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p53 tumor suppressor plays a vital role in the
celular responses to genotoxic stress. It is be-
lieved thatp53 regulates the cell cycle by activat-
ing the GI checkpoint after exposure to agents
like ionizing radiation, ultraviolet (UV) radia-
tion, or genotoxic chemicals. Recently, it is con-
jectured thatp53 may have additionalfunctions
in DNA repair and apoptosis. Previously, we
demonstrated that p53-transgenic mice that
carry mutant alleles of a p53 gene developed
twice as many skin tumors as control mice after
UV exposure. To elucidate the molecular mecha-
nisms ofmutantp53 in skin cancers, we studied
DNA repair efficiency and the rate of apoptosis
in murine keratinocytes after UV irradiation. In
this report, we show that mutantp53-transgenic
mouse skin has reduced repair of UV-induced
DNA damage in both in vivo and in vitro radio-
immunoassays. In control mice, DNA repair is
associated with increased amounts of wild-type
p53 protein. Unexpectedly, mutant p53-trans-
genic mice had slightly increased apoptosis after
UVirradiation, suggesting that the wild-typep53
protein in the cells stilfunctions in inducing apo-
ptosis, or that this ceU death results from p53-
independent mechanisms. These results suggest
that mutant p53 interferes with wild-type p53 in
the repair of UV-induced DNA damage but not in
apoptosis. (AmJPathol 1996, 148:1113-1123)

The human p53 gene encodes a 393-amino-acid
nuclear phosphoprotein with a M, of 53,000. Current
evidence suggests that loss of normal p53 function is
associated with cell transformation in vitro and devel-
opment of neoplasms in vivo (for review see Refs. 1
and 2). The introduction of an expression vector of
the wild-type p53 gene suppresses the growth of
human lung cancer cells,3 human breast cancer
cells,4 and human colorectal carcinoma cells.5 Con-
versely, loss of wild-type p53 function through muta-
tion or inactivation leads to cell transformation and
tumor formation in experimental systems. The mutant
p53 gene, acting in concert with the ras oncogene,
can cause malignant transformation of primary rat
cells in culture.6 In human tumors, p53 has been
shown to be one of the most frequently mutated
genes known to date. More than 50% of human
malignancies of epithelial, mesenchymal, hemato-
poietic, lymphoid, and central nervous system origin
analyzed thus far were shown to contain an altered
p53 gene.76

Wild-type p53 protein is a crucial protein involved
in maintaining genomic stability after genotoxic
stress. After a DNA-damaging event, such as ioniz-
ing radiation and exposure to actinomycin, the
amount of p53 protein in the cells rapidly increases
and the cells arrest in Gl phase.9 12 After the event
of ultraviolet (UV)-induced DNA damage, p53 is
also increased.1315 Gi arrest is possibly achieved
by transcriptional regulation of downstream p53

16 WAFrguatgenes. p53 regulates the expression of p21WAFi
which is a potent inhibitor of cyclin-dependent ki-
nase (Cdk) activity.17-19 p21WAFl also directly inter-
feres with DNA synthesis by binding to proliferating
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cell nuclear antigen and blocking its interaction with
DNA polymerase.20 Another p53-regulated gene,

GADD45, has been found to suppress cell growth
and inhibit progression from GO to S phase after
serum stimulation, although it does not appear to
directly interact with Cdk proteins.2122 GADD45 also
binds to proliferating cell nuclear antigen and has
been shown to stimulate nucleotide excision repair in
vitro.21 The key function of p53 in regulating the cell
cycle is believed to provide time for DNA repair
before entry into S phase. Recently, p53 has been
found to associate in vitro with ERCC3,23 a nucleo-
tide excision repair protein shown to have a protec-
tive effect after ionizing radiation.24 These data sug-

gest that p53 may directly participate in the DNA
repair process. Smith et a1'5 showed that the disrup-
tion of normal p53 function in human colon carci-
noma RKO cells with either the human papillomavi-
rus E6 oncoprotein or a mutant p53 transgene results
in reduced repair of UV-induced DNA damage.

