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ABSTRACT A compact representation of usual DNA/RNA four-nucleotide sets based on molecular affinity classes is proposed.
In a geometrical correspondence to this formulation, it follows that intrinsic tetrahedral symmetry correlates nucleotide properties.
This representation also leads to a proper decomposition frame for any sequence-dependent physical expectation. Thermody-
namic and other physical properties of nucleotide sequences are most often stated within the scope of nearest-neighbor models
and decomposed in terms of dimer properties. The inverse problem of obtaining dimer set properties is, however, well known to be
ill-posed due to sequence composition closure relations. Analysis of the dimer set composition and structure within the novel
tetrahedral formulation provides important self-consistency relations, solving the ill posed nature of the original formulation. As an
applied example, we analyze DNA oligomer duplex free energy data available on the literature. It is shown that imposition of
stringent self-consistency relations does not decrease fit quality to the experimental data set. On the other hand, an improved dimer
set with physically consistent free energies is obtained. Meaningful corrections to previous determinations are found when the self-
consistent set is applied to calculate free energies for sequences with composition order bias.

INTRODUCTION

Widely used DNA biotechnological applications such as

PCR or cDNA expression profiling rely on the knowledge of

sequence specific thermodynamic parameters such as strand

melting temperature. Many physical properties of DNA\RNA

sequences can be calculated from a number of algorithms in

the context of nearest-neighbor (NN) models. NN models

give linear representations for experimental measurements on

nucleotide chains usually in terms of pairwise (dimer) se-

quence contributions. However, the notion that NN dimer

parameters cannot be assigned from experiments by solving a

set of simultaneous linear equations has been given since the

development of these models in the context of polynucleotide

thermodynamic studies (1). This puzzling conclusion is due to

the consideration of intrinsic composition closure constraints

that effectively reduce the number of degrees of freedom of

the model. Dimer occurrence relations are well known,

allowing for decomposition of sequence properties into

arbitrarily chosen reduced dimer sets. As a corollary, so-far-

unknown constraints must also link the full dimer set

properties in some hidden way to restore full set unity. The

dimer decomposition is overstated, since the dimer set size (16

for single strands and 10 for double strands) is greater than the

number of degrees of freedom of the problem (13 and 8,

respectively, for circular sequences). Alternative approaches

have considered decompositions into irreducible and hence

smaller sets of short sequences or dimer combinations (2–5).

Comparison among different laboratory sets and physical

interpretation of set values becomes a difficult task due to the

arbitrariness of possible renderings. The extraction of simpler

and more direct dimer contributions from such sets has

remained an ill-posed problem with nonunique solutions, but

still embraced by a large community of biochemists (6–12).

To adopt the dimer set formulation further ad hoc regulariza-

tion hypotheses have been taken by different authors, such as

the singular value decomposition method (9,10). Here we

adopt an entirely new approach to this problem by analyzing

how the nucleotide intrinsic intermolecular symmetries

contribute to the structure of NN sets. In this article, we first

introduce a general quantum mechanics statement giving

physical properties for a sequence of heterogeneous mole-

cules, treated as subsystems assuming any of a given complete

set of molecular states. The four-nucleotide set has a corre-

sponding four-state representation. At this point, a careful

choice of the number of degrees of freedom is made that

projects the representation into a three-dimensional molecular

class space. Luckily, the three independent molecular classes

are readily associated to main biochemical classification of

nucleotides as composed of purine-pyrimidine, amino-keto,

and strong-weak bases. The representation of the four-

nucleotide set as a tetrahedron in three dimensions is at the

heart of this work. This representation has been used to

generate DNA-walks for sequence composition analysis or

display. The corresponding proper space metrics has also

been recently used for phylogenetic sequence comparisons

(13). We proceed to contract the original quantum mechanics

statement into an irreducible formulation using the four-

nucleotide tetrahedron representation. This molecular sym-

metrical decomposition is found to provide the right number

of fundamental properties (free parameters). Next we relate

this decomposition to the dimer set formulation. The com-

parison uncovers useful and so far hidden self-consistency

relations among dimers. Finally these results are applied to the

analysis of DNA free energy by introducing empirical endSubmitted August 10, 2006, and accepted for publication November 13, 2006.
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contributions to the model. A self-consistent set has thus been

fit to free energy data from 108 short duplex oligomer se-

quences as available on the literature. The more compact and

symmetrical self-consistent set, although modeled short by

two variables, is shown to provide at least as good modeling

for oligomer free-energy as standard NN dimer models. The

far-reaching strength of this entirely novel theoretical mod-

eling frame for DNA/RNA sequences resides in its compact-

ness and symmetry. One of the immediate and practical

consequences of the tetrahedral model is the disclosure of the

implicit dimer self-consistency relations. The constraints

discovered are to avoid unphysical values and thereby

increase the precision of predictions relying on dimer set

values. This work concludes with an analysis of error prop-

agation, which manifests mostly for sequences with strong

composition order trend.

