranked and compared with the theoretical values from the gaussian distribution. A robust linear regression on the central 90% of the values gave rise to a tolerance region (with $\alpha = 1/n$, where n is the number of genes considered). Genes were considered confirmed if they lay below the region for negative values of z and above for positive values of z. The analysis is based on deviations from gaussian-order statistics (DEGOS). Details on DEGOS are available on request.

Annotation analysis was carried out with software available at http://source.stanford.edu. Cluster analysis of the latter comparison was carried out with the software program Spotfire DecisionSite (Spotfire, Somerville, MA, USA). Parameter settings were standard, with no filter or data adjustment, and the hierarchical unsupervised clustering was executed for genes and samples with Pearson's correlation and complete linkage selected.

RESULTS

Characteristics of the study population

The average age in the case group (eight men and three women) was 60 (range 48–74) years, whereas the average age in the control group (five men and three women) was 53 (range 41–73) years. The groups did not differ with respect to tobacco and alcohol consumption, number of positive nodes and presence of extracapsular spread. Table 1 gives further details.

Expression profiles in HNSCC and normal mucosal samples

Nineteen HNSCC samples, with or without metastatic disease, and eight normal mucosa samples were compared with respect to the RNA expression profile. With unsupervised hierarchical clustering of all 17 237 genes in the 27 samples, two major groups were separated, the carcinomas and the normal mucosal samples (fig 1). We found 17.2%

(2963/17 237) genes with a significantly different expression (p < 0.01); 1063 of these were upregulated and 1900 down-regulated in HNSCC. Table 2 shows the relationship between a certain cut-off of the p value and the consequences for the number of different genes. Table 3 gives the list of the 50 genes showing the largest difference between these groups. A more extensive list of all differentially expressed genes can be found at http://www.jclinpath.com/supplemental.

SAM was carried out to assess the chance of a falsely positive gene identification. Table 3 shows details of the analysis of the 50 most different genes. In addition, of the top 100 downregulated genes, all had q value (comparable to the standard p value) <0.11%, and false discovery rate <0.1%. Two of the top 100 upregulated genes had a q value >2.5%, and 23 had a false discovery rate >5% (which was <15% for 22 of these).

Expression profiles in HNSCC with and without distant metastases

The expression profiles of 11 HNSCC specimens with and eight HNSCC specimens without distant metastatic disease were compared. When designing this study we took care to exclude all possible confounding factors. So the groups with and without distant metastases were at a similar group level with respect to sex, age, tumour-node-metastases stage, the number of tumour-positive lymph nodes, and the smoking and alcohol drinking behaviour of the patients (table 1).

It was not possible to discriminate the metastasising tumours from the non-metastasising ones by unsupervised clustering of all genes. Nevertheless, we found 150 of the 17 240 (0.8%; p<0.01) genes differently expressed on comparing profiles of carcinomas with and without distant metastases (additional information is available at http:// www.jclinpath.com/supplemental); 82 genes showed a lower and 68 showed a higher expression in metastasised tumours. With lower p values, fewer genes were found to be different (table 2). Table 4 shows the gene sets with the most differential expression. We carried out additional analyses to exclude the possibility that a gene could be different simply as a result of chance. More rigorous testing was carried out using SAM, which resulted in finding no gene

Figure 1 Hierarchical clustering of 19 head and neck squamous cell carcinoma (HNSCC) specimens and eight normal mucosas of healthy controls. The dendrogram is based on the similarity of the 17 237 genes (left) and the 27 tissue samples (above). The clustering method involved complete linkage and correlation as the similarity measure. Empty values were replaced by the column average. The eight normal mucosas cluster as a separate group, as visualised at the right. non m, non-metastasised HNSCC; meta, metastasised HNSCC.

that fulfilled the program's criteria of being significantly different. q and false discovery rate values were >80%. This suggests the rejection of all genes uncovered by Student's t test owing to the high likelihood of being false positive. Also, another statistical approach (DEGOS) did not support the notion that the t test revealed truly different genes.

