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The microscopic phenotype of cervical intraepithelial
neoplasia (CIN) reflects a fine balance between factors that
promote or reduce CIN development. A shortcoming of the
current grading system is its reliance on static morphology
and microscopic haematoxylin–eosin features of the
epithelium alone. In reality, CIN is a dynamic process, and
the epithelium may exhibit differing results over time.
Functional biomarkers p16, Ki-67, p53, retinoblastoma
protein cytokeratin (CK)14 and CK13, help in the
assessment of an individual CIN’s lesion’s potential for
progression and regression. The aggregate information
provided by these biomarkers exceeds the value of the
classic grading system. Consequently, many more CINs
that will either regress or progress can be accurately
identified. These findings agree with known molecular
interactions between HPV and the host. For accurate
interpretation of a CIN, it is essential that these biomarkers
be determined quantitatively and separately in the
superficial, middle and deep layers of the epithelium. Such
geography-specific epithelial evaluations of quantitative
biomarkers emphasise the dynamic nature of a particular
CIN lesion, thereby changing the art of static morphology
grading into dynamic interpretation of the diseased tissue,
with a strong prognostic effect.
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T
he microscopic phenotype of cervical intrae-
pithelial neoplasia (CIN, also referred to as
squamous intraepithelial lesion (SIL))

reflects a fine balance between factors that
promote or accelerate the development of pro-
gressively more advanced disease and factors
that reduce or decelerate its progression. Critical
ingredients are genotypes of the human papillo-
mavirus (HPV) and the patient’s immune resis-
tance. The severity of CIN or SIL is expressed by
its microscopic grade, which is a standard part of
the surgical pathology report, and greatly influ-
ences treatment of the patient (fig 1). This is
understandable in view of the regression, persis-
tence and progression figures of different CIN
grades1 (table 1).

A shortcoming of the grading by microscopic
pathology is that it assesses exclusively epithelial
features and usually only those visible with the
standard haematoxylin–eosin staining, thereby
not taking into account other possibly valuable
information. Another serious disadvantage is

that the three distinct grades used in CIN (or
two in SIL) can easily give a faulty static
impression of a solidified sculpture, as if CIN or
SIL were a static event, whereas in reality a CIN
lesion is a dynamic process (a balance) that can
progress and persist but also regress.
Compounding the above are the well-known
issues of intraobserver and interobserver repro-
ducibility, which, for grading of CIN, is far from
perfect.2–9 It is also difficult to distinguish CIN
reliably from non-neoplastic lesions, resulting in
either overtreatment or undertreatment.10 11

These points emphasise the need for adjuvant
methods to interpret the actual morphological
impression of a CIN lesion in dynamic terms
rather than in static morphological grades. Such
adjunctive methods are also important for better
distinction of CIN from non-neoplastic lesions
and to predict accurately the risk for progression
of low-grade and regression of high-grade CIN
lesions. Even small improvements in prognostic
accuracy will enormously reduce the number of
patients erroneously or unnecessarily treated, as
shown for CIN2 (table 2). Figure 2 shows the
prognostic accuracy of CIN grade as opposed to
the ideal prognosticator of a CIN lesion.

Inasmuch as CIN causes progressive dysfunc-
tion in the proliferation and differentiation of
cervical epithelial cells, many studies have
focused on evaluating the merits of features
related to proliferation and differentiation.12–20

Without doubt, p16 and Ki-67 are the most
widely available, robust, stable and strong pre-
dictive biomarkers currently available for hand-
ling CIN lesions. (The antibody MIB-1 is often
used in paraffin wax sections to assess Ki-67
expression. In this article, for consistency, we use
only the term Ki-67, even if it relates to MIB-1).
Others, such as the retinoblastoma protein
(pRb), p53, CK13 and CK14, add substantial
insight.21–25 This paper summarises current
knowledge and gives practical guidelines for
using these most important biomarkers in daily
surgical pathology practice.

CIN AND HPV
Persistent infection with oncogenic HPV (high-
risk HPV or hrHPV) is necessary for cervical
precursors to evolve into invasive carcinoma.26–37

Many believe that CIN does not exist without

Abbreviations: CIN, cervical intraepithelial neoplasia;
CK, cytokeratin; HLA, human leucocyte antigen; HPV,
human papillomavirus; hrHPV, high-risk human
papillomavirus; HSIL, high-grade squamous
intraepithelial lesion; pRb, retinoblastoma protein; SI,
Stratification Index; SIL, squamous intraepithelial lesion
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HPV and that earlier publications on HPV-negative CINs are
flawed by insensitive methods or materials. The viral load
may be a predictor of the development of a CIN lesion,
although this has been doubted.38–42 Large, worldwide
vaccination programmes are in progress with promising
results, clearly indicating the important role of the host’s
local immune response to HPV infection.43 HPV is clearly
highly infectious, as in infected women it can be found not
only in the cervix but also in the vagina, vulva, perianal
region, urethra and even tampons.44 HPV is often also found
in women without overt signs of infection.35 HPV enters only
the parabasal cells of the cervical epithelium, not the
superficial cells (in which the nuclear material for all intents
and purposes is already largely dead), so infection requires
small transepithelial microtraumas reaching to the basal cells
of the cervical epithelium.

