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ABSTRACT A stochastic random walk model of protein molecule diffusion on a cell membrane was used to investigate the
fundamental causes of anomalous diffusion in two-dimensional biological media. Three different interactions were considered:
collisions with fixed obstacles, picket fence posts, and capture by, or exclusion from, lipid rafts. If motion is impeded by ran-
domly placed, fixed obstacles, we find that diffusion can be highly anomalous, in agreement with previous studies. In contrast,
collision with picket fence posts has a negligible effect on the anomalous exponent at realistic picket fence parameters. The
effects of lipid rafts are more complex. If proteins partition into lipid rafts there is a small to moderate effect on the anomalous
exponent, whereas if proteins are excluded from rafts there is a large effect on the anomalous exponent. In combination, these
mechanisms can explain the level of anomaly in experimentally observed membrane diffusion, suggesting that anomalous
diffusion is caused by multiple mechanisms whose effects are approximately additive. Finally, we show that the long-range
diffusion rate, Dmacro, estimated from fluorescence recovery after photobleaching studies, can be much smaller than Dmicro, the
small-scale diffusion rate, and is highly sensitive to obstacle densities and other impeding structures.

INTRODUCTION

Diffusive processes are crucial to biological interactions. How-

ever, the environments in which these processes take place

have high densities and viscosities due to molecular crowd-

ing. Biological media exhibit a large degree of complexity

and heterogeneity and often exhibit substantial compartmen-

talization (1). Furthermore, diffusive motion and interaction

in biological systems often takes place on two-dimensional

membranes. Because the nature of diffusion depends strongly

on the dimensions of the medium, this has important con-

sequences. In particular, diffusion in biological media is

observed to be orders of magnitude slower than predicted by

theory (2). As a result of the nonclassical nature of these ran-

dom motions, biological reactions are generally complex, non-

deterministic as well as being frequently characterized by

low numbers of reacting molecules (3).

Classically, according to the standard diffusion equation,

the mean squared deviation of a protein from its starting site

on a two-dimensional membrane grows linearly with time,

i.e., MSD } t. However, in low-order or complex biological

media, this parameter is often found to vary with a positive

fractional power of time that is smaller than 1, i.e., MSD }

ta, where a is called the anomalous exponent (which is

exactly equal to 1 for normal diffusion). This phenomenon is

called anomalous diffusion or subdiffusion. Mathematically,

this is significant because it indicates a breakdown of the

standard form of the Central Limit Theorem and requires

modified analytical models and simulation techniques based

on detailed Monte Carlo simulations. An alternative ap-

proach is to realize that the presence of diffusion obstacles

changes the waiting time distribution of reactions from ex-

ponential to nonexponential (4). In the continuous setting

this leads to fractional differential equations of noninteger

order that describe the concentrations of molecular species

in crowded environments (5). Anomalous diffusion on the

plasma membrane is biologically important because it may

contribute to the nonrandom distribution or lateral segrega-

tion of lipid anchored and integral membrane proteins. Pro-

tein clustering in turn drives the formation of specific signaling

complexes, for example, diverse experimental approaches

that perturb the plasma membrane interactions of lipid an-

chored Ras proteins prevent Ras clustering and abrogate Ras

signal output (6–9).

Anomalous diffusion has been observed experimentally in

cytosol and on cell membranes. Different methods have been

used to study such processes, including single particle tracking

(SPT) (10–14), fluorescence recovery after photobleaching

(FRAP) (14–16), and fluorescence correlation spectroscopy

(17). The quantification of the degree and nature of the anom-

alous diffusion, however, has proven difficult due to experi-

mental limitations (18). Nevertheless, some estimates of the

anomalous exponent and other parameters have been reported;

for example, one study has estimated a � 0.49 6 0.16 for

diffusion of the proteins on HeLa cell plasma membrane (10).

What is the fundamental cause of anomalous diffusion? A

number of hypotheses have been suggested, including in-

teractions with picket post structures anchored to membrane

skeleton mesh (2), motion impedance by fixed proteins (1),

the effects of corrals and impermeant patches (19,20), and

interactions with membrane microdomains such as lipid rafts

(21,22). In a biological membrane each of these types of
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interaction is likely to contribute to subdiffusion, but their

relative importance is unclear. To explore this problem further,

we developed a stochastic random walk Monte Carlo model

of protein diffusion on a membrane that incorporates the

majority of these different types of membrane component.

We interrogate the model to estimate the extent to which

each membrane component in isolation, or in combination

can account for subdiffusive behavior on cell membranes.

METHODS

Modeling and Monte Carlo simulations

In this investigation, Monte Carlo methods are used to simulate the spatial

mobility of modeled proteins and the kinetics of chemical reaction systems

on membranes. A two-dimensional lattice is used to represent the mem-

brane. Each element of this lattice is a voxel that can be either occupied or

unoccupied by a modeled protein at each time step; in the former case, a

record is made of which protein occupies the voxel. For all simulations we

used a lattice of dimensions 250 3 375 voxels, unless otherwise stated.

Assuming a voxel to have a side of length 2 nm, this corresponds to a mem-

brane area of dimensions 500 3 750 nm. At any time, only one modeled

protein may occupy a given voxel, to ensure volume exclusion between

modeled proteins. For brevity we will subsequently refer to ‘‘modeled

proteins’’ simply as ‘‘proteins’’. The two main considerations in choosing

the voxel size are the size of a membrane anchored protein (so that volume

exclusion can be accurate) and the dimensions of the membrane, which must

be large enough to get accurate statistics but small enough to make the

simulations tractable.

The lattice is seeded with proteins of different species (for each species i,

let the number of proteins present in the system initially be Ni(0)). Each

protein has two properties: position, specified in terms of its x and y coor-

dinates on the lattice and species. In addition, each species has an associated

characteristic ‘‘diffusion coefficient’’ representing the size of the random

diffusive step taken by the protein during any time step. At each such step,

a protein M1 is chosen at random from the general population. Let the

coordinates of this protein be (x,y). One of the voxels with coordinates (x 1

Di,y), (x�Di,y), (x,y 1 Di), or (x, y�Di) is also chosen at random, where Di

is the step size of species i. This new voxel represents the location to which

the protein is moved during the current time step by Brownian motion alone.

Note that in the case D ¼ 1, this corresponds to choosing one of the voxels

adjacent to the one in which the protein resides as described by Berry (1). If

the new voxel is occupied, by a protein or a fixed obstacle, then the protein is

placed back in its original voxel (x,y) and a collision is recorded. This is an

implementation of volume exclusion so that only one protein can occupy a

voxel at any time.