DISCUSSION

HNSCC shows heterogeneity with respect to metastatic behaviour, and the current set of clinical markers is not sufficiently accurate to predict which patient is most at risk of distant metastases. This study was designed to find a set of genes that was differently expressed between metastasising

	Differently expressed genes (n)				
Upper cut-off level p value	Increased expression	Decreased expression			
HNSCC v normal mucoso	1 c				
0.01	1063	1900			
0.001	563	931			
< 0.001	310	483			
Metastasised v non- metastasised HNSCC					
0.01	82	68			
0.001	7	6			
< 0.001	0	0			

and non-metastasising HNSCCs. Patients were carefully selected for the presence of >3 lymph node metastases, a factor associated with a relatively high risk of distant metastases. When lymph node metastases in the neck are diagnosed, the chance of survival is halved. We also initially tried to select a case and a control group without lymph node metastases, but we could not find a single case in 424 tumours, strongly supporting the importance of the lymph node compartment for metastasising HNSCC.

To exclude that our platform or our analytical methods might influence the outcome, we compared the expression profile in normal and tumour tissue and discovered many genes to be differently expressed. We have purposely chosen normal tissue from patients without cancer as tumouradjacent normal tissue bears the risk of being genetically aberrant.²⁴ Several genes were found to be different between cancerous and normal tissue, and this list includes those genes associated with signal transduction, cell structure, cell cycle, transcription, cell-cell adhesion, cell-matrix interaction and apoptosis. Other reports also found differentially expressed genes, although with lower numbers.25-30 Some highly different genes are shared between these reports (eg MSN, SCEL, SPARC, collagens and cytokeratins), and, in addition, similar cellular processes have been reported to be associated. This present set of genes with differential expression has a relatively strong effect, as unsupervised clustering of all available genes (filtered for expression level) generated a dendrogram that separated out the normal tissues and the carcinomas. With more stringent methods such as SAM and DEGOS, most of the highly differentially expressed genes could be confirmed. Thus, it is possible with

		ConPaula	Number				SAM	
tank- 1umber	HUGO- identifier	accession number	Description	HNSCC	Normal mucosa	p- Value Student t	q Value (%)	Local fdr (%
ncreased	expression in H	INSCC			_			
	LOC492304	AK025719	Putative insulin-like growth factor II-associated protei	n19	7	1	0	0.26
	KIAA0261	D87450	KIAA0261	19	8	1	0	0
	HEIR1	D28449	Inhibitor of DNA binding 3	18	8	1	0	0
	C20orf3	AB033767	Chromosome 20 open reading frame 3	19	8	1	0	0
	Unknown	NM 005332	Haemoglobin ζ	19	8	1	0	0.23
	DDOST	NM_005216	Dolichyl-diphospho-oligosaccharide-protein glycosyltransferase	19	8	1	0	0
·	HBG2	NM_000184	Haemoglobin γ-G	17	8	1	0	0.32
	MSN	NM 002444	Moesin	19	8	1	0	0
	KIAA1922	AF119868	KIAA1922 protein	19	8	1	0	0
0	OPN	NM 000582	Secreted phosphoprotein 1 (osteopontin)	19	6	1	Õ	Õ
1		NM 002305	Lectin adjactorido-binding soluble 1 (adjactin 1)	18	8	1	0	0
2	Linknoven	NIA 004052	Deter net found	17	0	1	0	0
2	Unknown	NM_004032	Laudia libe annuale factore binding annutrie 2	10	0	1	0	0
3	IBP3	INM_000598	Insulin-like growth factor binding protein 3	19	8	1	0	0
4	KIAA0092	INM_014679	Iranslokin	1/	8	1	0	0
5	MFHAS1	NM_004225	Malignant tibrous histiocytoma amplitied sequence	119	8	1	0.09	1.55
6	PIT1	NM_005415	Solute carrier tamily 20 (phosphate transporter)	19	8	1	0	0
7	HBGA	M11427	Haemoglobin γ-A	16	8	1	0	0.16
8	FNDC3B	AL157482	Fibronectin type III domain containing 3B	19	7	1	0	0
9	NSUN5	NM 018044	NOL1/NOP2/Sun domain family, member 5	19	8	1	0.09	1.91
0	IFI15	NM 005101	Interferon, a-inducible protein (clone IFI-15K)	19	8	1	0	0
1	H2B/H	NM 003523	Histore 1 H2be	19	8	1	Õ	Õ
2	Linknown	736811	Data not found	10	8	1	Õ	õ
2	MCAA4	L30011	MCAA4 minishramasama maintananaa	10	0	1	0	0
		NM_003713	NCNo minichromosome mainienance	17	0	1	0	0
.4	DOIZ	INM_004335	bone marrow stromal cell antigen Z	19	0	1	0	0
.5	Unknown	KU264/		19	0	I	0	0
)ecreased	expression in	HNSCC	DEDD TD52 means in affection	10	0	<0.001	0	0.07
		AF31/330		19	0	< 0.001	0	0.06
-	Unknown	AK000006	Data not found	19	8	< 0.001	0	0
	Clort10	NM_016190	Chromosome 1 open reading frame 10	19	8	< 0.001	0	0
	PMI1	NM_002435	Mannose phosphate isomerase	18	8	< 0.001	0	0.06
	CAGA	NM_002964	S100 calcium binding protein A8 (calgranulin A)	18	8	< 0.001	0	0.01
	ECM1	NM_004425	Extracellular matrix protein 1	19	8	< 0.001	0	0.10
	CL-20	NM_001423	Epithelial membrane protein 1	17	8	< 0.001	0	0
	SERPINB2	NM_002575	Serine (or cysteine) proteinase inhibitor	19	8	< 0.001	0	0.11
	HOP	AB019573	Homeodomain-only protein	18	6	< 0.001	0	0
0	CLCA4	NM 012128	Chloride channel, calcium activated, family member	414	6	< 0.001	0	0
1	BICD1	NM 001714	Bicgudal D homologue 1 (Drosophila)	18	8	< 0.001	Õ	0 10
2	DKK1	NM 0122/2	Dickkonf homologue 1 (Xanonus lagvis)	19	8	< 0.001	0	0
2	SDDD10	NIM 002125	Small proling rich protoin 1P (aprilia)	14	0	<0.001	0	0.01
3	SERVER	NM_003123	Small proline-rich prolein TB (corninn)	14	0	< 0.001	0	0.01
4	NAGK	NM_01/36/	IN-acetyigiucosamine kinase	19	0	< 0.001	0	0
5	VAV3	NM_006113	Vav 3 oncogene	18	/	< 0.001	0	0.09
6	DDX32	NM_018180	DEAH (Asp-Glu-Ala-His) box polypeptide 32	19	8	< 0.001	0	0
/	BENE	017077	BENE protein	19	8	< 0.001	0	0.07
8	ZDHHC1	U90653	Zinc finger, DHHC domain containing 1	19	8	< 0.001	0	0
9	ANXA1	NM_000700	Annexin A1	19	8	< 0.001	0	0
0	Unknown	NM 015961	Data not found	18	8	< 0.001	0	0
1	PAFAH	NM 005084	Phospholipase A2, aroup VII	19	8	< 0.001	0	0
	DALL	NM 012307	Erythrocyte membrane protein band 4.1-like 3	19	8	< 0.001	0	0
2	DALI				~		~	~
2	DALI M/NFI	M93056	Serine (or cysteine) proteingse inhibitor	17	8	< 0.001	0	0
2 3	M/NEI	M93056	Serine (or cysteine) proteinase inhibitor	17	8	< 0.001	0	0