HPV infection often results in nothing more than a slightly
increased proliferation of the epithelium. In fact, most (about
80%) of these women show no remarkable microscopic
abnormalities of the epithelium or no more than a minimal
glycogen loss from the epithelium, slightly enlarged nuclei, or
sometimes parakeratosis or hyperkeratosis,45 but about 20%
of those infected with hrHPV develop a real CIN lesion
(fig 3).46–55 Clearance of the virus is followed by regression of
cervical lesions. An altered transcriptional regulation of the
viral oncogenes E6 and E7, especially in the oncogenic types,
results in a topographic shift of E6 or E7 expression from the
differentiated layers to the proliferating parabasal cell layers.
When overexpressed in proliferating cells, E6 and E7 interfere
with the cell cycle control regulated by p53 and pRb,
respectively.56 These morphologically abnormal cells migrate
towards the surface (just as normal cells do), but without
normal maturation. The degree of abnormal maturation is
expressed by the changes referred to as the poorly glycoge-
nated epithelium or even CIN.45 The dysplastic cells are
estimated to arrive at the surface in one to several weeks and
then desquamate, so a full-blown CIN3 may develop in up to

a few weeks (fig 3B), although many CINs regress
spontaneously, either slowly or after a prolonged period
(fig 3C,D).

Morphologically, a wide range of non-neoplastic changes is
associated with HPV infection. Features that characterise
neoplastic change include decreased upward maturation and
proliferation (mitoses above the level of the parabasal cells),
variation in size, shape and polarity, and coarse chromatin of
nuclei at all levels of the epithelium. In all cases of

Table 1 Regression, persistence and progression rates
of different CIN grades

Regression
(%)

Persistence
(%)

Progression
to CIS (%)

Progression to
invasive
carcinoma (%)

CIN1 57 32 11 1
CIN2 44 35 22 5
CIN3 32 ,56 – 12

Data from Osteer.1

CIN, cervical intraepithelial neoplasia; CIS, carcinoma in situ.

Table 2 CIN in the EU and annual estimates of the
number of women with overtreatment

EU

Number of inhabitants (2005) 375 million
Number of cases of CIN1, CIN2 and CIN3 in the EU 330 000
Number of CIN2 cases in the EU 82 500
Annual number of overtreated patients with CIN2
in the EU by CIN grade 66 000
Annual number of overtreated patients with CIN2
in the EU by Q-Ki-67 57 750
Annual number of overtreated patients with CIN2
in the EU by Q-Ki-67 and pRb 47 025
Improvement because of Q-Ki-67 per year 8 250
Improvement because of Q-Ki-67 and pRb per year 18 975

CIN, cervical intraepithelial neoplasia; EU, European Union; pRb,
retinoblastoma protein.
Data modified from Baak et al. Cell Oncol 2005;27:277–80.
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Figure 1 Treatment of cervical intraepithelial neoplasia (CIN) lesions
depends heavily on CIN grade. HSIL, high-grade squamous
intraepithelial lesion; LSIL, low-grade squamous intraepithelial lesion.

Figure 2 The prognostic accuracy of cervical intraepithelial neoplasia
(CIN) grade (A) and the ideal prognosticator (B).
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intraepithelial neoplasia, abnormal changes are visible
throughout all layers of the epithelium, including the surface.
However, when the bulk of the most abnormal changes are
confined to the lower one third of the epithelium, the lesion
is designated as CIN1. Similarly, CIN2 occurs when the most
abnormal changes extend into the middle third. In CIN3, the
changes are uniform and throughout the epithelium.

HPV AND MOLECULAR MECHANISMS LEADING TO
CIN
Over the past years, several reviews have described the
molecular biological mechanisms of HPV in detail.56–58 For the
working surgical pathologists, we will give a summary here,
as far as the mechanisms are relevant.

HPV is a double-stranded circular (episomal) DNA virus
whose genome can be divided into three regions: the
upstream regulatory region, the early region and the late
region. The upstream regulatory region is important in
regulating viral replication and transcription of downstream
sequences in the early region. The early region encodes
predominantly viral proteins (E1–E8) that are important in

viral replication. The late region encodes viral structural
proteins (L1, L2) that are important in the formation of the
capsid (a structural protein envelope that encapsulates each
virion). Much research has been conducted over the past
years on the functions of E1–E8, L1 and L2. E6 and E7 are the
principal transforming proteins of HPV.59 The expression of
these proteins in hrHPVs such as subtypes HPV16 and HPV18
(but not of those having low oncogenic risk such as HPV6
and HPV11) causes cells to become completely transformed,60