Another important role of the p53 protein in main-
taining the genomic stability of the cells is to trigger
apoptosis after a DNA-damaging event. Apoptosis is
a self-protective mechanism by which cells possess-
ing significant DNA damage can be deleted. Recent
studies have shown that apoptosis of cultured cells
induced by ionizing radiation,25-27 anticancer
drugs,28 or growth factor deprivation29 30 is depen-
dent on wild-type p53 function. Furthermore, p53-
dependent apoptosis suppresses tumor growth and
progression in vivo. Symonds et a131 elegantly
showed that choroid plexus tumors induced by in-
activation of the pRb family in transgenic mice de-
velop very slowly, owing to p53-mediated apoptosis.
Loss of p53 function by either mutation, gene knock-
out, or binding to SV40 large T antigen represses

apoptosis and converts an indolent tumor into a very

aggressive one. Using p53 knockout mice, Ziegler et
a132 showed that the rate of apoptosis induced by UV
irradiation is significantly higher in the keratinocytes
of wild-type p53 mice than p53 knockout mice.

It appears that p53 is involved with Bcl-2/Bax in
the process of inducing apoptosis. Bcl-2 protein is
thought to prevent most types of apoptotic cell death
(reviewed by Reed33), whereas Bax protein (a ho-
mologous protein to Bcl-2) heterodimerizes with
Bcl-2 and promotes apoptosis.34 Previous studies of
non-Hodgkin's lymphomas and breast cancers have
demonstrated an inverse relationship between p53
mutation and Bcl-2 expression.35 p53 protein has
been found to be a regulator of Bcl-2 and Bax in
gene expression both in vitro and in vivo.36'37 Wild-
type p53-triggered apoptosis is inhibited by Bcl-2 in
proliferating lymphoid cells,38 and in a v-myc-in-

duced T cell lymphoma line39 as well as in myelo-
blastic leukemia cells.36'40
We previously reported that transgenic mice that

carry multiple copies of a mutant p53 allele are pre-
disposed to UV-induced squamous cell carcino-
mas.41 To investigate the possible mechanisms of
the increased frequency of UV-induced skin tumors
in p53-transgenic mice, we examined the DNA repair
efficiency and the rate of apoptosis in the skin of
p53-transgenic mice after UV irradiation.

Materials and Methods

Mice
p53-transgenic mice were kindly provided by Dr.
A. Bernstein. These mice contain a mutant p53
genomic fragment that was originally cloned from the
Friend cell line CB7.42 The mutant p53 gene has a
mutation at residue 193 (Arg to Pro).24 This mutant
protein, unlike the wild-type p53 protein, comple-
ments Ras in the transformation of rat primary
cells.43 The transgenic p53 mice were mated with
normal CD-1 mice (Charles River Breeding Labora-
tories, Wilmington, MA). Fifty percent of the offspring
were transgenic, and fifty percent were normal mice.
To distinguish the p53-transgenic mice from non-
transgenic littermates, DNA extracted from mouse
tail biopsies by the proteinase K/sodium dodecyl
sulfate method44 were subjected to slot-blot analysis
using an EcoRI-Hindill fragment as a probe.43 The
normal CD-1 littermates were used as controls.

Isolation and Culture of Murine
Keratinocytes
Mice at the age of 6 to 8 weeks were sacrificed and
the tails were dissected. The tail was disinfected in
2.5% betadine for 1 minute and 70% ethanol for 1
minute followed by two rinses in phosphate-buffered
saline (PBS). The skin of the tail was then separated
from the tailbone with a scalpel blade and dissected
into smaller pieces of 2 to 3 cm2. The tail-skin biop-
sies were incubated in Dulbecco's modified minimal
essential medium (DMEM) containing 0.25% dis-
pase at 40C overnight. The epidermal layer was sep-
arated from the dermis layer with a pair of forceps.
The epidermal layer was trypsinized twice for 3 min-
utes each at 370C. The keratinocyte suspension was
collected and transferred to a tube containing DMEM
supplemented with 10% fetal bovine serum, and
centrifuged at 1000 rpm for 5 minutes. The cell pellet
was resuspended and incubated at 37°C in DMEM/
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Hams F12 medium containing fetal bovine serum
treated with 8% chelax (Bio-Rad Laboratories, Rich-
mond, CA), 4 mmol/L glutamine, 1 ,ug/ml hydrocor-
tisone, 10 ng/ml epidermal growth factor, 10 ng/ml
cholera toxin, 0.5% bovine pituitary extract, and 1.3
mmol/L CaCI2. After 24 hours, the cells were washed
with PBS twice and incubated with a similar DMEM/
Hams F12 medium containing 0.05 mmol/L CaCI2
and 0.05 ,uCi/ml [14C]thymidine (51.5 mCi/mmol)
and allowed to grow for 2 days. The cells were
washed twice with PBS before UVB irradiation. Cells
were either harvested immediately after UV irradia-
tion or replenished with fresh, prewarmed medium
(0.05 mmol/L CaCI2) and allowed to repair DNA for
various times.