Larger values of D correspond to higher diffusion rates, that is, a better-

mixed system. If D ¼ 0 then the species in question is immobile. If D is

nonintegral then the interpretation of D is probabilistic and the size of the

diffusive step is nondeterministic—for example, if Di ¼ 0.5 then a protein

of species i has, at each step, a probability of 0.5 of moving to one of its

neighboring voxels (if unoccupied) and an equal probability of not moving

at all. This is used to implement statistically subvoxel step sizes (the unitary

step size must always be the size of one voxel, 2 nm). Periodic boundary

conditions are imposed on the molecular positions in the lattice.

If the neighboring voxel chosen is unoccupied, then the protein is moved

to its new location and the lattice is updated to reflect this event. If the voxel

is occupied by protein M2, then if M1 and M2 are involved in a bimolecular

reaction, this reaction is allowed to take place, with a probability specified in

the input and which is different for each reaction (see below). The voxels are

again updated to reflect the change. In the case of a unimolecular reaction,

M1 is allowed to move to its new location if the latter is unoccupied and the

reaction can then take place (again, with a given probability). If M2 is not

involved in a reaction with M1 then M1 does not move during this time step

(1,23,24).

By using nonunitary and nonintegral step sizes, the behavior of systems

with various degrees of stirring can be investigated. For example, the tra-

jectory of a system with large D (i.e., well stirred) computed using this

Monte Carlo approach can be compared with the predictions made by the

stochastic simulation algorithm (SSA) of Gillespie (25), that assumes perfect

stirring. In addition, by using values of D between 0 and 1, we can simulate

the stochastic mobility of species in nonhomogenous and disordered media,

or highly ordered media in which continuity assumptions are invalid at any

scale. For example, in the cellular lipid bilayer, the lipid ‘‘mosaic’’ in which

proteins are embedded is discrete, highly ordered and nonfluid (26); lipids

and proteins can ‘‘swap places’’ probabilistically during any given time

interval, or a protein may move a discrete distance within the layer according

to a probability distribution. These processes cannot be approximated ap-

propriately by a scheme in which a small diffusive step is taken by each pro-

tein at each step, particularly as the granularity of the lattice decreases (and

begins to approximate continuous space). In such cases, which are highly

biologically relevant, the stochastic movement of discrete proteins in a semi-

fluidic environment is better approximated by a nonlinear, discrete, Markov

process, which in our approach can be implemented by assigning to D a

value equal to the probability of a discrete step of unit length being taken at

each time step by a protein.

Theory of anomalous diffusion

If diffusion is anomalous, the mean-squared deviation (the mean of the

square of the Euclidean distance from a particle’s starting site) grows as a

fractional power a of time (4):

ÆX2ðtÞæ ¼ 2D

Gð1 1 aÞt
a
: (1)

Here D is the diffusion coefficient and G(x) is the gamma function defined

as

GðxÞ ¼
Z N

0

t
x�1

e
�t

dt: (2)

The case a¼1 corresponds to pure diffusion ÆX(t)2æ ¼ 2Dt (a linear

relationship).

By measuring the anomalous diffusion exponent that can be calculated as

the slope of the log-log plot of the mean squared deviation against time, we

obtain a measure of the anomalous behavior of a particle. From the intercept

of this curve, the (small-scale) diffusion coefficient of proteins can be esti-

mated by

D ffi e
y
Gð1 1 aÞ

2
: (3)

In this study, the MSD has been computed by averaging the deviations of

2500 particles over the course of a single simulation, unless otherwise stated.

FRAP simulations

An important method for measuring protein dynamics is fluorescence

recovery after photobleaching. This can be used to characterize the mobility

of a fluorescently labeled macromolecule. Briefly, the method ‘‘bleaches’’

fluorescent molecules by exposure to high intensity laser radiation. The

exposure does not ordinarily denature the macromolecule of interest but

destroys the fluorescence of the tag. Firstly, a small area of the cell mem-

brane is bleached. As new unbleached molecules move into this area from

the outside, the fluorescence recovers over time to its prebleaching state. The

recovery curve can be used to infer information about the mobility of the

macromolecule under investigation (27) since the fluorescence signal will

recover more slowly if the diffusion of proteins is slow or impeded.
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Using our model, simulating FRAP experiments is straightforward. All

proteins are given a ‘‘tag’’ property that has value 1 if they are fluorescent

and 0 otherwise. At the beginning of the simulation, all proteins have tag

values of 1. After some time—once the system has reached equilibrium with

respect to spatial distributions of proteins—all proteins in a circular central

area of the membrane have their tags set to 0 (while all proteins outside this

area have unchanged tags). Subsequently, the total sum of the tags over the

‘‘bleached’’ area is recorded periodically and this procedure is repeated until

this sum, representing the total fluorescence due to the bleached area, returns

to its initial value. The bleached area is very small compared with the total

area of the membrane to ensure full signal recovery is possible. From this

data, a characteristic ‘‘half-time,’’ t1/2 the time required for the fluorescence

signal to return to half of its initial value can be measured. This is an

indication of the speed of the recovery and can be related to the mobility

of the proteins on the membrane since a faster recovery would be expected

if the unbleached proteins entering the bleached area are more mobile, and

conversely the bleached proteins are not prevented from exiting this area.

The relationship between the diffusion coefficient and the recovery half-

time is

Dmacro ¼
1

4
v

2
gt
�1

D ; (4)

where Dmacro is the large-scale diffusion rate, v is the bleach radius, g is a

correction factor (0.88 for a circular bleached area), and tD is the charac-

teristic time of recovery (28). The ‘‘macro’’ subscript refers to the fact that

because of the relatively long timescales involved in FRAP experiments

(and our simulations), the diffusion coefficient estimated using this method

reflects the large-scale mobility of proteins. In the case of pure diffusion, one

would expect the diffusion coefficient to be independent of the time and

space scales (it is a constant in the diffusion equation). Recent studies,

however, have suggested that diffusion is strongly impeded over large length

scales so that the short-range diffusion coefficient Dmicro is not in fact equal

to the large-scale coefficient Dmacro (27,29). We estimated Dmacro using

FRAP simulations in an effort to investigate whether the presence of objects

on the membrane (rafts, fences, or fixed proteins) could be expected to

account for the nonconstancy of the diffusion coefficient.