principally by inactivating the host’s p53 and pRb, respec-
tively. After getting access to the basal cell compartment of
the cervical epithelium through microwounds, HPV infects
these epithelial stem cells, and initially is a phenotypically
latent passenger in the form of an episome (a DNA ring) in
the cytoplasm of these basal layer cells. A few of the infected
stem cells give rise to daughter cells capable of replicating the
viral genome and synthesising capsid proteins in the
terminally differentiated cell layers above the basal cell layer.
The viral replicating cells display typical cytopathic changes,
including, most prominently, koilocytosis or koilocytotic
atypia—that is, the squamous cells with vacuolated appear-
ance—as well as some minor changes in the nuclear
morphology. Finally, mature viral particles are released along
with the squamous debris that is exfoliated at the surface of
the epithelium.

The transition from normal to dysplasia or invasive
carcinoma is triggered by uncontrolled expression of E6 or
E7 in proliferating basal and parabasal epithelial cells.61 This
phenomenon distinguishes the process of cell transformation
from productive viral infection and may be due to integration
of the viral DNA in the host cell genome, which is observed in
most invasive cancers and in a subset of high-grade lesions.62

The integration of HPV DNA into the host’s chromosomes is a
critical event in HPV-related oncogenesis, although little
information is currently available on the effect of integration
on the host genome. Conversely, viral integration may be the
result of a genetically unstable environment in parabasal cells
caused by p53 inactivation, the guardian of the human
genome.56 Molecular studies have shown that HPV integra-
tion results in disruption of the open-reading frames for E1 or
E2 of the HPV genome, leading to increased expression of E6
and E7 in particular, favouring a growth advantage and
neoplastic transformation.63–65 Both E6 and E7 proteins can
bind to multiple cellular targets.66 Figure 4 shows a simplified
scheme of the interactions that are thought to be most
relevant for their transforming functions. A detailed discus-
sion is beyond the scope of this article; useful information
can be found at www.hpvtoday.com. E6 binds to the tumour
suppressor gene product p53, which prevents cells from
undergoing p53-mediated apoptosis and p53-independent
activation of telomerase. E7 binds to the retinoblastoma
tumour suppressor gene product pRb, resulting in hyper-
proliferation and inducing abnormal centrosome duplica
tion independent of inactivation of pRb and its family
members.67 68

VIRAL AND HOST FACTORS IN HPV PERSISTENCE
AND PROGRESSION
Viral and host factors play interdependent parts that foster
the regression persistence and progression of HPV infections.
Viral factors include viral variants, viral load and viral
integration. Host factors include the host immune response
and susceptibility genes.69

Viral factors
Several studies have now documented an association
between HPV16 variants and the development of cervical
cancer, with non-European variants being associated with
excess risk for cervical cancer.70 The limited data available for
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Figure 3 Morphological events in the cervical epithelium after being
infected with high-risk human papillomavirus (HPV). (A) 80% of the HPV
infections occur without detectable morphological changes. (B) A full-
blown cervical intraepithelial neoplasia (CIN)3 may develop in 3 weeks.
(C,D) Many CINs regress spontaneously, either slowly or after a
prolonged period.
nrm, normal ticology; react, reactive changes, non-reoplastic.
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HPV types other than HPV16 suggest that non-European
variants of HPV18 and HPV58 are also associated with
increased risk for cervical cancer.71 72 Cross-sectional epide-
miological studies showed an association between increasing
HPV viral load and the risk for cervical cancer.37–42 However,
the longitudinal data evaluating the pattern of viral load over
time and the subsequent risk for progression of HPV infection
to cervical neoplasms (CIN2 and CIN3) and cancer are
insufficient to support this association.73 74 Although HPV is
usually in the episomal form in cervical lesions, viral
integration has generally been reported to be associated with
oncogenesis. Unfortunately, the currently widely available
tests determining HPV do not distinguish between episomal
and integrated HPV. The frequency of HPV integration
increases with the degree of disease severity, thus potentially
correlating with progression to cervical cancer.62 Other viral
events are epigenetic events in the HPV genome—that is,
those events that alter gene expression (eg, phenotype)
without a change in the DNA sequence (eg, genotype).
Examples are hypermethylation or hypomethylation of viral
oncogenes and the potential implications for suppression or
activation, respectively, of viral oncogenic expression.