Nineteen HNSCC (11 with and eight without metastases) specimens were compared with 8 normal mucosa specimens using two-sided Student's t test (a p value of 1 reflects a value between 0.999 and 1). Regarding SAM, the q value is shown, which is comparable to the p value of the t test. Local fdr is the false discovery rate in percentage. Further details on SAM can be found in the article by Cheadle *et al* 22 .

fdr, false discovery rate; HNSCC, head and neck squamous cell carcinoma; SAM, statistical analysis of microarrays.

the presently used expression platform and analysis to generate relevant information, in line with previously published data.

We have found a panel of 150 genes that had a differential expression between tumours with >3 lymph node metastases that either did or did not give rise to distant metastases (p<0.01 with Student's t test), but this test is not optimal as it does not exclude the possibility that these differences have occurred by chance. This number of 150 differentially expressed genes is roughly what would be expected, if randomly distributed values for each gene were assumed. We identified no relevant gene using SAM, an established and rather stringent method that uses permutations to increase the power of significance analysis. Either a gene was not

different or there was a high likelihood of it being falsely different. A second method, DEGOS, which was recently developed in our centre to overcome some intrinsic analysis problems with SAM, also did not provide evidence that the genes were unambiguously differentially expressed. Our study does not provide evidence for a metastatic signature, and indicates that expression profiling has seemingly no additional value in predicting the development of distant metastases. The current method to assess the risk of distant metastases, the examination of lymph nodes for the presence of cancer, unfortunately cannot be improved.