Simulating chemical reactions

Finally, to probe the effects of different sources of subdiffusion, the

Michaelis-Menten enzyme reaction scheme was used. In this system, four

molecular species react according to the equation:

E 1 S 5
k1

k�1

C /
k2

E 1 P; (5)

where E stands for the enzyme, which is necessary for the reaction but

regenerated, S is the substrate, C is a complex, and P is the product. In

classical kinetic analysis, if the system is well mixed and a large number of

proteins involved, this results in a system of differential equations:

dpC

dt
¼ �dpE

dt
� k1pEpS � ðk�1 1 k2ÞpC

dpS

dt
¼ �k1pEpS 1 k�1pC

dpP

dt
¼ k2pC; (6)

in which ri is the concentration of species i (a function of time t). An

analytical solution valid over all time is not possible; in practice, a steady-

state assumption is used in many analyses (1). The reaction rates k1, k�1, and

k2 are modeled using reaction probabilities f, r, and g, respectively, because

we simulate spatial behavior and hence do not assume the system to be well

mixed. At each Monte Carlo step, a protein is chosen at random and its

position determined. The evolution rules are as follows:

1. If the protein is of type S, a destination site is chosen at random, at a

distance DS from the chosen protein and in a direction chosen randomly

between the four cardinal directions. If this destination site is unoc-

cupied, the protein moves to it directly, whereas if the destination site is

occupied by a protein of type E, a random number is chosen between

0 and 1 to determine if the first reaction will take place. If this number is

lower than the reaction probability f, the original S protein and the

destination site E protein are destroyed and a C protein is placed on the

new site. In all other cases, the S protein remains at its initial position.

Note that this is also valid if the chosen destination site is an obstacle.

2. If the chosen protein is of type E, the process is analogous to the above,

that is, the result depends on the occupancy status of the randomly cho-

sen destination site. Movement takes place if the destination site is free,

a reaction takes place with a probability f if the destination is occupied

by a protein of type S. In other cases, the E protein is not moved.

3. If the chosen protein is of type C, a random number RC is chosen

between 0 and 1 from a uniform distribution. If RC , r, and provided

that at least one of its nearest neighbors is unoccupied, the C protein

dissociates into two proteins (of types E and S, respectively). Berry (1),

following an idea of Kopelman (22), suggests that a ‘‘more physically

realistic way would be to choose a site at random for the new S protein,

move it to this site if unoccupied, and abort the decomposition process if

occupied’’ and we have implemented this scheme in our algorithm. The

E protein is placed at the original C site. The C protein dissociates into

E and P proteins in the same way, if r # RC # r 1 g. Finally, if RC .

r 1 g, the C protein is allowed to move to a randomly chosen nearest-

neighbor site, if the latter is unoccupied (otherwise, it is immobile dur-

ing this step).

4. If the chosen protein is of type P, it moves to a randomly chosen neighbor

site (in the general sense discussed above) if this site is not occupied.

5. After each step, the simulation time is incremented by 1/N where N is

the total number of proteins present in the system (disregarding obsta-

cles). Thus, one time unit represents, on average, the time needed for each

protein to move once (1).

RESULTS

We have implemented our algorithm, which we call mem-

brane anomalous diffusion (MAD) simulator in an in-house

software package for Windows. In addition to running Monte

Carlo simulations as described above, it also displays distri-

butions of the chemical species and obstacles graphically and

allows interactive input. It is possible to save the trajectory of

a chemical system for later analysis, as well as raft-related

variables (such as molecular concentration in rafts) and other

parameters of interest (such as collision rates or the mean

squared deviation). This program is intended to be a general-

purpose Monte Carlo spatial simulation tool for biologically

relevant model reactions on two-dimensional media. A

screenshot is shown in Fig. 1.

Sources of anomalous diffusion

In this study, three possible sources of nonclassical diffusive

behavior are investigated. The first of these is the presence of

a significant number of fixed obstacles on the membrane,

representing, for example, immobile proteins. Obstacles are

represented as a separate chemical species that is inert with

respect to all other species and has step size identically 0. We

denote the density of random obstacles on the membrane as u.
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In lattices with immobile obstacle densities below the perco-

lation threshold—uT � 0.4073 for this case (30)—accessible

sites form a percolation cluster and diffusion on percolation

clusters is known to be anomalous (1,31).

The second source of anomalous diffusion investigated

here is the interaction of mobile proteins and lipids with

picket posts anchored to membrane skeleton mesh (2). The

fence lines between the picket posts are assumed to be at

right angles to each other and distributed evenly across both

dimensions, with spacing between lines (‘‘pitch’’) of df. Each

fence line is made up of immobile picket posts (obstacles)

and each voxel of the fence line is either occupied or un-

occupied by a picket post. In this way, square domains are

delimited by fence lines on the membrane. The only qualita-

tive difference between fixed obstacles and fence posts is

that the former are uniformly distributed on the membrane

whereas the latter are randomly distributed only along fence

lines.

Proteins attempting to cross from one domain to another

may be rejected (and thus retained in their current domain)

by collisions with the fixed fence posts; Fujiwara et al. (2)

call this ‘‘hop diffusion’’. The density of posts is denoted f

and the case f ¼ 0 corresponds to no fence whereas f ¼ 1

corresponds to a completely impenetrable fence. Together,

the picket post spacing and picket post density characterize a

fence system. Intuitively, it would be expected that, due to

local confinement of proteins to membrane compartments,

their mobility would be different over short timescales (local

free diffusion) and long times (diffusion impeded by fence

lines). Thus, we would expect to observe some degree of

anomalous diffusive behavior due to the presence of fences.

In this model we have not included hydrodynamic friction-

like effects between picket posts that further corral proteins.

Given that the effect of actin-based corralling is not fully re-

alized in our model, we shall refer to the effects of the fence

that we have modeled as reflecting collisions with picket

posts.

Thirdly, we investigated whether the interaction of pro-

teins with lipid microdomains (lipid rafts) can result in anom-

alous diffusion. It is believed that proteins diffuse more slowly

inside rafts than outside (32) and this has been postulated as a

possible source of anomalous diffusion (22). We have used a

previously developed model of raft-protein interaction (24)

in which a raft is modeled as a two-dimensional, circular

patch of radius rr and area Ar ¼ pr2
r . The step size of a pro-

tein in a raft is smaller than that outside raft regions and the

ratio of these is the key parameter describing the interaction

of a protein with a raft in this study:

ri ¼
Di;raft

Di;non-raft

: (7)

Thus the motion of proteins in rafts is characterized by a

step size that is different from that in the surrounding mem-

brane. In this work, all rafts used within one simulation are

of equal radii and the effect of raft dimension is investigated

by running simulations with different raft radii. Another

important global parameter is the total area of the membrane

that is represented by rafts, prafts. In this study, rafts were

assumed to be either fixed or to diffuse in an analogous

manner to proteins, with diffusion rate relative to proteins

given by the Saffman-Delbruck equation (24,33). If a raft

attempts to move over a region that is occupied by another

raft, it is rejected (similarly to the handling of protein-protein

collisions).