Host factors
A positive association exists between the detection of HPV
antibodies (humoral immunity) and the risk for cervical
neoplasia.75–77 Although these antibodies may effectively
prevent infection, they seem to be unimportant effectors in
causing regression in established HPV infections and related

cervical lesions.78 In contrast to antibodies, T cell responses
(cellular immunity) to HPV are likely to be an important
effector mechanism for clearing established infections.79 80

Thus, adequate T cell responses generated after infection may
help to protect against the progression of infection and
against early lesions. Natural polymorphisms or genetic
variations (genetic susceptibility) between people in
immune-related genes may also help to explain differences
in the regulation of immune function. For example, human
leucocyte antigen (HLA) DRB1*1301 seems to have a
protective role in the pathogenesis of cervical cancer.70

However, this individual allele association is not likely to be
explained by underlying haplotypes.81 Studies focusing on
inherited susceptibility showed that having a sister or a
mother with cervical cancer increases a woman’s risk for
cervical cancer twofold and that heredity may explain some
of the variation in risk for cervical cancer.82 83 But the
question is whether it is the presence of inherited suscept-
ibility or the sharing of promiscuous sexual behaviour among
family members that may cause cervical cancer. Shared
familial environment was not found to be a major effect
among mother–daughter relationships.83

KI-67 CELL CLUSTERS AND P16 DISTINGUISH CIN
FROM REACTIVE LESIONS
The development and behaviour of CIN is correlated with
proliferation, an observation known for many decades. Ki-67
is one of the most widespread biomarkers correlated with
proliferation; one of the simplest applications therefore is to
use Ki-67 expression as a marker for CIN. In sections
embedded in paraffin wax, the MIB-1 equivalent of Ki-67 is
widely used, as its immunohistochemical staining pattern
is stable, robust and gives rich contrast. Evaluation of

Figure 4 Interaction of human papillomavirus (HPV) proteins E6 and
E7 in the cell cycle. (A) The two conditions of a normal cell; (B) HPV
stimulates proliferation through release of E6 and E7, interacting with
p53 and retinoblastoma protein (pRb). Cdk, cyclin-dependent kinase.

Ki  67

p16

Figure 5 The use of Ki-67 (top) and p16 (bottom) to ascertain that a
suspicious yet uncertain cell group is indeed cervical intraepithelial
neoplasia and not atrophic epithelium.
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Ki-67-positive cell clusters in the epithelium is a strong
diagnostic adjunct in distinguishing CIN from normal or
benign reactive cervical squamoepithelial lesions.18 25

However, to prevent overdiagnosis, Ki-67-positive, tangen-
tially cut parabasal cells, inflammatory cells and immature
metaplasia must be carefully excluded.

The cyclin-dependent kinase inhibitor-2A p16 is also useful
in distinguishing CIN from reactive lesions.84 As p16
expression is regulated by a pRb-dependent negative feed-
back loop, continuous inactivation of pRb by hrHPV E7
results in increased p16 levels. Hence, increased p16 levels
may reflect HPV-induced dysplasia with deregulated E7
expression.85 Information about the presence of HPV has no
additional diagnostic value, as many non-CIN epithelia can
be HPV positive. Marked overexpression of p16—that is,
diffuse and strong immunostaining—is seen in all cervical
cancers and pre-neoplastic lesions with infection by high-risk
and intermediate-risk HPVs of subtypes HPV16, HPV18,

HPV31, HPV33, HPV52 and HPV58 and weak or focal staining
in lesions infected by HPV6 or HPV11.21 Others have
confirmed the strong correlation between the presence of
HPV DNA and p16 staining.23 At low magnification, p16
staining facilitates finding a dysplastic area, especially if the
epithelium is heavily infested with leucocytes, as occurs often
in CIN lesions.86 In addition, overexpression of p16 can be
used to identify individual dyskaryotic cells in ThinPrep
smears.87 Caution must be exercised, as occasionally inflam-
matory cells themselves may exhibit p16 reactivity in clearly
non-dysplastic lesions.24 However, during routine prospective
evaluation of p16 over 12 months in a large gynaecopathol-
ogy practice, no false-positive p16 lesions have occurred
(unpublished results), showing that false-positive p16 is a
very rare phenomenon and probably has a negligible role. The
combination of Ki-67 and p16 is useful to ascertain whether a
suspicious yet uncertain cell group is indeed CIN and not
atrophic epithelium (fig 5).