UV Exposure
For UVB irradiation, a bank of four FS40 sunlamps
(Westinghouse, Bloomfield, NJ) was used. The inten-
sity of the UV light was measured by an IL 700
radiometer fitted with a WN 320 filter and an A127
quartz diffuser (International Light, Newburyport,
MA). Before UVB irradiation, the hair on the dorsal
surface of the mice was shaved using an Oster elec-
tric clipper with a number 40 blade. The mice were
then exposed to 5000 J/m2 UVB. The mice were
sacrificed at specific time points after UVB irradia-
tion, and the dorsal skin was dissected for DNA
extraction and immunohistochemical analysis. UV
irradiation of cultured keratinocytes was carried
out with the same lamps. The cells received 250
J/m2 UVB.

DNA Extraction
The fat on the skin biopsies was scraped away with
a scalpel blade. The skin biopsies or cultured kera-
tinocytes were incubated in a lysis buffer containing
100 mmol/L NaCI2, 20 mmol/L EDTA, 50 mmol/L
Tris-HCI (pH 8.0), 0.5% sodium dodecyl sulfate, and
1 mg/ml proteinase K (GIBCO BRL, Gaithersburg,
MD) at 37°C overnight. DNA was extracted succes-
sively with phenol and phenol/chloroform (1:1) and
by ethanol precipitation. RNA was removed by di-
gestion with pancreatic RNAse (Sigma Chemical
Co., St. Louis, MO). The DNA concentration was
measured with a Lambda 3 UVNIS spectrophotom-
eter (Perkin-Elmer Corp., Norwalk, CT).

Radioimmunoassay (RIA)
The radioimmunoassay was performed as de-
scribed.45 The antisera used were raised against

DNA that was irradiated with UV light (UVC). The
specificity of the RIA has been verified by the follow-
ing assays: photoreactivation in vivo46 and in vitro,47
digestion with T4 endonuclease V,48 and UVB pho-
toisomerization.4

Slot-Western Analysis of Cyclobutane
Dimers

One microgram of DNA was suspended in 50 ,lI of
6X standard saline citrate and filtered onto a nitro-
cellulose membrane through a slot-blot apparatus.
The membrane was then incubated in vacuo at 800C
for 30 minutes. The membrane was blocked with 5%
milk at 4°C overnight, hybridized with purified IgG
specific for cyclobutane dimer antibody (1 ,ug/ml) in
PBS containing 0.5% Tween 80 at room temperature
for 1 hour, and then hybridized with horseradish-
peroxidase-conjugated goat anti-rabbit secondary
antibody (1:10,000 dilution) for 1 hour at room tem-
perature. The signals were detected with the ECL-
Western chemiluminescence detection kit (Amer-
sham, Arlington Heights, IL).

Immunohistochemistry

The skin biopsies were formalin fixed and paraffin
embedded. Six-micron sections were prepared and
mounted onto saline-coated slides. Sections were
then slowly boiled for 12.5 minutes in the microwave
oven in a citrate buffer. Sections were stained for p53
using a polyclonal antibody CM1 (Dimension Labo-
ratories, Missisauga, Ontario), which reacts with both
wild-type and mutant forms of p53. A sensitive
streptavidin peroxidase method was used as de-
scribed previously.50 For detection of Bcl-2 expres-
sion, a rabbit polyclonal antibody specific for murine
Bcl-2 was used.51 In some cases, the antiserum was
preabsorbed with competing Bcl-2 peptide to con-
firm the specificity of the immunostaining results.