FIGURE 1 Screenshot of the MAD

simulation package. The software op-

erates under Windows and is available

from the authors upon request. In the

screenshot, black points represent fixed

obstacles whereas all other points rep-

resent diffusing species. The rectangu-

lar array represents a regular obstacle

arrangement simulating a cytoskeletal

fence structure (see text). Lipid rafts are

shown as light-colored circles. The

panels on the right are used to interac-

tively specify the input parameters to

the simulation. Note that the values of

D in the top right panel refer to protein

step size (1 voxel per unit time).
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Because it is believed that some proteins are excluded

from rafts while others are selectively accumulated (34,35),

we also introduced into the model ‘‘rejection probabilities’’

associated with entering and exiting a raft, respectively.

When a model protein moves from a nonraft voxel to a raft

voxel, it may be returned to its original location (rejected)

with probability pnr. Conversely, when exiting a raft, it may

be rejected with probability prn. If these probabilities are 0,

the proteins do not differentiate between raft and nonraft

regions, except for the difference in diffusion rates they

experience. At the other extreme, a probability of 1 indicates

that, once a protein has entered a raft or nonraft region, it will

be permanently captured in that raft or nonraft region, re-

spectively. In this study, we investigated the extent to which

exclusion of proteins from rafts can lead to anomalous dif-

fusion of the latter by running simulations with pnr ¼ 1.

In all simulations described here, we have used a unit step

size of 1 for a protein moving in a free medium and a unit

step size of r (see Eq. 7, above) for a protein moving inside a

raft. Using an unimpeded step size of 1 corresponds to a

diffusion rate of 0.5 voxels2/time unit. In general, we can con-

vert between simulation times and diffusion rates and their

physical equivalents using the relation

tactual ¼
l
2

vDsimtsim

Dactual

; (8)

where lv is the voxel side length (2 nm here), Dsim is the

diffusion rate from the simulations (0.5 voxels2/time step if

diffusion is not impeded and there is no competition for

voxels), tsim is the simulation time and tactual is the actual

time. Thus assuming a diffusion rate for proteins of 0.5 mm2/s,

we get that one time unit in the simulations is equivalent to

roughly 4 ms, in the absence of competition for voxels.

Anomalous diffusion due to fixed obstacles

We firstly used the MAD simulator to measure the mobilities

of proteins in the presence of randomly distributed fixed

obstacles. Two-thousand proteins were randomly distributed

on the membrane and allowed to diffuse. The squared devia-

tions of the most central 1000 of these (excluding those close

to the edges to avoid ‘‘wrap-around’’) from their starting

sites were recorded and averaged. Six obstacle densities are

used: 0, 0.1, 0.2, 0.3, 0.4, and 0.5. The last of these is higher

than the percolation threshold, so that that the relation in Eq. 1

cannot be expected to be an accurate description. All simula-

tions were run for 600 time steps. Representative results are

shown in Fig. 2.

It is clear from Fig. 2 that if u is not close to 0, the

log(MSD) � log(t) curves deviate somewhat from a linear

relationship with unit gradient. Furthermore, for values of u

near the percolation threshold, the curves also deviate

slightly from linearity, suggesting that Eq. 1 is not accurate

for obstacle densities close to the percolation threshold. In

Fig. 3, the anomalous exponent has been plotted against the

obstacle density. We note that at u ¼ 0.4, we obtained a �
0.7, in close agreement with the results of Berry (1).

Interestingly, Fig. 3 also shows that the diffusion coefficient,

computed from the intercept of the log-log plot of MSD

against time, does not vary greatly with increasing obstacle

density. The method used for computing this value, based on

Eq. 3, is not expected to be accurate for values of u larger

than the percolation threshold, since the small-scale diffusion

of a tracer particle (protein) is not spatially symmetric due to

the fixed spatial structure surrounding it (obstacles). At such

high obstacle densities, proteins tend to take paths along

spatial corridors that are relatively free of obstacles; thus the

assumptions underlying the diffusion equation fail in these

cases. For smaller values of u, it is somewhat surprising that

the diffusion coefficient remains essentially insensitive to u.

Anomalous diffusion due to collisions with picket
fence posts

To study the effect of collisions with picket fence posts, as

described previously (2,11), three fence line spacings were

used, equal to 10, 20, and 40 molecular diameters (voxels,

each 2 nm across as described above), respectively. For each

of these, four fence-post densities were used: 0.25, 0.5, 0.75,

and 1, the last of which results in completely impenetrable

fence lines. As before, 2000 proteins were placed on the

membrane and allowed to diffuse for 600 time steps. The

anomalous exponent a was computed in each case using a

log-log plot. The results show that for all of the biologically

FIGURE 2 Mean squared deviation behavior for various obstacle densi-

ties. The mean squared deviation (MSD) of diffusing particles on the

membrane (from their starting sites) plotted against time (log-log plot) for

increasing obstacle densities. As diffusion is more and more impeded by the

presence of fixed obstacles, the MSD grows more and more slowly with

time. The gradient of the line is the anomalous exponent (a in the text)

whereas the y-intercept gives the diffusion rate (Eq. 3). Under the classical

diffusion framework, a line with gradient 1 and y-intercept of 0 is expected.
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realistic fence parameters, a fence system of picket posts

alone resulted in minimal anomalous diffusion since a re-

mained between 0.94 and 1 (Fig. 4). In the extreme case of a

tightly packed and completely impenetrable fence, resulting

in the division of the membrane into compartments with a

width of only 10 molecular diameters, a � 0.94. We also

checked this result by confirming that the number of ex-

clusion events per unit time was low in each case (data not

shown). We conclude that, in the absence of other interac-

tions, either between the fence and proteins or the fence and

other structures, a fence system of picket posts is not respon-

sible for a large degree of anomalous diffusive behavior, at

least in the framework of the model presented here.

Anomalous diffusion due to interactions with
lipid rafts

We next investigated the effects of lipid rafts on the diffusion

of proteins on a membrane. The dimensions and character-

istics of rafts are the subject of debate (36–38), we therefore

probed the effects of rafts by performing extensive combi-

natorial experiments. Four different raft diameters were used:

6 nm, 14 nm, 26 nm, and 50 nm (assuming each voxel rep-

resents an area of 2 3 2 nm). For each raft diameter, four

values of the diffusion reduction ratio r were used: 0.25, 0.5,

0.75, and 1 (note that r ¼ 1 corresponds to the effective

absence of rafts). Finally, for each combination of these

parameters, three raft membrane areas were used: corre-

sponding to 10%, 25%, and 50% of the total membrane area.