Importantly, relatively small patient groups have been used in our study. Nevertheless, when comparing the eight normal mucosas with eight randomly chosen HNSCC specimens,

		GenBank		HNSCC (n)		
Rank number	HUGO identifier	accession number	Description	Non- meta	Meta	p Value Student's
Downregula	ated in metastasis	ed HNSCC				
	PCDH9	AF085861	Protocadherin 9	6	7	< 0.001
2	GALR1	NM 001480	Galanin receptor 1	8	9	< 0.001
3	COL4A4	NM_000092	Collagen, type IV, a4	8	10	< 0.001
1	Unknown	1118909	Data not found	8	10	< 0.001
5	TPIAACO	NM 018207	Tripartite motif-containing 62	8	0	<0.001
4	DEDE	AK024214	Amining alutamia anid disentida (DE) reseate	4	0	<0.001
0	KEKE	AKU24214	Arginine-giutamic acia alpeptiae (RE) repeats	0	0	< 0.001
/	Unknown	AF090927	Data not found	8	9	< 0.001
В	SULTIAI	NM_001055	Sultotransterase tamily, cytosolic, 1A, phenol-preterring	8	11	< 0.001
9	AGTPBP1	NM_015239	ATP/GTP binding protein 1	6	11	< 0.001
10	CHST5	NM_012126	Carbohydrate (N-acetylglucosamine 6-0) sulfotransferase 5	8	10	< 0.001
11	PDPK1	NM 002613	3-Phosphoinositide dependent protein kinase-1	6	8	< 0.001
12	Unknown	AI 137637	mRNA: cDNA DKFZp4341035 (from clone DKFZp4341035)	5	8	< 0.001
13	TRAF5	AB000509	TNE recentor-associated factor 5	8	10	< 0.001
14	Unknown		Data not found	0	11	<0.001
14		AKO25572	Data not found	5	11	0.001
15	Unknown	AKU25573		5	0	0.001
16	IDUA	NM_000203	lduronidase, α-L-	8	10	0.001
17	TLR4	NM_003266	Toll-like receptor 4	8	11	0.001
18	MUC3A	M55406	Mucin 3A, intestinal	5	11	0.001
19	Unknown	U48728	Data not found	6	11	0.001
20	Unknown	NM 014684	Data not found	8	11	0.001
21	DII 1	NM_005618	δ-like 1 (Drosophila)	6	11	0.002
22	CCPQ	NM 006641	Chamaking (C-C matif) recentor 9	7	10	0.002
22	DICEI	NIM 014241	Phaanhalianaa C. anailan 1	0	10	0.002
23	FLCET	11/010341	crospholipase C, epsilon T	0	10	0.002
24	SECZZLI	AKU23270	SEC22 vesicle trafficking protein-like 1 (5 cerevisiae)	/	8	0.002
25	Unknown	AF136408	Data not found	/	8	0.002
Upregulated	d in metastasised	HNSCC				
1	DFNA5	NM 004403	Deafness, autosomal dominant 5	7	11	1
2	MAP1B	NM_005909	Microtubule-associated protein 1B	6	11	1
3	PRNP	X82545	Prion protein (p27-30) (Creutzfeld-lakob disease)	8	11	1
1	PARAA	VI0104081	PABEA member PAS encogene family	6	6	i
		AL047704		0	10	1
5	VGCINLI	AKUU2007		0	10	1
6	Unknown	AKU22068	CDINA FLJ I 2006 fis, clone HEMBB I 00 I 383	2	11	1
/	GARP	NM_005512	Leucine rich repeat containing 32	7	11	1
8	FU20313	NM_017762	Myotubularin-related protein 10	8	11	1
9	FLJ20397	NM_017802	Hypothetical protein FLJ20397	8	10	0.999
10	MEFV	NM_000243	Mediterranean fever	8	11	0.999
11	PMAIP1	D90070	Phorbol-12-myristate-13-acetate-induced protein 1	8	11	0.999
12	UBE21	NM 003345	Ubiquitin-conjugating enzyme F2L (UBC9 homolog, yeast)	8	11	0 999
13	RPS2	NM 016281	Ribosomal protein S2	8	11	0.999
14		NIM 001397	Dibudronyrimidingso-like 3	7	11	0.000
14	CNIVE	NIA 014404	Sertian neurin 5	0	11	0.777
10	SINCO	NM_014426		0	11	0.999
16	FU12666	AK022/28	Chromosome I open reading frame 108	8	11	0.999
1/	FU34870	AK022384	FU34870 protein	7	5	0.999
18	PCDH7	NM_002589	BH-protocadherin (brain-heart)	8	11	0.999
19	KIAA1036	NM_014909	KIAA1036	7	9	0.999
20	GNA12	NM 007353	Guanine nucleotide binding protein (G protein) α 12	8	11	0.999
21	FTS11	NM 012280	Ets homologue 1 (E coli)	8	10	0.999
22	SAV/1	AK022071	Salvadar homolog 1 (Drosonhila)	8	11	0.000
22		100/20	DAN kinding metain 17	5	0	0.777
23		108438	KAIN binding protein 17	5	7	0.999
24	UBAZ	NM_005499	SUMO-1 activating enzyme subunit 2	8	11	0.999
25	SERPINAT	M26123	Serine (or cysteine) proteinase inhibitor	8		0.999

