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ABSTRACT Bacterial flagella can adopt several different helical shapes in response to varying environmental conditions. A
geometric model by Calladine ascribes these discrete shape changes to cooperative transitions between two stable tertiary
structures of the constituent protein, flagellin, and predicts an ordered set of 12 helical states called polymorphic forms. Using
long polymers of purified flagellin, we demonstrate controlled, reversible transformations between different polymorphic forms.
While pulling on a single filament using an optical tweezer, we record the progressive transformation of the filament and also
measure the force-extension curve. Both normal and coiled polymorphic forms stretch elastically with a bending stiffness of 3.5
pN�mm2. At a force threshold of 4–7 pN or 3–5 pN (for normal and coiled forms, respectively), a fraction of the filament suddenly
transforms to the next, longer, polymorphic form. This transformation is not deterministic because the force and amount of
transformation vary from pull to pull. In addition, the force is highly dependent on stretching rate, suggesting that polymorphic
transformation is associated with an activation energy.

INTRODUCTION

Many bacteria swim by rotating long, helical flagella (1).

Peritrichously flagellated bacteria, such as Escherichia coli
and Salmonella, have several such flagella, each attached to

a rotary motor that is embedded in the cell wall. Although

the complete flagellum/motor complex contains ;25 pro-

teins, the bulk of the flagellum itself is composed of a single

protein, flagellin (2,3). The flagellin homopolymer, called

the flagellar filament, comprises more than 99% of the

length of the flagellum and provides the structural stiffness

necessary to generate thrust during swimming.

A Salmonella filament is normally a left-handed helix, but

environmental perturbations can trigger a sudden, discrete

change to a new shape. All of these shapes, called poly-

morphic forms, are helices (4,5); some are left-handed and

some right-handed (Fig. 1). The most extreme forms are

straight left- or right-twisted rods. A polymorphic transfor-

mation from one shape to another can be caused by changing

pH, salinity, or temperature (6–8), by adding alcohols (9) or

sugars (10), or by applying forces or torques to the filament

(11,12). All of these transformations are reversible provided

the conditions do not depolymerize the filament (6,7). In

addition, mutations in flagellin can change the basic poly-

morphic form (13). The structure of the right-type straight

form has been determined by x-ray fiber diffraction at 9-Å

resolution (14) and by electron cryomicroscopy and image

reconstruction at 4-Å resolution (15); a truncated right-

handed flagellin can be crystallized, yielding an x-ray

crystallographic structure at 2-Å resolution (5). The left-

type straight form is less well characterized, but based on

electron cryomicroscopy (16) and x-ray fiber diffraction

measurements (2), it is believed to be slightly longer than the

right-type form.

The subunits that make up the filament appear on its

surface in a regular array, traced by 1-, 5-, 6-, and 11-start

helices. The 11-start helices, called protofilaments, run

nearly parallel to the filament axis, with extreme off-axis

tilts of �1.5 or 13.5 degrees, in left-twisted or right-twisted

straight filaments, respectively. The 1-start helix contains

5½ subunits per turn, with two turns required to step from

one subunit to the next along a protofilament.

A simple geometric model by Calladine (4,17,18),

based on earlier work by Asakura (19), explains the observed

spectrum of flagellar polymorphic forms, in accord with physi-

cal data. The model assumes that 1), each individual flagellin

monomer can switch between two states, ‘‘L’’ and ‘‘R,’’ that

have slightly different inherent twist and length (20), and 2),

the equilibrium pattern of monomer states minimizes the elastic

energy of the filament.