In Situ Detection ofApoptosis
After exposure to 5000 J/m2 UVB, the skin biopsies
from the shaved dorsal area were dissected and
fixed with 10% formalin. Sections were stained in a
routine fashion with hematoxylin and eosin. The
method used to identify apoptotic cells has previ-
ously been published.52 Briefly, 400 consecutive ke-
ratinocytes were examined for the presence of cells
with apoptotic features. Counts are expressed as the
number of apoptotic cells per 400 epithelial kerati-
nocytes and were performed in duplicate. The crite-
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Figure 1. RIA of cyclobutane dimerms in p53-transgienic and CD-1
mouse skin after 5000jm2 UVB irradiation. Assay was perfonned at
0, 4, 24, and 48 hours after UVirradiation. Values are the mean t SD
for six mice.

ria used to identify apoptotic cells were 1) cells with
remarkable condensation of chromatin and cyto-
plasm, 2) cytoplasmic fragments containing con-
densed chromatin, and 3) intra- and extracellular
chromatin fragments with a diameter of <2 ,um.

Apoptosis Detected by Gel Fragmentation
DNA samples from skin biopsies were fractionated
on 1.5% agarose gels in 1X Tris-acetate/EDTA elec-
trophoresis buffer and stained with ethidium bro-
mide. The gel was photographed under UV light with
Polaroid 55 film.

Results

Reduced DNA Repair in p53-Transgenic
Mice
The p53-transgenic mice were exposed to 5000 J/m2
UVB irradiation. Skin biopsies were obtained from
shaved dorsal areas, and DNA was extracted. The
amount of cyclobutane dimers in the skin cells was
monitored by RIA at 0, 4, 24, and 48 hours after UV
irradiation. An antibody specific for cyclobutane
dimers45 was used in this assay. Nontransgenic lit-
termates were used as controls. Figure 1 showed
that the repair rate of cyclobutane dimers was de-
creased in p53-transgenic mice (n = 6) at 4 hours
(CD-1, 55 + 9, versus p53, 103 + 6; P = 0.0002) and

CD-1 p53

Control

Oh
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24h

48h

Figure 2. Slot-Western analysis of cyclobutane dimers in p53-trans-
genic and CD-1 mouse skin after 5000 jIm2 UVB irradiation. Skin
biopsies were obtained at 0, 2, 4, 24, and 48 hours after UV irradia-
tion. Skin biopsies without UV irradiation were used as controls.

24 hours (CD-1, 56 + 11, versus p53, 77 + 7; P =
0.001) after UV irradiation.

To confirm the findings of reduced DNA repair in
p53-transgenic mice, 5 jig of DNA was filtered onto
nitrocellulose filters through a slot-blot apparatus.
The filters were then subjected to Western analysis
using the cyclobutane dimer IgG and goat anti-rab-
bit IgG. This is a direct binding assay as opposed to
the competitive binding assay (RIA) used above.
Figure 2 showed that, as expected, the cyclobutane
dimers were instantly increased after UV irradiation,
peaked at 2 hours, and reduced at 4, 24, and 48
hours after UV irradiation in normal CD-1 mice. The
amount of cyclobutane dimers remained high in p53-
transgenic mice after UV irradiation.