In all, 11 HNSCC specimens with and eight without metastases were compared using two-sided Student's t test (a p value of 1 reflects a value between 0.999 and 1). None of the genes could be confirmed using SAM.²² HNSCC, head and neck squamous cell carcinoma; SAM, statistical analysis of microarrays

SAM was able to find most of the genes that were also different when data of all 19 HNSCCs were used. This indicates that a large difference in expression is hardly influenced by the number of specimens of available in this study. Also when studying breast cancer, we were able to find a metastatic signature, even when only seven metastatic tumours were compared with seven non-metastatic carcinomas.³¹ Our results are in line with those of Cromer et al²⁶ who studied 15 metastasising and 11 non-metastasising hypopharyngeal carcinomas. Although these authors report a signature of 164 differentially expressed genes, they also concluded that it was too early to state whether a useful signature exists. There is the possibility that analysis of much larger numbers of patients with HNSCC will lead to the

discovery of a distant metastases expression signature. Its existence will probably be based on several genes that show a small difference in expression between metastasising and non-metastasising HNSCC, or it will be valid only on a subgroup of HNSCC. If a signature with such characteristics exists, it is doubtful whether it will have much value for the individual patient.

We have studied tumours from various locations in the head and neck area, and there was a relative overrepresentation of tumours of the oral cavity in the metastasising group of tumours. It is unclear at this moment whether the expression profile of HNSCCs differs between subsites and whether this influenced the outcome of our study. The numbers of tumours analysed in this study are too small to correct for this potential bias and for the fact that there was no subsite categorisation of the HNSCC after global unsupervised clustering using the information of all genes (fig 1).

In conclusion, we have used microarray expression analysis and explored its potential for diagnostic purposes in HNSCC. No evidence for a distant metastasis signature was found, indicating that expression profiling has seemingly no value in predicting the development of distant metastases. HNSCC may differ in this respect from other tumour types such as breast and prostate cancer. The fact that lymph nodes are a necessary in-between station for haematogenous spread may explain the absence of a distant metastasis-associated HNSCC expression profile.

ACKNOWLEDGEMENTS

We thank Wim de Boer for analytical support, and Paul Eijk and Paul van den IJssel for printing slides and technical and analytical assistance

Authors' affiliations

B J M Braakhuis, A Senft, R de Bree, J de Vries, C R Leemans, R H Brakenhoff, Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands B Yistra, Microarray Core Facility, VU University Medical Center J Cloos, Pediatric Oncology/Hematology, VU University Medical Center D J Kuik, Clinical Epidemiology and Biostatistics, VU University Medical Center

This project is financially supported by the European Union FP6, LHSC-CT-2005-018911, DISMAL. The publication reflects only the authors' view. The European Commission is not liable for any use that may be made of the information obtained.

Competing interests: None.

REFERENCES

- Pisani P, Bray F, Parkin DM. Estimates of the world-wide prevalence of cancer for 25 sites in the adult population. Int J Cancer 2002;97:72-81.
- 2 Leemans CR, Tiwari R, Nauta JJ, et al. Regional lymph node involvement and
- Identify GR, Hudin SC, Hudin SJ, et al. Regional symptrice involvement of its significance in the development of distant metastases in head and neck carcinoma. *Cancer* 1993;71:452-6.
 Al-Othman MO, Morris CG, Hinerman RW, et al. Distant metastases after definitive radiotherapy for squamous cell carcinoma of the head and neck. *Head Neck* 2003;25:629-33.
- 4 Gourin CG, Johnson JT. Surgical treatment of squamous cell carcinoma of the base of tongue. Head Neck 2001;**23**:653–60.
- 5 Harrison IB, Lee HJ, Pfister DG, et al. Long term results of primary radiotherapy with/without neck dissection for squamous cell cancer of the
- 6 Taneja C, Allen H, Koness RJ, et al. Changing patterns of failure of head and neck cancer. Arch Otolaryngol Head Neck Surg 2002;128:324–7.
 7 Merino OR, Lindberg RD, Fletcher GH. An analysis of distant metastases from
- squamous cell carcinoma of the upper respiratory and digestive tracts. Cancer 1977;40:145-51.