Figure 6 The quantitative image analysis method. The microscopic image of the epithelium is shown on the monitor of the image analysis system. With
the mouse, the operator demarcates a diagnostic epithelium strip, carefully avoiding tangentially cut areas. The demarcation lines are shown as white
lines (surface, basal membrane, left, right). The operator then clicks the mouse on all Ki-67-positive nuclei within the demarcated strip. After each click,
the system automatically draws a perpendicular line from that point to the basal membrane and over the full thickness of the epithelium (these thin
dotted lines are barely visible for all nuclei) and calculates several quantitative features such as thickness (T) of the epithelium at that point, distance (D)
from the point to the basal membrane, the stratification index (SI = D/T) and others. These quantitative features are shown in the left panel after each
click and are stored automatically. Lines D (dotted lines) and T (continuous lines) are emphasised for three nuclei at AA9, BB9 and CC9. The SIs are 0.16,
0.12, 0.61 and 0.29, respectively. The image analysis program automatically calculates many quantitative features per sample. For example, the
mean SI of the four measurements used as an example is (0.16+0.12+0.61+0.29)/4 = 0.30. With multivariate analysis, the 90th centile (SI90) of all
individual SI measurements in a case is the strongest factor (more relevant than the mean SI) to describe the grade and also to predict progression. The
number of Ki-67-positive nuclei per 100 mm basal membrane is the next strongest discriminator for grade, whereas the percentage of Ki-67-positive
nuclei in the middle third of the epithelium (MIDTHIRD) is the only factor that adds to the prognostic value of SI90.
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KI-67 AND CIN GRADE
Immunoquantitation of Ki-67 is an important diagnostic
adjunct for the grading of CIN.19 20 88 Figure 6 shows the
quantitative image analysis method. The combination of the
Stratification Index (SI, which indicates, how high Ki-67-
positive nuclei are located in the epithelium; the higher the
SI, the higher the CIN grade) and the number of Ki-67-
positive nuclei per 100 mm basal membrane (the more Ki-67-
positive nuclei, the higher the grade) is the best discriminat-
ing set of features that distinguishes the three CIN grades at
the same time (fig 7). Some CIN1 cases that were initially
‘‘misclassified’’ with these two quantitative Ki-67 features
showed a higher CIN grade on deeper levels from re-cut of
the paraffin wax blocks, whereas the other CIN1 cases that
were correctly classified with Ki-67 quantitation remained so
in the deeper cuts. In a subsequent prospective evaluation of
121 routine CIN cases (test set), six independent patholo-
gists, some of whom were general pathologists, achieved
exact agreement in 78% of cases when they compared CIN
grades with histology by staining with haematoxylin–eosin
and quantitative Ki-67. When the two reviewers were experts
in gynaecological pathology, the agreement jumped to 97%,
and the sensitivity, specificity and positive and negative
predictive values were very high, further indicating the
supportive role of Ki-67 in general surgical pathology
practice. Immunoquantitative parameters for Ki-67 are also
correlated with the presence of hrHPV in CIN lesions (fig 8).20

BIOMARKERS AND BIOLOGICAL AGGRESSION OF
EARLY CIN LESIONS
Koilocytosis
Pathologists often regard koilocytosis as an additional sign of
CIN aggression (ie, is more likely to progress). In reality, the
finding or absence of koilocytosis is of no value, and in fact
may be misleading. Koilocytosis is the microscopic image of
the productive phase of the HPV life cycle. In this state, the
viral particles needed to form the koilocyte replicate and
accumulate in the superficial differentiating layers of the
epithelium, not in the basal proliferating part, which is the
critical region for the developing dysplasia.59 61 The presence
of koilocytosis is irrespective of HPV type. In a series where
patients were evaluated only if the biopsy result was normal,
atypical or CIN1, 35% of the patients with koilocytosis did not
have HPV infection, 25% of patients with prominent
koilocytes had a low-risk HPV type and 40% had an hrHPV
type.89 For a cell to show the presence of a well-developed
koilocyte, the cell should contain a considerably high viral

load; thus, the absence of koilocytosis implies nothing about
the presence of oncogenic organisms. In corroboration,
progression-or-not analysis of original early CIN lesions
showed that patients with koilocytosis had a considerably
lower likelihood of progression than those without koilocy-
tosis. Thus, CIN lesions with koilocytosis are productive viral
infections, but are generally overdiagnosed when classified as
high-grade CIN. Instead, most should be grouped with low-
grade CIN1 at best. A further complicating evaluation of
koilocytosis is that the presence of the features among
observers is poorly reproducible.16

Prognostic value of Ki-67 and other biomarkers in
early CIN lesions
Ki-67 features in small histological punch (marker) biopsy
specimens predict progression to CIN3 in early CIN lesions
more strongly than subjective CIN grade (both for routine
and experts’ review CIN grades).12 17 The prognostically
strongest Ki-67 features were the Ki-67 SI (fig 6) and the
percentage of the Ki-67-positive nuclei located in the middle
third layer of the epithelium (MIDTHIRD; fig 9). The
strongest prognostic thresholds of these features (SI = 0.57
and MIDTHIRD = 30%) were detected in the first study we
conducted by multivariate regression analysis (Cox model).
These features and thresholds are highly reproducible. High
reproducibility is important but perhaps not enough to be
used in another laboratory, as interlaboratory differences in
tissue processing and staining of the sections undoubtedly
occur and may perhaps influence the Ki-67 features. The
prognostic Ki-67 test was therefore once more validated in
two new patient sets from another country (Norway), first on
historical archive material and then prospectively.
Prospective validation is usually the most difficult phase
when implementing a new laboratory test, as minor
variations will occur despite the measurement and inter-
pretation protocol being well defined. Although differences in
the processing and staining procedures undoubtedly existed
between the Dutch and Norwegian laboratories, the findings
in the two Norwegian validation studies confirmed that the
quantitative Ki-67 test in CIN lesions was strongly predictive
for CIN3 in the follow-up (fig 9), whereas the routine CIN
grade was not.12 14