Rafts were assumed to be either fixed (immobile) or to

diffuse at a reduced rate relative to proteins, calculated from

the Saffman-Delbruck equation (33). Simulations were run

for 600 time steps. The results in Table 1 show that the

presence of rafts has a small to moderate effect on the

anomalous diffusion exponent. The smallest value observed

for a is 0.85, corresponding to the case where lipid rafts

cover 50% of the membrane area, r ¼ 0.25, and the raft

diameter is 6 nm. Although this value for a indicates a sig-

nificant departure from classical behavior, we note that the

average value for a over all the parameters is 0.96, which

represents a small difference from a ¼ 1. The smallest value

for the diffusion coefficient (Dmicro), found for the same

range of raft parameters was Dmicro ¼ 0.21, corresponding

to a 42% reduction of Dmicro on a control membrane with

no rafts (24).

An interesting and often ignored issue is whether exclud-

ing proteins from rafts has any significant effect on their

diffusive behavior. To explore this problem, proteins were

initially distributed uniformly over the membrane, but pro-

teins attempting to enter rafts were rejected and placed at

their original voxel. The effect is that after exiting rafts, pro-

teins become restricted to nonraft regions. The system was

allowed to reach a steady state in which the concentration of

proteins in rafts is negligible; we then computed the diffusion

rate and anomalous diffusion exponent as above for simulations

of 600 time steps. Two raft radii were used (14 and 50 nm)

FIGURE 3 Effect of various obstacle densities on the anomalous expo-

nent and diffusion rate. Small-scale diffusion rate Dmicro (top) calculated

using Eq. 3, anomalous exponent (middle) calculated using Eq. 1, and ex-

clusion events per unit time (bottom) are all plotted against obstacle density,

u. These results are in agreement with the results of Berry (1) and indicate

that as u approaches the percolation threshold, the anomalous exponent falls

to ;0.7. This value is comparable to exponents estimated experimentally in

live cell membranes; however, our FRAP results (see Fig. 6) suggest a

biological limit of around u ¼ 0.3–0.35. Dmicro does not fall considerably

with increasing u (compare with Dmacro in Fig. 6), as expected since over

short times diffusion behaves classically, not anomalously, so that there is

little contribution from the presence of obstacles. As expected, the anom-

alous exponent and exclusion events are inversely related above a certain

threshold (u � 0.2).

FIGURE 4 Contribution of a regular picket-fence structure to anomalous

diffusion. The effect of a picket-fence structure with a picket post density

25%, 50%, 75%, and 100%, respectively, on anomalous diffusion. The three

curves correspond to distances between fence lines of 40, 20, and 10 mole-

cular diameters, respectively, from top to bottom. The anomalous exponent

remains very close to unity under each condition, indicating that diffusion is

close to classical predictions in the presence of a model picket post fence of

this type. The numbers of exclusion events per unit time confirm this, being

very similar for all the parameter sets examined (data not shown). Therefore,

under this model, such a structure cannot explain any significant levels of

anomalous diffusion or large differences between small-scale and large-scale

diffusion.
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and rafts were assumed either to be immobile (fixed) or to

diffuse freely. The results in Table 2 show that if rafts are

small (14 nm), fixed, and occupy a large proportion of the

membrane, the anomalous diffusion exponent can be very

close to the theoretical limit of ;0.7. This is not unexpected

since this situation is similar to placing a large number of

obstacles on the membrane. However, even if rafts are not

fixed and have a diffusion rate of 0.54, approximately half

that of a protein, a can still deviate significantly from unity.

If rafts are large (50 nm), a is very close to unity, regardless

of whether rafts are fixed or mobile. This can be explained by

noting that diffusion is affected by interactions of proteins

with the edges of rafts, where proteins are rejected, and that

raft area grows quadratically whereas perimeter length only

grows linearly. These results suggest that exclusion from

lipid rafts may go a long way toward explaining anomalous

diffusion of some proteins on cell membranes, but only those

proteins that do not partition into rafts. This effect is clearly

sensitive to raft dimensions but since recent studies indicate

raft dimensions to be in the range 6–25 nm (7,39), we

conclude that this may be a significant phenomenon. Note

that the diffusion rate varies systematically with raft area if

rafts are mobile, but nonlinearly if rafts are fixed; this effect

is due to the interplay of two factors: the ease of finding

‘‘raft-free channels’’ to diffuse through and the increasing

inapplicability of the anomalous diffusion equation to

describe protein motion along these channels. In the case

of mobile rafts, the second factor is suppressed because

channels are constantly being opened and closed by the

motion of the rafts. The results also show that the anomalous

exponent is approximately inversely related to the number of

rejection events per time unit, as would be expected.

An alternative way to model the exclusion of proteins

from rafts would be to allow a rejected protein to find a

neighboring voxel that is not part of a raft and move there.

This was not done here for three reasons. Firstly, the method

used here is more physically realistic (there is no reason to

assume the protein would slip along the boundary of a raft

it cannot enter) and is in keeping with other modeling ap-

proaches (1). Secondly, allowing proteins to move in this way

would add a further nondiffusive component to the motion

of proteins, thus possibly underestimating the anomalous pa-

rameter. Third, in our simulations one time unit equals the

statistical time needed for each protein to move (or attempt to

move) once, on average. Allowing a protein two movements

in one step would no longer conserve the step size.

TABLE 2 Anomalous exponent, diffusion rate, and exclusions per unit time for raft-excluded proteins in a membrane

Diffusion rate Anomalous exponent Exclusion rate

Total raft area Raft diameter (nm) Mobile Fixed Mobile Fixed Mobile Fixed

10% 14 0.722 0.623 0.866 0.853 85.8 72.4

25% 14 0.786 0.842 0.813 0.652 214.0 200.6

50% 14 0.825 0.544 0.745 0.634 377.9 506.0

10% 50 0.556 0.472 0.993 1.017 66.7 64.46

25% 50 0.489 0.5 1.045 0.976 64.0 59.36

50% 50 0.602 0.486 1.024 0.99 64.2 55.7

The first column shows the proportion of the membrane that is raft associated. If rafts are mobile, the diffusion rate is obtained from the Saffman-Delbruck

equation (24,33). The expected diffusion rate (units of voxels2/time unit) if no objects are present on the membrane is 0.5. The last column shows the number

of exclusion events per unit time in each case, which is approximately inversely proportional to the anomalous exponent, as would be expected. Note that the

diffusion rate can exceed 0.5 in some cases. This is caused by proteins moving along ‘‘raft-free channels’’, in which case their motion is no longer accurately

described by the diffusion equation. The anomalous exponent in some cases slightly exceeds 1 for the same reason. The effect of this phenomenon on the

reliability of a-values obtained in these cases is insignificant, since the difference from the expected value of D is very small and the log(MSD) � log(time)

plots are all linear.