Braakhuis, Senft, Bree, et al

- 8 de Bree R, Deurloo EE, Snow GB, et al. Screening for distant metastases in patients with head and neck cancer. Laryngoscope 2000;110:397-401.
- 9 Vandenbrouck C, Eschwege F, De la Rochefordiere A, et al. Squamous cell carcinoma of the pyriform sinus: retrospective study of 351 cases treated at the Institut Gustave-Roussy. Head Neck 1987;10:4-13.
- 10 Alvi A, Johnson JT. Development of distant metastasis after treatment of advanced-stage head and neck cancer. Head Neck 1997;19:500–5.
- Akervall J. Gene profiling in squamous cell carcinoma of the head and neck. Cancer Metastasis Rev 2005;24:87–94.
- 12 Nagata M, Fujita H, Ida H, et al. Identification of potential biomarkers of lymph node metastasis in oral squamous cell carcinoma by cDNA microarray analysis. Int J Cancer 2003;106:683-9.
- 13 Belbin TJ, Singh B, Barber I, et al. Molecular classification of head and neck squamous cell carcinoma using cDNA microarrays. Cancer Res 2002:62:1184-90.
- 14 Chung CH, Parker JS, Karaca G, et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell 2004:5:489-500.
- 15 van't Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;**415**:530–6. 16 **Roepman P**, Wessels LF, Kettelarij N, *et al*. An expression profile for diagnosis
- of Jymph node metastases from primary head and neck squamous cel carcinomas. *Nat Genet* 2005;**37**:182–6.
- 17 Michiels S, Koscielny S, Hill C. Prediction of cancer outcome with microarrays. Lancet 2005;365:1684-5.
- 18 Ramaswamy S, Tamayo P, Rifkin R, et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 2001;98:15149-54.
- Bernards R, Weinberg RA. A progression puzzle. Nature 2002;418:823. 19
- 20 Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nat Rev Cancer 2004;4:448-56
- 21 Buermans HP, Redout EM, Schiel AE, et al. Microarray analysis reveals pivotal divergent mRNA expression profiles early in the development of either compensated ventricular hypertrophy or heart failure. *Physiol Genomics* 2005.21.314-23
- 2 Cheadle C, Vavter MP, Freed WJ, et al. Analysis of microarray data using Z score transformation. J Mol Diagn 2003;5:73–81.
- 23 Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001;98:5116-21.
- 24 Braakhuis BJ, Leemans CR, Brakenhoff RH. Using tissue adjacent to carcinoma as a normal control: an obvious but questionable practice. J Pathol 2004;203:620-1.
- Mendez E, Cheng C, Farwell DG, et al. Transcriptional expression profiles of oral squamous cell carcinomas. *Cancer* 2002;95:1482–94.
 Cromer A, Carles A, Millon R, et al. Identification of genes associated with
- tumorigenesis and metastatic potential of hypopharyngeal cancer by microarray analysis. Oncogene 2004;23:2484–98.
 27 Al Moustafa AE, Alaoui-Jamali MA, Batist G, et al. Identification of genes
- associated with head and neck carcinogenesis by cDNA microarray comparison between matched primary normal epithelial and squamous carcinoma cells. Oncogene 2002;21:2634-40.
- 28 Ha PK, Benoit NE, Yochem R, et al. A transcriptional progression model for head and neck cancer. Clin Cancer Res 2003;9:3058-64
- 29 Alevizos I, Mahadevappa M, Zhang X, et al. Oral cancer in vivo gene expression profiling assisted by laser capture microdissection and microarray analysis. Oncogene 2001;20:6196–204.
- 30 El-Naggar AK, Kim HW, Clayman GL, et al. Differential expression profiling of head and neck squamous carcinoma: significance in their phenotypic and biological classification. Oncogene 2002;21:8206–19
- 31 Woelfle U, Cloos J, Sauter G, et al. Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res 2003;63:5679-84.