The critical value of Ki-67 SI = 0.57 needs some further
explanation. In the normal epithelium, proliferation occurs in
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Figure 7 Ki-67 and grade. Scatter plot of the 90th centile of the
stratification index (SI90) against the number of Ki-67-positive nuclei per
100 mm basal membrane for cases with cervical intraepithelial
neoplasia (CIN)1, CIN2 and CIN3. The variables chosen were the two
most discriminating ones in the multivariate stepwise regression analysis.
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the parabasal cells. In high-grade CIN, proliferation is
abnormally high and is also found in the middle and
superficial layers. As Ki-67 SI = 0.57 and MIDTHIRD = 30%,
the critical prognostic values, are in agreement with the idea
of ‘‘upward proliferation’’ in high-grade squamous intrae-
pithelial lesion (HSIL), higher localisation of Ki-67-positive
cells leads to an increase in Ki-67 SI. Importantly, indepen-
dent validation studies confirmed that these threshold values
were essential to predict progression, making them strong
and reliable prognostic factors.

The prognostic value of the various cell cycle regulatory
proteins and markers of squamous cell differentiation have
been compared in various studies. Some found telomerase to
be important in cytological material, but others had negative
results90 91 and in one study on punch biopsy, telomerase was
not a prognostic marker in early CIN.15 This is understandable
as telomerase activity reflects a rather late step in the
sequence from CIN3 to squamous cell carcinoma, explaining
why it was not prognostic for early CIN progression.84 The
results for pRb, p53, cyclins A, E and D, p16, p21, p27,
telomerase, involucrin, CK13 and CK14 are not always in
agreement with each other. However, this may be partly due
to technical shortcomings, as an important biomarker
function should also assess the dynamics of the cervical
epithelium. Epithelial cells are born in the parabasal layer
and then mature and migrate to the surface (where they are
desquamated); therefore, an average assessment of biomar-
kers throughout the entire epithelial thickness may blur
important dynamic information. All biomarker features were
thus separately analysed in the basal, deeper and upper half
of the epithelium with quantitative image analysis techni-
ques to get the best reproducibility. Multivariate analysis
showed that the combination of high Ki-67 SI and reduced
expression of pRb in the deeper half of the squamous
epithelium predicted progression of CIN lesions (fig 10).
Moreover, addition of reduced CK13 and CK14 expression
identified a subgroup that had an even greater risk of
progression, but this additional prognostic value of CK14 and
CK13 was only in the prognostically high-risk subgroup with
high Ki-67 and low pRb. Other studies found that loss of
involucrin and CK13 expression occurred only in the high-
grade lesions and was therefore related to lesion grade. Loss
of CK14 expression also occurred considerably more often in
high-grade than in low-grade lesions.92 Quantitation of
combined Ki-67, pRb, CK13 and CK14 in early CIN lesions
gives accurate information about their progression risk.15

These results are summarised in the prognostic decision
scheme shown in fig 11.

On the basis of the above findings, a model for the
development of an early CIN lesion has been developed
(fig 12). Central to this hypothesis is that hrHPV E7, when

expressed during HPV infection, impairs pRb. pRb normally
acts to reduce growth. When impaired by E7, the growth-
reducing effect of pRb diminishes as shown by increased and
upward proliferation (as a result, the Ki-67 SI increases and
finally exceeds a critical level of 0.57). When hrHPV is cleared
by the host, the CIN lesion heals. The first sign (before
disappearance of morphological haematonylin–eosin CIN
features) is increased pRb levels in the deep layers of the
epithelium. Shortly after that, proliferation reduces, and the
subsequent upward spread of proliferating cells is also
reduced, as manifested by lowering Ki-67 reactivity.
Naturally, p53 is also impaired (by E6), but the prognostic
role of pRb is much stronger and overshadows the
importance of p53 in predicting early CIN progression.
However, in HSIL lesions, p53 has more value in identifying
CIN3 lesions that will regress.

PREDICTION OF BEHAVIOUR OF CIN2 AND CIN3
(HSIL) WITH BIOMARKER PATTERNS
Biomarker patterns are also prognostic in HSIL, which has
important implications. When left untreated, many patients
continue to show persistent disease (as shown by follow-up
biopsies in cases of HSIL or CIN2 and CIN3). Consequently,
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many doctors now ablate all HSILs; nonetheless, without
treatment 15–45% will naturally regress (ie, no HSIL detected
on follow-up).1 The average age of patients with HSIL is
around 29 years, whereas patients with (micro)invasive
cancer are on average 9–10 years older. Complicating the

decision of whether to treat HSIL is the reality that excision,
with either cold-knife cone or diathermic loop method, is a
considerable medical procedure, with potentially serious
complications, most commonly cervical insufficiency. As
many patients treated for HSIL will at some later time
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Figure 11 Prognostic biomarker-
based decision scheme of an early
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Figure 12 Human papillomavirus
(HPV) and the development and course
of an early cervical intraepithelial
neoplasia (CIN) lesion. CK, cytokeratin;
Cyc, cyclin; pRb, retinoblastoma
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1024 Baak, Kruse, Robboy, et al

www.jclinpath.com



become pregnant, cervical insufficiency becomes a major
concern and commonly leads to immature birth,93 demanding
preventive cervical cerclage under general anaesthesia at 16–
20 weeks’ gestation. Obviously, today’s clinical goal is to
prevent unnecessary treatment by cone or loop electrosurgical
excision procedure. The remedy, naturally, is to identify those
HSILs that would regress spontaneously.