A QUANTUM MECHANICS FORMULATION FOR
SEQUENCE PROPERTIES

Complexity in biological phenomena represents an enormous

challenge and a rich field for the application and development

of physical methods. To unfold simple biopolymer phenom-

ena we start by a biochemical meaningful nucleotide repre-

sentation into molecular classes and count on sound tools

of quantum mechanics formulation. Quantum mechanics

does not need to start with a complete spatio-temporal wave-

function or Schrödinger representation. It may be well stated

in the matrix or Heisenberg representation. What is needed

from start is some base set for the description of the states of a

system. For a system, we take a DNA/RNA sequence. The

ensemble of sequence states is given by allowable sequence

composition alone. We want to describe and isolate gross

composition states. Inner electronic states or molecular

conformation contributions, which would require a much

finer level of quantum description, are so far intrinsically

averaged. State transitions are of course forbidden if one

neglects mutations. The sequence state will be given in terms

of its molecular constitution, and a nucleotide set represen-

tation will condition the sequence representation.

The quantum mechanics expectation for any observable is

given in terms of the corresponding operator E and system

state jCæ as ÆCjEjCæ in Dirac’s notation. The state of a system

composed of n particles or molecules is usually expressed as

the tensorial product of their component states jb(i)æ:

jCæ ¼ jbð1Þæ5jbð2Þæ5 � � � jbðnÞæ[jbð1Þ; bð2Þ; � � � ; bðnÞæ:
(1)

For d-dimensional component states, this would lead a priori

to the specification of (nd)2 operator matrix elements Em(i)n(j).

If interaction range is limited, however, then many off-diagonal

matrix elements become null and a reduced formulation can

be sought. Considering only sequential NN interactions, the

expectation can thus be written as

E ¼ +
i

ÆbðiÞ; bði 1 1ÞjEjbðiÞ; bði 1 1Þæ: (2)

Here, submatrix elements pertaining to the same component

at position i (diagonal or self-matrixes Em(i)n(i)), which are

internal to the sequence (i 6¼ 1, n), should be halved since they

are counted twice in this formulation (see Fig. 1). Interactions

of the free end nucleotides with surrounding molecules are

ignored in this approximation and will be considered in a

future work.

Further reduction of this development can be obtained

considering implicit symmetries of the Hermitian E-matrix

and its invariants under orthonormal base representations.

Nucleotide class-states representation

The most straightforward representation for a four-nucleotide

set is a four-dimensional vector. Such ‘‘independent-nucle-

otides’’ representation has been implicitly adopted by many

authors and leads to 434 matrixes or 16 parameter sets when

considering nucleotide pairwise properties (5). This repre-

sentation, however, already overstates the nucleotide com-

position problem from the beginning. The set representation

should be more concisely established in a three-dimensional

space. First note that, due to a normalization constraint, a

variable composed (assuming any combination) of d 1 1 dif-

ferent possible states may be specified by a corresponding

generalized d-dimensional composition diagram, even though,

ultimately, only the corners of the diagram represent pure

states. To give examples, properties for a ternary mixture are

well represented in a two-dimensional triangular composition

diagram for support, while a binary mixture is defined from a

FIGURE 1 Structure of an expectation matrix for a sequence of n ¼ 6

identical components (molecules in arbitrary states). The components have d

degrees of freedom represented through d orthogonal base states, which

results in 3n-2 ¼ 16 submatrices of size d2. Only nearest-neighbor

interactions are considered. This matrix, corresponding to the quantum

mechanics formulation of Eq. 1 is Hermitian and periodic, allowing for a

more synthetic representation. One periodic module of four submatrices

implicit in Eq. 2 has been distinguished by a dashed line. Note that internal

submatrices in the diagonal are counted twice according to the formulation

of Eq. 2.
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single concentration variable. A complete and symmetrical

representation for the usual DNA (or RNA) four-nucleotide

set can be given within a tetrahedral decomposition scheme

into a three-dimensional orthonormal base set jxæ, jyæ, jzæ. The

pure nucleotide states jb(i)æ are given as (13)

jAæ ¼
1

1

1

0
B@

1
CA; jTæ ¼

�1

�1

1

0
B@

1
CA;

jCæ ¼
�1

1

�1

0
B@

1
CA; jGæ ¼

1

�1

�1

0
B@

1
CA: (3)

The nucleotides themselves are represented as a nonorthog-

onal (tetrahedral) O3-modulus vector set (Fig. 2). The four-

nucleotide states are not independent, and can be expressed in

terms of three independent abstract nucleotide class states.