The trivial cases of 100% L and 100% R states correspond

to L-type and R-type straight filaments. Between these

extremes, elastic energy is minimized when like states self-

segregate along protofilaments, so that one can meaningfully

refer to the ‘‘state’’ of a protofilament, and like protofila-

ments cluster together. Implicitly, there is some three-

dimensional geometric incompatibility between monomer

shape and the flagellar symmetry: homogeneous L and

R wild-type flagellins must not fit neatly into the filament’s

11-fold symmetry because the pH-neutral, room-temperature

‘‘normal’’ filament form contains 9/11 L and 2/11 R. The

two-state model is buttressed by experiments in which chi-

meric filaments, composed of a mixture of mutant flagellins

locked in the L and R states, yielded intermediate poly-

morphic forms (19,21,22). We use a modified version of

the Calladine model containing three free parameters: the

inherent twists of the L and R protofilaments (tL and tR) and
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the maximum curvature of the filament (kmax). The twist and

curvature of the filament are

tn ¼ tL 1 ðtR � tLÞ ðn=11Þ (1)

kn ¼ kmax sinðnp=11Þ (2)

where n is the number of protofilaments in the R state. This

simplified model neglects a slight (1.5%) variation of kmax

with n (23). The parameter kmax is directly related to the L and

R protofilament geometries, and typical values in the literature

are consistent with measurements of protofilament structure

(23). A computer simulation of filament extension identified

a conformational change in a b-hairpin as the physical switch

between the L and R states (5).

Although the Calladine model predicts the shapes of

various forms, it says nothing about the relative stability of

each form or the forces required to transform from one poly-

morphic form to the next. In this work we use optical twee-

zers to stretch isolated flagellar filaments and measure the

force associated with polymorphic changes.

METHODS

Repolymerization

All work was done with Salmonella filaments repolymerized according to

a variation of the method of Asakura (21,24). Three liters of QM medium

(10 g Difco bacto peptone 1 10 g Difco yeast extract 1 10 ml 30% glucose

1 10 ml 40 mM pH 8 potassium phosphate buffer per liter of water) were

inoculated with 300 ml of a saturated culture of Salmonella typhimurium

SJW1103 (a phase-1 stable derivative with normal filaments of serotype

i (25)) and grown overnight at 37�C with shaking at 200 RPM to aerate.

Cells were pelleted by centrifuging 15 min at 8000 3 g and then

resuspended in 42 ml polymerization buffer (5 mM potassium phosphate

buffer pH 6.5 1 150 mM NaCl). Flagella were sheared from the cells in

this suspension using a modified Waring blender, and the cell bodies were

pelleted out (15 min at 8000 3 g). The supernatant fraction was further

cleaned of cell debris by centrifuging 15 min at 15,000 3 g.

The resulting suspension was purified by three rounds of repolymeriza-

tion. To perform a round of repolymerization: 1), pellet filaments 1 h at

78,000 3 g and 4�C and discard supernatant; 2), resuspend filaments in 4–8 ml

polymerization buffer; 3), reduce filament length by sonicating suspension

5 min at 50% power with a clean immersion sonicator (Heat Systems–

Ultrasonics, Farmingdale, NY, model W225); 4), depolymerize filaments

5 min at 65�C; 5), clean monomer by centrifuging 1 h at 100,000 3 g and 4�C

and discarding precipitate; 6), make polymerization seeds: harvest a small

fraction of supersaturated monomer solution, mix with an equal volume of

2M Mg2SO4 1 10 mM potassium phosphate (pH 6.5), polymerize 1 h at

room temperature, spin down seeds 1 h at 78,000 3 g, discard supernatant,

and resuspend in original volume of polymerization buffer; 7), combine

monomer and seeds and homogenize mixture by sonicating 5 min at 50%

power; and 8), polymerize overnight at room temperature.

The three rounds of repolymerization used progressively smaller seed

fractions of 20%, 10%, and 5% of total monomer volume. The resuspension

volume in step 2 was decreased from 8 to 4 ml to keep the total monomer

concentration (measured after depolymerization) around 1.5 OD280 (nom-

inally 5 mg/ml) because ;25% of flagellin was lost in each round of

purification.

Repolymerized filaments were labeled with an amine-reactive Cy3

dye (Amersham Biosciences, Piscataway, NJ, Cat. No. PA23001) for 1.5 h

in PBS (10 mM pH 7.0 phosphate buffer 1 67 mM NaCl 1 100 mM EDTA)

in a variation of the method of Turner, Ryu, and Berg (26). To avoid

breaking filaments, excess dye was removed by gently filtering with a

0.2-mm filter and flushing with 100 times the reaction volume of PBS.