TABLE 1 Anomalous exponent against raft parameters for raft partitioning proteins

Raft area 25%, fixed rafts Raft area 50%, fixed rafts

r ¼ 0.25 r ¼ 0.5 r ¼ 0.75 r ¼ 1 r ¼ 0.25 r ¼ 0.5 r ¼ 0.75 r ¼ 1

6 nm 0.865 0.951 0.979 0.975 6 nm 0.85 0.942 0.975 0.996

14 nm 0.944 0.98 1.005 0.974 14 nm 0.87 0.947 0.968 0.996

26 nm 0.971 1 0.989 0.974 26 nm 0.941 0.964 0.985 0.996

50 nm 0.98 0.998 0.992 0.974 50 nm 0.959 0.958 0.979 0.996

Raft area 25%, mobile rafts Raft area 50%, mobile rafts

r ¼ 0.25 r ¼ 0.5 r ¼ 0.75 r ¼ 1 r ¼ 0.25 r ¼ 0.5 r ¼ 0.75 r ¼ 1

6 nm 0.959 0.974 0.993 1 6 nm 0.862 0.92 0.958 0.991

14 nm 0.943 0.965 0.994 0.996 14 nm 0.921 0.944 0.974 1.000

26 nm 0.976 0.974 0.973 0.977 26 nm 0.912 0.966 0.973 0.993

50 nm 0.983 0.973 0.961 1.002 50 nm 0.952 0.964 0.977 0.965
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Estimation of Dmacro from FRAP simulations

Finally, we investigated whether the presence of objects on

the membrane can result in a difference between the large-

scale diffusion rate, Dmacro and the small-scale diffusion rate

(Dmicro). To this end, we simulated FRAP experiments by

‘‘bleaching’’ molecules in a circular area of radius 250 nm

(in a membrane of size 2 3 3 mm, to ensure full signal

recovery is possible). It is necessary to have dimensions of

this size as previous studies have shown that the sensitivity

of FRAP to measure mobility is highly dependent on the

sizes of the bleach area (40). The total number of proteins

present on the membrane was 10,000 (excluding fences and

obstacles). The system was allowed to reach steady state

over 500 time steps before the bleaching step. Since FRAP

simulations are computationally intensive, we chose only

a few parameter sets for simulation. The half-recovery time

(t1/2) in each case was measured and the value of Dmacro

estimated from Eq. 4. We then compared the effects of

different membrane objects on the diffusion rates Dmicro and

Dmacro. The results in Table 3 show that Dmacro is generally

lower than Dmicro and can be much lower or even, for

practical purposes, 0.

Because Dmacro seems to be very sensitive to the obstacle

density, we estimated Dmacro for a range of such densities. The

results in Fig. 5 show that between u ¼ 0.2 and u ¼ 0.35

obstacle coverage, long-range diffusion falls dramatically from

a value only moderately lower than Dmicro (see Table 3) to

almost 0. These results are interesting because they suggest:

a), that long-range diffusion depends strongly and nonlinearly

on the obstacle concentration; and b), that the equivalent in

vivo obstacle concentration must be lower than ;30% since

FRAP recovery is observed in live cell membranes (16).

The effect of obstacles on chemical kinetics

What effects do a large fixed obstacle density have on a set

of chemical reactions occurring on the membrane? We

addressed this question by simulating the behavior of the

Michaelis-Menten system in the presence of fixed obstacles.

The numbers of C and P were initially 0 whereas those for S
and E were set to 2000 each. The three reaction probabilities

were set at f¼ 1, r¼ 0.02, and g¼ 0.04, respectively, which

is a good balance for the purposes of qualitative inspection

(1). During the simulation, the total numbers of each type of

protein were recorded. The results in Fig. 6 show that the

kinetics of this reaction system is influenced to a large degree

by the density of obstacles. Between an obstacle density of

0.0 and 0.4, the rate of generation of P (the product) falls

dramatically (roughly by a factor of 4). If the numbers of

reacting proteins are smaller, this effect is even more

pronounced (data not shown) because proteins of types E and

S, whose interaction is the main driving force behind the

kinetics, are not as likely to be in close proximity to each

other (so that the lowered mobility over long distances plays

a more important role, as proteins of types E and S must

travel, on average, a longer distance before meeting).

This behavior cannot be attributed to a reduction in local

diffusion rate, since Fig. 3 shows that the coefficient of

diffusion does not fall significantly with increasing u. Rather,

the reduction in reaction rates must be attributed to the

TABLE 3 Large-scale and small-scale diffusion rates for

various impeded diffusion scenarios Dmacro (estimated using

FRAP) and Dmicro (estimated using a log-log plot of MSD

versus time)

Case Dmicro Dmacro Dmacro/Dmicro

Anomalous

exponent

No impeding structures 0.495 0.491 0.991 1.000

Fence only 0.472 0.38 0.741 0.989**

25% rafts 0.471 0.190 0.403 0.965

50% rafts 0.410 0.155 0.378 0.943

Obstacles only, u ¼ 0.2 0.310 0.277 0.893 0.98

25% rafts, proteins

raft-excluded

0.786* 0.219 0.279 0.813

Fence 1 25% rafts 0.447 0.238 0.532 0.959

Fence 1 50% rafts 0.414 0.203 0.490 0.941

The picket post fences have a pitch of 80 nm and a density of 20%. Rafts

are 14 nm wide and diffuse at a (relative) rate of 0.54 voxels2/time unit.

(* indicates the estimate is not accurate because Dmicro cannot be reliably

estimated from Eq.3. ** indicates that this value is slightly lower than that

shown in Fig. 5 because it was estimated over a much longer simulation

time, over which anomalous diffusion became more pronounced.) The

interactions of the three impeding types of objects are complex and

nonlinear. Note, for example, that although exclusion from rafts results in a

more rapid distancing of a particle from its initial site on the short timescale,

it results in a much lower large-scale diffusion rate. It is also clear that

although the Dmacro/Dmicro ratio is related to the anomalous exponent, the

dependence is highly nonlinear; for example, in the 25% raft, raft-excluded

case, a 20% difference in a (from 1) results in a fourfold drop in the ratio.