Due to this decomposition, z-component discriminates weak

(two bridges, AT) versus strong (three bridges, CG) hydrogen

bonding for Watson-Crick pairing; x-component discrimi-

nates purines (double-ring, AG) versus pyrimidines (single-

ring, CT) nucleotide sizes and y-component discriminates

amino (nitrogen-containing, AC) versus keto (oxygen-

containing, GT) nucleotide radicals. The nucleotide repre-

sentation is given in a tentative molecular class space. In

quantum language, a jxæ base state, for example, is a ring

number or purine-pyrimidine class-state, while jAæ ¼ jxæ1
jyæ1 jzæ is an adenine molecular-state decomposed in terms of

proper nucleotide class subspaces. Any pure nucleotide state

can thus be represented in terms of molecular class states.

Each possible nucleotide pair shares one of its fundamental

molecular structural characteristics as a group in a given class,

which differs from the complementary pair as another group

in the same class (see Eq. 3). This is perfectly well represented

in the intrinsic cubic symmetry of the tetrahedron. The

properties associated to each molecule are to be decomposed

in terms of three differential affinity groups or classes

belonging to a complete nucleotide representation. It is worth

stressing that the four-nucleotide molecules display rather

straightforward differential affinities, which helpfully asso-

ciates each of the three proper classes to main molecular

structural features. Hence, through abstract operations, each

nucleotide could be modeled to mutate into another by keeping

the group state of one of its three classes while converting the

remaining class states. The choice of a tetrahedral set is thus

natural and convenient for its intrinsic orthogonality and

symmetry properties, which are related to common molecular

group classifications. Nevertheless its main advantage is to

fulfill the necessity for a three-dimensional bijective represen-

tation of a four-set composition.

Irreducible representation

Returning to the quantum mechanics formulation, we want

to exploit the remaining invariants and redundancies from

the structure of the matrix operators in Eq. 2 to further reduce

its number of parameters. The three-dimensional nucleotide

basis should be kept in mind. The sequence-dependent states

of an observable will then assume discrete values given by

a most compact expansion of its expectation as

E ¼ +
i

S 1 ÆVjbðiÞæ 1 ÆbðiÞjMjbði 1 1Þæð Þ; (4)

in place of Eq. 2, where b(i) are still the sequence nucleotide

states at coordinate i, given in terms of class states by Eq. 3,

while end effects have been ignored here, i.e., the sequence is

assumed to be noninteracting at both ends, or gigantic, or

circular, or periodic for simplicity. The bracket notation

indicates vector and dyadic contractions as usual. The

expansion above is intuitive, as the first two terms represent

linear contributions to a property from the sequence compo-

sition, while the third term comprises nonlinear effects due to

NN interference or differential stacking interactions. Com-

parison with Eq. 2 allows the identification of its compo-

nents. The first term is a constant or mean contribution to the

observable, given as the invariant trace of the square

expectation periodic matrix S ¼ Tr(E). The trace represents

a molecular-state independent contraction of the self-matrix

diagonal, where, by construction, any pure nucleotide com-

ponent (Eq. 3) equally squares to one (b2
m ¼ 1). The remain-

ing cross terms of the self-matrix similarly contract to a

vector since all pure nucleotide states jb(i)æ also have

cyclically multiplicative class components (bx ¼ by bz, etc.).

This contraction gives the second term as an order-indepen-

dent or global-composition contribution, with components

ÆVj ¼ 4 Re(Ey(1)z(1) Ez(1)x(1) Ex(1)y(1)). The third term is an

NN or first-order sequence stacking contribution to the

observable. The stacking matrix M is a second-rank tensor

FIGURE 2 Orthonormal x-y-z base set and tetrahedral DNA-nucleotide

set representation. Each of the three axes distinguishes a specific molecular

class feature. Purines are distinguished from pyrimidines through x-coordinate.

Amino are distinguished from keto through y-coordinate. Weak Watson-

Crick hydrogen-bridge binding is distinguished from stronger binding through

z-coordinate.
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and has its elements given from the cross expectation matrix

as Mmn¼ 2 Re (Em(1)n(2)). The symmetrical sum of the expec-

tation matrix Hermitian conjugates result in a fully con-

tracted real formulation.