To identify factors related to histologically proven persis-
tence or regression, small histological colposcopically directed
(punch) biopsy specimens were analysed for HPV genotypes
and different immunoquantitative proliferation, cell cycle
regulation and differentiation markers.94 Special attention
was paid to p53 and pRb in biopsy specimens as potential
markers for hrHPV E6 and E7 function.95 All cases had a
biopsy interval of at least 100 days between the marker and
first follow-up biopsy. This interval is important to mitigate
the effects of the initial punch biopsy procedure, which
causes considerable damage to the cervix and, consequently,
a local inflammatory and repair response. Healing is generally
complete after 3 months. Within this interval, there is a
serious risk of overdiagnosing dysplastic remnant lesions
because of the superimposed reactive changes in the
epithelium. To minimise this risk, we and others excluded
biopsy specimens taken shortly after the initial biopsy, and
included only those with an interval of at least 100 days
between the marker and follow-up biopsy.94 96 On the basis of
the microscopic findings in the diagnoses by follow-up cone
or loop electrosurgical excision procedure, each initial marker
CIN lesion was classified as regressive or persistent.97 All
lesions had hrHPV infection and were diffusely positive for
p16: 63% were positive for HPV16 or HPV16 mixed with other
hrHPV genotypes and 37% had other hrHPV types. The rate of
spontaneous histological regression was 43%. Others have
found similar rates of spontaneous regression.96 98–100 The
initial marker (punch) biopsy specimens of the persistent
HSILs had considerably lower levels of pRb and p53 in the
deep half of the epithelium than those having non-persistent
(regressive) HSILs. The degrees of positivity of p16, Ki-67,
cyclin D1 reactivity, lesion extent in the punch (marker)
biopsy specimen and patient age were all unrelated to
persistence or regression, as found later in the follow-up
cone biopsies. HPV16-positive HSIL had a lower regression

percentage of pRb and p53 than those with other HPV types
(fig 13), and we found a (not significant) trend for HPV16-
containing lesions to persist more often than non-HPV16
lesions (in agreement with others94). However, the percen-
tages of pRb–positive and p53-positive nuclei in the deep half
of the epithelium of a histological punch cervical biopsy
specimen were much stronger predictors of CIN3 regression
than HPV genotype (fig 14).

In a prospective observational cohort study on prognostic
variables associated with clinical behaviour, 100 women with
HPV-infected HSIL were followed up from about 4 months
before the entire lesion was resected.96 Of them, 28% had
spontaneous histological regression (CIN1 or less at resec-
tion). In the study, lesions in women with only HPV16
infection were less likely to regress than those in women with
infection of HPV16 mixed with other HPV types, compared
with lesions in women with infection of HPV types other
than HPV16 (p = 0.049). In the cohort with only HPV16
infection, the presence or absence of the HLA*A201 allele had
no effect on outcome, in contrast with patients having other
HPV types in which persistence of the lesions was associated
with the presence of the HLA*A201 allele. These results
suggest that interactions among HPV type and HLA type as
expressed by regression rates support a role for HLA-
restricted HPV-specific immune responses in determining
disease outcome.

It seems that the interaction (balance) between a patient’s
immune response and HPV factors results in a prognostically
important epithelial cell reaction, measured by epithelial
levels of pRb and p53. Future studies comparing the different
markers will help to clarify the intriguing correlations among
these biomarkers, hrHPV subtype, the host immune response
and HLA allele interaction.