To eliminate the possibility that the differences in
DNA repair between CD-1 and p53-transgenic mice
were not due to the differences in the skin re-
sponses, such as hyperplasia, to UV irradiation, we
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Figure 3. RIA of cyclobutane dimers in cultured keratinocytes from
p53-transgenic and CD-1 control mice.

isolated mouse keratinocytes and examined the cy-
clobutane repair rates after UV irradiation in vitro. The
cells were labeled with [14C]thymidine for 2 days and
then exposed to 250 J/m2 UVB. Cells were harvested

at 0, 4, 24, and 48 hours after UV irradiation, and
DNA was extracted from the cells. Equal amounts of
[14C]labeled DNA were used for RIA. Figure 3
showed that in normal CD-1 mice the amount of
cyclobutane dimers was reduced at 4, 24, and 48
hours to 50 to 60% compared with the amount of
dimers at 0 hours after UV irradiation, whereas it
remained virtually unchanged in p53-transgenic
mice.

p53 Expression after UV Irradiation

Several reports have demonstrated that UV irradia-
tion induces wild-type p53 expression in cell lines
and in normal human skin.13-15 We examined
whether a similar increase of wild-type p53 protein is
induced in murine skin cells. Figure 4 shows that,
after exposure to 5000 J/m2 UVB, the wild-type p53
protein in CD-1 mouse skin was remarkably in-
creased at 4 hours, peaked at 48 hours, and re-
turned to basal levels at 72 hours. The increase of
p53 protein levels was mainly observed in epithelial
keratinocytes. A striking increase in p53 protein was
also observed in hair follicle epithelium, with a similar
time course. Another response to UV irradiation is
the increased thickness of the layers of keratinocytes

a.-I. b

Figure 4. Increasedp53 expression in murine keratinocytes after UVirradiation. a: No UV. b to d: 5000JIm2 UVB, at 4, 48, and 72 hours, respectively.
Magnification, X1000.
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Figure 5. In situ detection ofapoptotic cells in the epithelium ofp53-transgenic mice 48 hours after UV irradiation. a: No UV. b: 50001J/m2. Arrows
indicate apoptotic cells. Magnification, X 1000.

in the epithelium. Normal murine epithelium has only
one or two layers of keratinocytes (Figure 4a). At 48
hours after 5000 J/m2 UV irradiation, the epithelium
has three to four layers of keratinocytes. The in-
creased layers of keratinocytes after UV irradiation
were also observed in the p53-transgenic mice.

UV-Induced Apoptosis
The role of p53 in apoptosis has attracted much
attention in recent years. p53 has been shown to be
crucial in inducing apoptosis,5354 which is a self-
protecting mechanism to conserve the integrity of
the genome. To investigate whether a defect in p53-
mediated apoptosis accounts for the increased inci-
dence of skin tumors in p53-transgenic mice in-
duced by UVB, we examined the apoptosis rate in
UV-irradiated skin of p53-transgenic mice compared
with that of normal CD-1 mice. The apoptotic cells
with remarkable condensation of chromatin and cy-
toplasm were easily identified under the microscope
(Figure 5). The frequency of apoptotic cells in-
creased significantly at 24 hours, peaked at 48
hours, and dropped at 72 hours after UV irradiation
(Figure 6). This pattern was observed in both CD-1
and p53-transgenic mice. The frequency of apopto-
tic cells was slightly higher in p53-transgenic mice
than in CD-1 mice, but there was no statistical differ-
ence between any two groups (4 hours, P = 0.27; 24
hours, P = 0.28; 48 hours, P = 0.20; 72 hours, P =
0.58).

UV-induced apoptosis was also examined by gel
electrophoresis of genomic DNA isolated from kera-
tinocytes. The DNA of apoptotic cells is often di-
gested by endogenous endonucleases, which
cleave internucleosomal DNA to form a ladder of
oligonucleosome fragments.14 55'56 DNA was ex-
tracted from UV-irradiated skin biopsies, and the
integrity of the DNA was analyzed on agarose gels.

Fragmented DNA in the usual oligonucleosomal pat-
tern was detected in increased amounts at 24 and 48
hours after UV irradiation (Figure 7). There was no
striking difference between two groups except for
slightly more DNA fragmentation in the p53-trans-
genic mouse skin at 48 hours, which is consistent
with the above in situ assay.

Bcl-2 plays an important role in apoptosis.33 Stud-
ies have shown that p53 interacts with Bcl-2 in in-
ducing apoptosis. 36-40,57,58 The expression of Bcl-2
in UV-irradiated skin was examined by immunohis-
tochemistry. There was no difference between un-
treated CD-1 and p53-transgenic mice (Figure 8, a
and b), but decreased expression of Bcl-2 was
noted in the p53-transgenic mice at 48 hours after
UV irradiation (Figure 8, c and d). A less obvious
decrease of Bcl-2 expression was also seen in the
control CD-1 mice after UV irradiation.

a
a

0
0.