The majority of filaments were 10–25 mm in length, with a small population

of extremely long (up to 70 mm) filaments. Labeled filaments were refrig-

erated in polymerization buffer until use.

Phase diagram

The phase diagram for Salmonella filaments (Fig. 2) was mapped using

combinations of HCl (pH 2–4), 10 mM potassium phosphate buffer (pH

4–10), and NaOH (pH 10–12). Dilute samples of unlabeled repolymerized

filaments in the appropriate buffer/salt combination were equilibrated 30–60

min at room temperature and observed with dark-field illumination.

FIGURE 2 Phase diagram for repolymerized Salmonella filaments at

room temperature. Measurements are denoted with letters: normal (N), curly

(C), coiled (o), depolymerized (X), or coexisting normal, coiled, and hybrid

normal-coiled (No).

FIGURE 1 Two-dimensional projections of the helical polymorphic

forms predicted by the Calladine model of the bacterial flagellum.

Polymorphism number n is the number of protofilaments in the ‘‘R’’ state

(also displayed in the L:R ratio above the figure). Of the 12 predicted forms,

4 are left-handed (those with n # 3), and most, but not all, have been

observed in the wild (see Yamashita et al. (14). The form with n ¼ 1 we call

‘‘hyperextended.’’ The helical forms pictured here correspond to the

geometric parameters of Eqs. 6–8.
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Force-extension curves

Force-extension curves were obtained using an optical tweezer described

by Berry and Berg (27). Antibody-coated beads were prepared by adsorbing

anti-Cy3 antibody (Abcam, Cambridge, MA, Cat. No. ab6902-1) onto

1.4-mm latex beads (Polysciences, Warrington, PA, Cat. No. 17133) in

PBS 1 1% bovine serum albumin (BSA). A dilute solution of Cy3-labeled

filaments and beads was mixed with an appropriate buffer (either pH 7

PBS 1 0.003% BSA or pH 4 100 mM acetate 1 0.01% BSA) and an

oxygen-scavenging solution (0.1 mg/ml glucose oxidase (Sigma-Aldrich,

St. Louis, MO, Cat. No. G7016) 1 0.018 mg/ml catalase (Sigma Cat.

No. C100) 1 3 mg/ml glucose) and loaded into a thin chamber composed

of a microscope slide and coverslip assembled using double-sided tape

(;0.07 mm thick). The slide was placed in a custom-built open-loop x-y

piezoelectric stage (27) on an inverted microscope (Nikon Diaphot 200). A

temperature-controlled brass jacket around the objective lens, designed

according to Khan and Berg (28), was thermally coupled to the sample slide

by immersion oil. Epifluorescence images of filaments were captured by a

framegrabber (model LG-3, Scion Corporation, Frederick, MD) using a

black and white CCD camera (Marshall Electronics, Culver City, CA, model

V-1070). Trap stiffness was calibrated by fitting the trapped bead power

spectrum to a Lorentzian (29), and the quadrant photodiode (QPD) response

was calibrated by scanning an immobilized bead through the beam focus.

During data runs, noise from the Brownian motion of the bead in the trap

was suppressed using a 10-Hz low-pass hardware filter (Wavetek Rockland,

Rockleigh, NJ, model 852), and the filtered QPD signal was recorded

using LabView (National Instruments, Austin, TX). The trap was focused

just above the chamber surface (12 mm) so that pulling forces would

be perpendicular to the optical axis, and so that the stretched filament would

lie in the focal plane.

Isolated filaments naturally settle to the bottom of a microscope slide,

and their proximal ends (6) adhere to clean glass (cleaned for several minutes

in 95% ethanol saturated with KOH, then copiously rinsed with water). After

a suitable filament was identified, an antibody-coated bead was trapped and

forced against the filament until it bound, and the filament was stretched to

an approximately neutral length. Labview was used to drive the piezo

stage with a periodic triangle wave; the true displacement of the stage was

calculated by correcting the open-loop signal using the recorded positions

of stuck beads. Before data acquisition, the piezo was cycled at least

10 times to overcome the piezo memory effect. In principle, the filament

extension might be less than the stage displacement because the far end

of the filament moves inside the optical trap. In practice, with the relatively

stiff traps used (100–150 pN/mm), the correction for bead motion was

negligible.