WHY ARE THE DEEP EPITHELIAL LAYER
BIOMARKERS ESPECIALLY PROGNOSTIC IN CIN?
We must realise that the microscopic image of a cervical
epithelium is a snapshot (a photograph) of a dynamic process
(a film) that normally would consist of many images taken
over time (fig 15). The question of why measurement of
biomarkers in the deep epithelium is especially predictive of
CIN behaviour pulls together the different dynamic biological
aspects already discussed earlier in this article.
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The cervical epithelium is a dynamic tissue of socially and
orderly moving cells with tightly balanced and controlled
proliferation and differentiation. The HPV infection disturbs
this process. Through oncoproteins E6 and E7, HPV
immobilises or degrades and thereby reduces the amount of
pRb and p53 available for normal function. This results in
basal cells that do not enter into the normal maturation
process, resulting after a short time in high (abnormal)
proliferation of the cells of the superficial layers (mitoses or
Ki-67-positive cells and abnormal chromatin patterns) and
altered differentiation markers. Once the virus infection
clears, p53 and pRb function in the deep layers restarts. This
is so far the earliest sign of cure and normalisation of cell
metabolism. Hereafter (perhaps after some weeks), prolifera-
tion and hence the number of Ki-67-positive cells falls,
initially in the deep layer. These normal cells (now with
mostly Ki-67-negative nuclei) will move up, mature and
reach the epithelial surface in several weeks. Some time after
the pRb and p53 have normalised, signs of abnormal
proliferation and differentiation in the superficial layers
(diagnostic for CIN3) will also disappear, and the condition
becomes normal. Thus, the assessment of levels of p53 and
pRb in the deep layer predicts the future events that will take
place in the superficial epithelium, some weeks after the
biopsy was carried out. The clearance and cure process
expressed by the biomarkers is not always such that the CIN
lesion just slowly disappears. The CIN3 lesion may regress to
CIN2, hang there for some time, increase back to CIN3, and
only then slide down to CIN1, totally regress or even persist.
Quantifying biomarkers therefore can change the patholo-
gist’s role from reporting static morphology to the much more
exciting possibility of dynamically interpreting and forecast-
ing future events that will take place in the tissue. In this
context, it is of utmost importance that biomarkers are
analysed in certain specific geographical areas of the
epithelium. An average measurement taken randomly in
the epithelium, not considering the basal, deep and super-
ficial layers, ignores the dynamic nature of the cervical
epithelium, obscuring important prognostic information. The
familiarity of pathologists with the biology and dynamics of
tissues allows them to extract the biologically relevant
information correctly. When this important facet of tissue—
that is, geographical location—is not considered, important
information is lost.

HANDLING AND INTERPRETING BIOMARKER
PATTERNS IN CIN LESIONS
On the basis of the discussion earlier, we now recommend
the following routine when handling a cervical punch biopsy
specimen in the surgical pathology laboratory, especially
when an early CIN lesion is contemplated:

1. Analyse the diagnostic section stained with haematox-
ylin–eosin, for routine evaluation.

2. Scan a serial section, stained for p16, to identify
diffusely reactive squamous areas. These are nearly
always dysplastic (false-positive p16 reactivity is rare
and easily recognised).

3. Evaluate the next serial section with Ki-67. Ki-67-
positive cell clusters further support a diagnosis of CIN.

4. Carry out quantitative Ki-67 image analysis for objective
grading support and indication of progression risk in

case of CIN1 and CIN2. If the Ki-67 SI90.0.57 or the
percentage of Ki-67-positive nuclei in the middle third
layer of the epithelium exceeds 30%, the likelihood of
progression to CIN3 in the follow-up is high (about
30%).

5. In the subsequent section, analyse the percentage of
pRb-positive nuclei in the lower half of the epithelium.

6. Interpret the results as follows. If the combination of Ki-
67 SI90.0.57 occurs together with pRb,40%, progres-
sion risk in early CIN to CIN3 is high (about 50%). The
progression risk in the remaining patients is almost
zero. Moreover, in the subgroup at high risk according
to Ki-67 and pRb, a combination of CK13-positive
cells,80% and CK14-positive cells,50% identifies
patients with an excessively high progression risk. In
other patients (with Ki-67 SI90,0.57 or pRb.40%), the
cytokeratins are not informative (fig 11).

The results for HSIL (CIN2 and CIN3) are promising; they
also are in agreement with current molecular biological
knowledge but have not been validated to the same degree as
for low-grade CIN. The following therefore should be used
with care.

Evaluate the percentage of pRb-positive and p53-positive
nuclei in the deep half of the epithelium. If either the
percentage of pRb-positive nuclei .40% or that of p53-
positive nuclei .15%, the likelihood of regression is high. All
other HSIL lesions will probably persist or even progress.

FUTURE DEVELOPMENTS
Biomarker-mediated dynamic clinical behaviour prediction of
CIN has been adequately validated. Routine biomarker
applications can considerably change the manner in which
afflicted women are followed up and treated. Definitive
treatment in patients at high risk will be instituted earlier,
whereas women whose biomarkers suggest that the process
may resolve of its own accord will not receive treatment or
will be treated only at a later time. Other important aspects of
a dynamic CIN lesion—for example, the local immunore-
sponse factors—are relevant variables that may in the future
affect prognosis and treatment. It is not yet certain whether
the host’s essential immune reactions can be adequately
extracted from the usual paraffin-wax-embedded tissue
alone, and independent validation studies are required.
Moreover, other immunological and protein parameters must
also be evaluated. Such proteomic analyses may go well
beyond the analysis of classic formaldehyde-fixed biopsy
specimens.101
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