FIGURE 5 Effect of fixed obstacles on large-scale diffusion rates. Dmacro,

the long-scale diffusion rate as a function of obstacle density u. This was

calculated using Eq. 4 from simulated FRAP curves and normalized to the

value of Dmacro calculated in the no-obstacles case. Interestingly, Dmacro falls

very sharply for u . 0.2. Note that the value of 0 obtained for u ¼ 0.4 is not

accurate—rather, it indicates that the signal did not recover to half of its

initial value in our simulations (even for very large times) and we could not

extrapolate from the recovery curve what the half-recovery time would be.
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anomalous nature of the diffusion that exhibits a transition

between a linear regime on short timescales and a power-law

regime over long timescales. The result is that, although over

short times, proteins’ movements are not significantly im-

peded, over medium or long times the proteins are compar-

atively less likely to stray far from their starting sites and

mixing is impaired. This gives rise to segregation between

reactants and a low reaction rate.

DISCUSSION

We have investigated the fundamental causes of anomalous

diffusion on the plasma membrane using a stochastic

random-walk model of biomolecule diffusion. Our results

show that the most powerful constraining factor for small-

scale molecular mobility is the presence of many randomly

distributed, fixed (or almost fixed) obstacles. The presence of

lipid rafts with biophysically realistic characteristics has a

moderate effect on the anomalous diffusion exponent if pro-

teins partition into rafts, but has a significant effect if proteins

are excluded from rafts. In contrast, collisions with the picket

posts of a rectangular fence have only a small influence on

this exponent.

We show that as the concentration of obstacles on the

membrane increases from 0 to the percolation threshold

(0.4073), the anomalous exponent falls smoothly from unity

to its limiting value of around 0.7. This is in agreement with

previous studies (1). Smith et al. (10) showed that on the

membranes of HeLa cells, MHC Class I molecules diffuse

anomalously with an average anomalous diffusion exponent

of a � 0.49. Using obstacles as the only source of diffusion

impedance, our model therefore partially reproduces the

results of that study but only when a very large density of

obstacles, u . 0.6—far above the percolation threshold—is

used. In fact our in silico FRAP results suggest an upper limit

for u of around 0.3–0.35 since no recovery is observed above

this value, while in experiments, the fluorescence signal does

recover.

If lipid rafts are present and cover a significant area of the

membrane, our results indicate that a can be as small as 0.85

if proteins partition into rafts—a moderate departure from

a¼ 1. If rafts are immobile and reject proteins that attempt to

enter a raft the value of a can be as small as 0.65. If rafts are

mobile (a more plausible model) and reject proteins then a¼
0.75 in the most extreme case. Anomalous diffusion is most

pronounced if rafts are small (6–14 nm). This is an inter-

esting result because raft exclusion has not previously been

considered as a source of anomalous diffusion. Since many

more plasma membrane proteins are likely excluded from

rafts than partition into these structures this result may have

significant biological implications.

We find that collisions with proteins tethered to the

cytoskeleton cannot, in our framework, account for a large

degree of anomalous diffusion in the absence of other inter-

actions even if the fence lines are completely impenetrable

and close together (as low as 10 protein diameters). Although

in such an extreme case the long-range mobility of proteins

would be reduced to almost zero, the anomalous diffusion

exponent is calculated on short timescales using a log-log fit

and in this sense, we find that such an arrangement cannot,

by itself, explain anomalous diffusion on live cells. How-

ever, it is important to note that Fujiwara et al. (2) claim that

the effects of an actin fence on lipid diffusion are not

exclusively due to the steric hindrance of the immobile fence

posts as we have modeled here. They suggest that an

additional and critical effect of the fence extends beyond the

FIGURE 6 Effect of fixed obstacles on chemical

kinetics. Kinetics of the Michaelis-Menten reaction

system (Eq. 5) u ¼ 0 (i.e., in the presence of no ob-

stacles, dotted line) and u ¼ 0.4 (solid line) obstacle

densities, respectively. The latter is close to the per-

colation threshold of u � 0.4073. When obstacles are

present, the kinetics are considerably slower, especially

at large times, because of the difficulty that molecules

initially placed far apart have in meeting one another.

Sources of Anomalous Diffusion 1983

Biophysical Journal 92(6) 1975–1987



posts because of the packing of lipids around immobile

obstacles. It is possible to explore this concept by using

probability distributions to model the diffusion of proteins

across barriers (29,41). This more sophisticated approach to

modeling fences will be the subject of our future work.

If, as seems reasonable, anomalous diffusion of proteins

on a membrane reflects the combination of these three mech-

anisms then earlier experimental data (10) can be mostly

explained. For example, if we conservatively set u ¼ 0.25,

cover 50% of the membrane with rafts of 14 nm diameter, set

r ¼ 0.33, and place a picket fence system on the membrane

with a spacing of 80 nm and a density of 40%, our model

predicts a value of a of 0.75 and a small-scale diffusion co-

efficient (Dmicro) that is 39% of its value in an unencumbered

membrane. If the density of obstacles is increased to only

0.32, the anomalous exponent falls to 0.68, which is within

the range of published values (10). In silico single particle

tracking illustrates qualitatively the enormous differences be-

tween free and impeded diffusion under these various condi-

tions. For example, Fig. 7 shows single particle tracking with

no impeding structures, an obstacle density (u) of 0.25 and

the addition of rafts and picket fence posts. The trajectory is

similar to those observed experimentally (13).

The results of our FRAP simulations are quantitatively

different from an earlier simulation study on the effects of

anomalous diffusion on fluorescence recovery (27). Our

results indicate that the long-scale diffusion rate (Dmacro)

calculated using FRAP falls sharply with u over the range

0.2–0.3 and that for u . 0.35, no full recovery is to be

expected. In contrast, the earlier study of Saxton (27) dem-

onstrated that Dmacro varies more moderately with u and that

full recovery is merely significantly slowed, not stopped

altogether, even close to the percolation threshold. However,

that study focused, in the case of obstacle-impeded motion,

on the anomalous diffusion caused by diffusion on a per-

colation cluster, in which the obstacles are not distributed

uniformly but can be connected, leading to the existence of

lakes (obstacle-free regions) and large membrane ‘‘animals’’

(regions of connected obstacles). At the percolation thresh-

old, the lattice is divided into an ‘‘ocean’’ on one side and a

completely impenetrable obstacle block on the other. In our

study, however, we have distributed obstacles uniformly on

the membrane, such that the membrane is not populated with

the ‘‘lakes’’ observed with a percolation cluster (27). In ad-

dition, we have used a rectangular lattice that has a perco-

lation threshold of u � 0.4073 for our obstacle distribution,

whereas the triangular lattice used in the earlier study (27)

has a percolation threshold of u ¼ 0.5. In this context our

results agree more closely with those of Berry (1), who used

a similar rectangular lattice to ours. Taking all these studies

together, we can conclude that, obstacle concentration, the

distribution of obstacles, and the precise diffusion model

(such as triangular versus rectangular lattice) are important

parameters in characterizing the long-range diffusion of pro-

teins. Further experimental elucidation of the likely geom-

etries of impeding structures on cell membranes would help

to focus modeling efforts in this area.