Force-extension curves were fit to Eq. 12 with tn and kn considered to

be known parameters. The extension z is related to experimental displace-

ments dz via z ¼ zn 1 D 1 dz, where D is the offset between the nominal

origin (dz ¼ 0) and the actual neutral filament position, and zn is the neutral

axial length of the filament (given by Eq. 10 with t ¼ tn and k ¼ kn). To

compute the fractional extension z ¼ z/L we need to know the filament

contour length L; in practice, it is more convenient to identify the neutral

filament position, measure zn (from the image of the filament), and calculate

L using Eq. 10. Eliminating L leads to the expression

z ¼ zn 1 1
D 1 dz

zn

� �
; (3)

where the neutral fractional extension zn [ zn/L can be calculated from

Eq. 10 to give z1 ¼ 0.98, z2 ¼ 0.85, and z3 ¼ 0.30 for the hyperextended,

normal, and coiled forms, respectively. The measured force was manually

corrected by a constant offset to bring the slack region to zero force; this

was required because of drift in the QPD amplifier-nulling electronics. In

total, fitting of each data set used this manually fixed offset and two

free parameters (D and EI). This offset was correlated with the fit parameter

D but did not affect the stiffness EI or the overall shape of the force-extension

curves.

RESULTS

Fig. 2 shows the pH-salt phase diagram for reconstituted

Salmonella flagellar filaments at room temperature; our re-

sults are similar to those obtained by Kamiya and Asakura

(7). Regions labeled ‘‘coiled’’ generally contained some

completely coiled filaments, some completely normal fila-

ments, and some hybrid normal-coiled filaments composed

of both forms, as in Fig. 3 A. Based on spot checks of a few

of the regions, fluorescent labeling of filaments does not

change the phase diagram.

Using labeled filaments in the low-pH/low-salt coiled

phase and lowering the temperature to 3�C, we captured

images of individual filaments in the process of transforma-

tion. Fig. 3, A–C, show examples of transiently occurring

multiphase filaments. Based on a set of images like these,

the pitch and radius at pH 4 and 3�C are listed in Table 1.

The Calladine model specifies the twist and curvature

of the helical forms (Eqs. 1–2), which are related to the pitch

p and radius r by geometry (30, pp. 311–315):

p ¼ 2pt=ðk2
1 t

2Þ (4)

r ¼ k=ðk2
1 t

2Þ (5)

Using the three free parameters of the Calladine model to

fit the measured pitches gives

tL ¼ �5:2 rad=mm (6)

tR ¼ 11:8 rad=mm (7)

kmax ¼ 2:4 rad=mm: (8)

See Fig. 3 D. These values for the model parameters differ

from others’ estimates in the literature by ;10% (23). The

FIGURE 3 Filaments showing abutting sections of coiled and normal

form (A), semicoiled and coiled form (B), and semicoiled and normal form

(C). Beyond the normal section in (C) is a coiled end, which is out of the

focal plane and not visible in this picture. (D) Predicted (o) and measured

(1) pitch and radius of polymorphic forms for the best-fit values of the

Calladine model parameters (Eqs. 6–8). The model allows only forms with

integer n; the solid line is a continuous interpolation between these states.
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model predicts the forms’ radii; measured values agree to

within 0.05 mm. In hybrid filaments containing two different

polymorphic forms, one can predict the angle between the

two helical axes (31); our measurements agree with such a

calculation to within 6� (data not shown).