0.
4c

C 0 4 24 48 72
Hours After UV Exposure

Figure 6. In situ detection of apoptosis in p53-transgenic and CD-1
keratinocytes. Skin biopsies were obtained at 0, 4, 24, 48, and 72 hours
after 5000jIM2 UVB irradiation. Skin biopsies without UV irradiation
were used as controls (C). The determination of apoptotic cells was
described in Material and Methods.
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CD-1 p53
M 0 8 24 48 0 8 24 48

Figure 7. Gel analysis ofDNA integrity of muine skin after LW irra-
diation. Both p53-transgenic and CD-1 mice were exposed to 5000
JVm2 UVB. Skin biopsies were obtained at 0, 8, 24, and 48 hours after
UV irradiation. DNA was extracted and 10 ,ug of DNA from each
sample were subjected to gel electrophoresis analysis on 1.5% agarose
gel. M, 1-kb ladder marker (GIBCO BRL).

Discussion
Many studies have indicated that the p53 gene is
mutated in squamous cell carcinomas.59-61 The mu-

tations are usually UV-specific C->T or CC->TT tran-
sitions.6062 Alterations of the p53 gene through ei-
ther point mutations, deletions, or rearrangements
result in either no expression of wild-type p53 or

overexpression of mutant p53 protein and can con-
tribute to tumor development. The key function of
p53 is believed to be regulation of the cell cycle by
inhibiting the onset of S phase. When a cell is ex-

posed to a DNA-damaging agent, p53 protein is
rapidly increased to arrest the cell in Gl phase to
allow DNA repair to occur before progressing to S
phase.910 Conversely, cells with no wild-type p53
protein or containing mutant p53 protein cannot un-

dergo cell cycle arrest when exposed to DNA-dam-
aging agents63'64 and thus fail to repair damaged
DNA before DNA replication.

Using RIA, we examined the DNA repair efficiency
in the skin of p53-transgenic mice that carry both
wild-type and a mutant p53 gene. We elected to use

this model because it closely mimics the real-life
situation in which mutations of the p53 gene originate
in one of the alleles. Our data indicate that the DNA
repair induced by UV irradiation is reduced in the
skin of transgenic mice (Figures 1 to 3). One-half of
the damaged DNA was repaired by 4 hours in the
normal mice, but it remained unrepaired in the p53-
transgenic mice. DNA repair was associated with an

increase of wild-type p53 protein in normal mice
(Figure 4). The wild-type p53 protein in the skin of
p53-transgenic mice may also increase after UV ir-
radiation, but the mutant p53 protein may diminish
the wild-type p53 function.

Our data support the findings of Smith et a115 that
nucleotide excision repair is reduced in cells carry-
ing a mutant p53. In their study, the authors trans-
fected RKO colon carcinoma cell lines, which carry
either wild-type p53 or mutant p53, with UV-dam-
aged CAT plasmid DNA. Transient CAT gene ex-
pression in cells carrying mutant p53 was 2.5- to
3.6-fold less than cells carrying wild-type p53 at 72
hours after transfection. The exact mechanism by
which p53 modulates DNA repair is still unclear. p53
may regulate GADD45, which is turned on in cells
exposed to stimuli that arrest cell growth and
produce genotoxic stress.65 Immunodepletion of
GADD45 from cellular extracts resulted in re-
duced nucleotide excision repair activity in an in vitro
assay, whereas addition of recombinant GADD45
increased nucleotide excision repair activity.21
GADD45 also associates with proliferating cell nu-
clear antigen, which is required for nucleotide exci-
sion repair in vitro.66 p53 may directly participate in
the repair process as p53 protein has been recently
found to bind to ERCC323 and other excision repair
enzymes including XPD, XPB, and CSB.67 Further-
more, p53 was found to bind to single-strand DNA
lesions.68'69