In this work, we have assumed that Eq. 1 accurately

describes the phenomenon of anomalous diffusion and

implicitly have assumed the linearity of the MSD versus time

curves generated by our model. Of course, this assumption

may not always hold, or may not hold for large times. For

example, in the case of an impenetrable fence structure with

a pitch of 10 molecular diameters, we obtained a ¼ 0.94.

This result cannot in fact hold for large times because in the

case of an impenetrable fence, the MSD cannot exceed the

pitch of the fence lines. This calls into question the fitting of

a straight line to the log(MSD)� log(time) curve. In the vast

majority of the parameter sets tested here, however, we

checked that the MSD is indeed linear in time. A represen-

tative set of MSD curves is shown in Fig. 8. Furthermore,

FIGURE 7 Single-particle tracking simulations of impeded diffusion in

three different scenarios. The position of a single particle, initially placed

in the center of the simulation area, was tracked over time. Typical results

are shown for three scenarios: no impeding structures (top), randomly

distributed obstacles with u ¼ 0.3 (middle), and random obstacles with u ¼
0.3 plus lipid rafts (25% of membrane area covered) and picket fences

(interfence distance of 40 molecular diameters and fence-post density of

25%). Single-particle tracking simulations reveal large differences in the

nature of diffusion in these three cases. In particular, two significant effects

are observed: 1), the nonsymmetric nature of molecular motion in the pres-

ence of obstacles, in which molecules slip through corridors of low obstacle

density, seen clearly in the middle figure; and 2), capture by lipid rafts, in

which the diffusion rate of proteins is postulated to be reduced, seen in the

bottom figure.
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even when there is some departure, as in the case of the

impenetrable fence (Fig. 8), fitting a line over the linear part

of the curve (at shorter times) makes sense because the

diffusion coefficient is inherently a short-time parameter: the

difference between Dmicro and Dmacro we report in this work

is a reflection of the fact that the diffusion equation does not

apply here at long times but does apply at short times. It is

conceivable that the values of a calculated by linear fitting

may be time dependent for some of the parameter combi-

nations. To explore this possibility, we ran simulations

corresponding to 4 s of real time and recalculated a. The

results (Fig. 9) show that the values of a calculated from 2.4

ms or 4 s of simulation are not significantly different. Thus

the comparison of a-values calculated here with those of ex-

perimental studies where long observation times were used

(10,14) is warranted.

Finally it is important to note that there are other mem-

brane/protein interactions that we have yet to explore. For

example, physical association (rather than simple collision)

with the cytoskeleton could also contribute significantly to non-

classical diffusion. Moreover, in recent work (24), we show

that the mobility of rafts as well as the ability of rafts to se-

lectively capture and exclude different proteins can change

the characteristics of the random walks executed by proteins

on a cell membrane.

One consequence of anomalous diffusion is that the

dynamics of bimolecular reactions of the form A 1 B / Ø

behaves as if the ‘‘rate constants’’ are functions of time (1).

This is due to the fractal nature of the kinetics, which in turn

is caused by diffusion on percolation clusters (in the case

of obstacles) or equivalent structures (for rafts, fences, and

other membrane components). As a result, the assumptions

underlying the mass-action laws used to analyze chemical

kinetics classically break down and approaches that take into

account the noninteger order of the resultant reactions are

needed—such as fractional differential equations. Thus, it is

becoming increasingly clear that due to the heterogeneous

nature of biological media and to the low numbers of pro-

teins involved in many biomolecular reactions, ordinary differ-

ential equation methods are often not appropriate for treating

many biological problems (1).

Therefore, given the complex, discrete, nondeterministic

and disordered nature of biological interactions and media,

spatial homogeneity cannot be assumed in many cases (as we

have argued here) and techniques that take these factors into

account are needed. On the other hand, direct Monte Carlo

approaches suffer from the drawback of requiring large

amounts of computer resources for problems of realistic

dimensions, if the system is built up molecule by molecule.

We argue that the best way forward is along a middle path,

involving multiscale simulation methods that deal with

heterogeneity and nondeterminism at the scales at which

these are appropriate but can retain the powerful approach of

FIGURE 9 The time dependence of a. Simulations for a wide range of

different scenarios, described in the lower panel, were run for 4 s of real time

and plotted as in Fig. 8. Values for a were calculated over short times

(2.4 ms) and long times (4 s) of simulation. The lower panel shows that the

values do not differ significantly.

FIGURE 8 Representative log(MSD) � log(time) plots for different

parameter sets. If the motion of a particle can be described accurately by an

anomalous diffusion equation, then the plot of log(MSD) � log(time) is

expected to be a straight line. Here we have shown five representative plots

corresponding to: i), exclusion from rafts; ii), partitioning into rafts; iii),

being impeded by fixed obstacles; iv), confinement by a fence of widely

spaced picket posts of low-density; and v), confinement by a narrowly

spaced impenetrable fence of picket posts. Only in the last case (which is not

biologically plausible) is a departure from linearity apparent, and only at

large times. These results support the idea that a very general class of bio-

molecular particle motion can be accurately captured by an anomalous

diffusion approach.
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differential equations over all other scales. For instance, for

membrane chemistry simulations, it would be possible that

the space can be divided into partitions, inside each of which

the system can be assumed to be well-mixed, so that a rapid

method such as the Stochastic Simulation Algorithm (25)

can be used for small numbers of proteins in that region. The

exchanges of proteins between partitions (on a large scale),

can then be treated efficiently using, for instance, a stochastic

difference or differential equation approach (42). The devel-

opment of such methods and their application to problems

involving subdiffusion in biological media will be the sub-

ject of future work.

In conclusion, we have investigated three sources of anom-

alous diffusion in two-dimensional rectangular biological

membranes: randomly distributed fixed obstacles, lipid rafts

(with proteins either partitioning into or being excluded from

rafts), and a rectangular system of cytoskeletal fence posts.

We find that of these, fixed obstacles and exclusion from

rafts are the mechanisms most likely to cause anomalous

diffusion, in the absence of other interactions. The combi-

nation of all three mechanisms, at biologically relevant levels,

can account for experimentally reported anomalous diffusion

levels. We argue that the presence of impediments to motion

in complex biological media has important effects on bio-

chemical interactions in these media, which should therefore

be analyzed with appropriate spatial-temporal methods.
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