Repeatedly pulling on filaments in the neutral-pH/

moderate-salt normal phase at room temperature gives the

series of curves shown in Fig. 4. Under rapid pulling, the

filament usually traces a simple, hysteresis-free curve (upper
trace). Occasionally, however, the measured force will jump

suddenly to a lower curve. This corresponds to a sudden

twist of the filament as a portion transforms from the normal

(n ¼ 2) to the hyperextended (n ¼ 1) form. Under rapid

cycling conditions, the filament often (9 of 19 cycles)

completes a complete elastic extension-compression cycle

without performing a polymorphic transformation, but

when the filament is extended more slowly, it always trans-

forms (10 of 10 cycles), and the transformation generally

occurs at lower force levels (Fig. 4, inset). When we attempt

to compress the filament (z & �0.5 mm), the helix buckles

(frames A and B) rather than sustain any negative force. The

polymorphic transformation that occurred during extension

is reversed during this buckling, but because it occurs during a

uniform zero-force regime, we do not detect it.

If we start from a coiled state, obtained by putting the

filament in pH 4 buffer at 3�C, the transformation is more

dramatic (Fig. 5). All the force-extension curves initially

follow a single curve (A–E), but at different forces (between

3 and 5 pN; around D) a polymorphic transformation of

the distal end of the filament occurs, releasing some of the

stress accumulated in the stretching filament. After further

stretching, this process repeats, with another portion the

filament transforming, culminating in some five to eight

transformations being visible in the force-extension record

before the maximum extension is reached (E). After the first

one, subsequent transformations typically occur at lower force

levels, at least while the majority of the filament is still in

the initial, coiled state. During the retraction stroke (E9–A9),

the reverse polymorpic transformation occurs, resulting in a

sudden increase in force (C9).

DISCUSSION

Between the sudden changes that signify polymorphic trans-

formations, we can model the stretching filament as a simple

elastic object. Kirchoff rod theory states that the elastic

deformation of a thin rod requires an energy per length

TABLE 1 Pitch and radius of Salmonella filaments at pH 4

and 3�C

Polymorphic form n Pitch (mm) Radius (mm)

Normal 2 2.17 0.21

Coiled 3 0.79 0.53

Semicoiled 4 1.07 0.30

FIGURE 4 Force-extension curves for pulling on a normal (n ¼ 2)

polymorphic form filament. The upper panel shows 10 force-extension

measurements perfomed at an extension rate of 0.4 mm/s. During 6 of the

10 trials shown, the filament followed a simple elastic force-extension curve

(upper trace, labeled A–E). During the other trials a polymorphic

transformation to the hyperextended (n ¼ 1) form occurred during the

extension of the filament, dropping the force onto a lower curve. When the

same filament was pulled at a 10-fold slower extension rate, it transformed

during every trial (inset) at about half the force required during rapid pulling.

Stills of the same filament (lower panels) were extracted from video at points

on the force-extension curve labeled A–E. The flat near-zero portion

corresponds to filament buckling (A and B). Trap stiffness was 90 pN/mm.

The location of zero displacement is arbitrary. The trapped bead is visible

at the left end of the filament.
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Uðt; kÞ=L ¼ 1

2
EIðk� knÞ2 1

1

2
mJðt � tnÞ2; (9)

where L is the total contour length, E and m are the Young’s

and shear moduli, and I and J are cross-sectional moments

with respect to bending and twisting axes (32, Chapter 18).

k and t are the curvature and twist of the rod, which, under

the application of some combination of torque and tension,

may differ from their intrinsic, unstressed values kn and tn.

It is more convenient to describe the helix by its length z
and winding angle u (¼ 2pz/p):

z ¼ Lt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2
1 t

2
p

(10)

u ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2
1 t

2
p

; (11)

which allows us to compute the force and torque associated

with an elastic deformation of the helix as F ¼ @U(z, u)/@z
and G ¼ @U(z, u)/@u. Because one end of the filament is

attached to a spherical bead, the filament end rotates freely

to relieve any torque. Solving G ¼ 0 for the winding angle u

and substituting into the expression for F gives

FðzÞ ¼EI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t

2

n 1k
2

n

q
kn 1

zffiffiffiffiffiffiffiffiffiffiffiffi
1� z

2
p tn

 !
tn�

zffiffiffiffiffiffiffiffiffiffiffiffi
1� z

2
p kn

 !
;