Our results differ from findings in p53 knockout
mice. Ishizaki et al70 reported that UV-induced thy-
midine dimers and (6-4) photoproducts were re-
moved at a similar rate in p53-deficient and normal
embryonic fibroblasts. The reason for the discrep-
ancy in DNA repair between p53-deficient mice and
our p53-transgenic mice, which carry alleles of mu-
tant p53 gene, is unclear. It may be due to different
responses to UV-induced DNA damage in keratino-
cytes and embryonic fibroblasts. Alternatively, re-
duced nucleotide excision repair may be a manifes-
tation of a gain of function of the mutant p53 protein.
Gain of function of the mutant p53 is a crucial feature
in carcinogenesis. Sun et aV71 demonstrated that, in
the heterozygous state in which both wild-type and
mutated p53 gene were expressed, the mutant p53
dominates the wild-type p53 in controlling transcrip-
tional activity, in governing cell growth, and in pro-
gressing tumor promotion-sensitive phenotype. This
dominant negative effect was seen in a 1:1 ratio and
was more striking at a ratio of 1:3 (wild-type:mutant).
A reduced DNA repair rate in the presence of the

mutant p53 explains the increased skin tumor inci-
dence in the p53-transgenic mice after UV irradia-
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tion.41 The exact ratio of the wild-type and mutant
p53 protein in the keratinocytes exposed to UV un-
der conditions that block DNA repair is unclear.
However, it is known that the transgenic mouse con-
tains 10 to 20 copies of the mutant p53 gene and that
the majority of the p53 proteins in these animals is
the mutant type.41'43

Another role of p53 in maintaining cellular
genomic stability is implicated in inducing apoptosis.
p53 was first shown to induce apoptosis in cells of
hematopoietic origin. Using p53-deficient mice, it
was shown that p53 / thymocytes,252628 bone
marrow cells,28 and intestinal epithelial cells25'72
were resistant to ionizing radiation-induced apopto-

Figure 8. Bcl-2pnotein expression in p53-transgenic and CD-1 mouse
skin after 5000 J/m2 UV irradiation by immunobistochemistry. a:
Normal CD-i mouse skin. b: Normalp53 mouse skin. C: tN-irradiated
CD-1 mouse skin at 48 hours. d: UV-irradiatedp53-transgenic mouse
skin at 48 bours. e: Section with peptide blocking. Magnification,
X 1000.

sis. Ziegler et a132 demonstrated that UV-induced
apoptosis in keratinocytes is also dependent on wild-
type p53 function. However, some studies have
shown that apoptosis can occur in response to DNA
damage independent of p53 function. Strasser et
al38 reported, for example, that the T lymphoblasts
from p53-/- mice were just as sensitive as those
from p53+/+ mice to y-radiation, indicating that p53
is not the only inducer of apoptosis in response to
this insult. Moreover, Merlo et a173 reported that star-
vation-induced apoptosis is p53 independent. We
observed no significant differences in UV-induced
apoptosis of keratinocytes in normal and p53-trans-
genic mice that carry both wild-type and mutant p53
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(Figure 6). The kinetics of programmed cell death
are similar in normal and p53-transgenic mice. Our
data differ from the findings by Ziegler et al,32 who
showed that keratinocytes in the p53-deficient mice
had significantly less apoptosis after UV irradiation,
and suggest that the wild-type p53 protein in the
mutant p53 mice may still function to induce apopto-
sis. Decreased Bcl-2 protein levels after UV irradia-
tion (Figure 8) suggest that Bcl-2 plays an important
role in UV-induced apoptosis of keratinocytes. Our
data support the findings by Gillardon et a174 that
Bcl-2 mRNA levels were significantly reduced 48
hours after a single dose of UV irradiation and those
of Zhan et al,75 who observed reduction in Bcl-2
mRNA after x-ray irradiation of a human AML cell
line.

In summary, keratinocytes from p53-transgenic
mice that carry a mutant allele of the p53 gene have
reduced DNA repair in response to UV exposure but
similar apoptosis rates compared with normal mice.
The reduced DNA repair in p53-transgenic mice may
be responsible for the increased incidence of skin
tumors after UV irradiation.
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