(12)

where z [ z/L is the normalized length. For an isotropic solid

�1 , E/m , ½, and most common substances lie in the

narrow region 0 , E/m , 1/3, whereas a rod of circular cross

section has J ¼ 2I ¼ pa4/2, where a is the radius. This

suggests that 1 . EI/mJ . 3/4, and we will make the

simplifying assumption that EI/mJ ¼ 1. For right-handed

helices a positive force produces a positive extension

(F.0/z.zn.0); for left-handed helices the convention

is reversed, so a negative force produces an extension

(F,0/z,zn,0). In the following discussion, signs are

reversed to make left-handed helices follow the more natural

right-handed convention. Fig. 6 shows the data of Figs. 4 and

5 superimposed on a family of elastic force-extension curves

given by Eq. 12 with tn and kn taken from Eqs. 6–8. For the

normal:hyperextended and coiled:normal data, respectively,

filament lengths are 19.5 and 7.6 mm, and fit parameters are

D ¼ 0.12 mm and D ¼ 1.0 mm.

In both cases the best-fit stiffness was EI ¼ 3.5 pN�mm2,

which compares favorably with reported stiffness values

of 1 to 3 pN�mm2 obtained by looking at thermal fluctuations

(33–35). The slope of the elastic portion of the force-extension

curve for the normal form is six times steeper than that for

the coiled form, but that is entirely because of the difference

in helical geometry between the two forms; the inherent stiff-

ness of the filament itself is unchanged.

The derivation of Eq. 12 assumed that the bending and

twisting stiffnesses (EI and mJ) are equal. If this were not the

case, Eq. 12 would contain additional terms involving mJ
and factors that depend on the helix geometry. A large

difference between EI and mJ, as has been suggested (36),

would have led to a different effective stiffness in our

measurements. Because we do not observe any change in

stiffness between forms, the approximation EI ¼ mJ is pro-

bably quite good.

FIGURE 5 Force-extension curves for pulling on a coiled (n ¼ 3)

polymorphic form. A typical force-extension measurement cycle begins

with a compressed coiled form (A), which is elastically stretched (B and C)

until a series of polymorphic transformations occurs (D), culminating in a

filament that contains a substantial amount of normal (n ¼ 2) form (E).

During the retraction portion of the cycle this is reversed, with an initially

smooth contraction (E9 and D9) followed by a normal-to-coiled transforma-

tion (around C9) and then gradual contraction (B9) back to the coiled starting

state (A9). The video montage is of the same filament, although not taken at

the same time as the force-extension data. The pitch of the left end of the

filament changes abruptly during the polymorphic transformation; this

occurs between frames C and D during extension and reverts between frames

C9 and B9 during retraction. Trap stiffness was 150 pN/mm. The dark circle

at the left end of the filament is the image of the trapped bead.
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Equation 12 assumes that an axially aligned force

produces a uniform extension or compression of the helix.

Under compression, however, if the force is misaligned

with the helical axis, then the filament will buckle. This

problem is particularly severe with the normal form, which

has a smaller radius, and as a result, the normal filament can

sustain almost no compressive force before buckling into a

flat, near-zero-force region.

Fig. 6 also shows intermediate curves corresponding

to hybrid filaments, which are calculated by assuming that

sections of different polymorphic forms act as springs con-

nected in series. This formulation neglects the contact angle

between the different forms, which varies from 20� (for

normal:hyperextended) to 40� degrees (for coiled:normal).

When a change in handedness occurs, the contact angle can

be much larger. For instance, the coiled:semicoiled contact

angle is 140� (Fig. 3 B), which is presumably why pulling on

the coiled form triggers a transformation to the normal, rather

than semicoiled, form, although both are more extended than

the coiled form.

Polymorphic transformations occur in discrete, rapid steps,

converting micrometer-long sections of filament at a time.

In between transformations, the filament behaves as a linear

elastic object that accumulates elastic strain energy, which is

released during the next transformation. This phenomenon is

consistent with some sort of activation energy or energy

barrier because the transformation is not deterministic and is

associated with a time scale, yielding force-extension curves

that depend on strain rate as well as strain.
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