Decomposition of nucleotide sequence observable expec-

tation as in Eq. 4 naturally leads to an irreducible 13-parameter

description of physical properties (S, Vm, Mmn), which we call

the symmetrical set, within the NN approximation. Note that a

traditional description of stacking dependent properties is

often stated in terms of the NN dimer composition, i.e., as a

linear combination of the 16 ordered 59–39 NN dimer set Eij:

E ¼ +
i;j¼A;T;C;G

NijEij: (5)

The NN dimer set is, however, overspecified, i.e., only a

smaller set of NN combinations can be a priori obtained from

inversions of Eq. 5, since Eq. 5 is supplemented by indepen-

dent composition closure relations. For implicit circular

sequences these can be taken as any three of

+
b¼A;T;C;G

ðNAb � NbAÞ ¼ 0;

+
b¼A;T;C;G

ðNTb � NbTÞ ¼ 0;

+
b¼A;T;C;G

ðNCb � NbCÞ ¼ 0;

+
b¼A;T;C;G

ðNGb � NbGÞ ¼ 0; (6)

reducing the number of independent dimers in the set to

arbitrary 13. Similar arguments hold for linear oligomers.

In comparison, the decomposition of physical properties in

the symmetrical set proposed here is in a fundamental level,

since from the beginning it includes only a priori linearly

independent terms and gives contributions to the observable

in the hierarchic form of three expectation tensors of in-

creasing rank, corresponding to different levels of analysis.

The 16 NN expectations can otherwise be easily obtained as a

linear combination of the 13 symmetrical-set tensor compo-

nents. In that case it is useful to rewrite Eq. 4 in a form

appropriate for NN dimer decomposition as

Ebð1Þbð2Þ ¼ S 1

�
V

����bð1Þ1 bð2Þ
2

�
1 Æbð1ÞjMjbð2Þæ; (7)

where, to correctly account for additivity, as given by Eq. 5

for each dimer in a sequence, the two nucleotide linear

contributions are halved.

Explicitly one has applying Eq. 3 to Eq. 7:

Tensor elements can be either conversely determined from

reported dimer values or be self-consistently derived from

fits to raw polynucleotide data using Eqs. 8 and 5, or directly

from Eq. 4, while from a theoretical point of view, molecular

symmetry arguments or ab initio calculations could be used

to guess tensor structure and values.

Double strands

For measurements concerning double strands, aside end

effects, it is well known that complementary strand symme-

try further reduces the problem to the statement of only 10

conjugated NN dimer pair values (see the expressions in

Eq. 12 below) linked through two independent composition

closure relations as

+
b¼A;T;C;G

ðNAb � NbAÞ ¼ 0;

+
b¼A;T;C;G

ðNGb � NbGÞ ¼ 0;
(9)

so that only eight independent parameters should result, while

the difficulties in defining a 10-dimer set of parameters from

a given set of experimental data persist. In that case, comple-

mentary strand A/T and C/G pairing symmetry in a dimer, as

expressed in Eq. 3, gives the conjugate NN base component

relations

b9xð1Þ ¼ �bxð2Þ; b9xð2Þ ¼ �bxð1Þ;
b9yð1Þ ¼ �byð2Þ; b9yð2Þ ¼ �byð1Þ;
b9zð1Þ ¼ bzð2Þ; b9zð2Þ ¼ bzð1Þ; (10)

where primed bases correspond to the complementary dimer

and numerals correspond to the first and second nucleotide

along 59–39 direction for each strand, i.e., both order and x,y
coordinates are inverted for the conjugate pair.

The double-strand expansion can be given as a function of

a single strand sequence taking into account the fore

mentioned implicit symmetries (by adding contributions

from both strands to Eq. 7 taking into account Eq. 10 and

ETA ¼ S 1 Vz �Mxx �Mxy �Mxz �Myx �Myy �Myz 1 Mzx 1 Mzy 1 Mzz;

EAT ¼ S 1 Vz �Mxx �Mxy 1 Mxz �Myx �Myy 1 Myz �Mzx �Mzy 1 Mzz;

ECA ¼ S 1 Vy �Mxx �Mxy �Mxz 1 Myx 1 Myy 1 Myz �Mzx �Mzy �Mzz;

ETG ¼ S� Vy �Mxx 1 Mxy 1 Mxz �Myx 1 Myy 1 Myz 1 Mzx �Mzy �Mzz;

etc: (8)
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then redefining the tensor set, i.e., E9b1b2 [ Eb1b21 Eb91b92).

It is clear in that case that

Vx ¼ Vy ¼ 0; Mxy ¼ Myx; Mxz ¼ �Mzx; Myz ¼ �Mzy;

(11)

correctly reducing the number of independent elementary

tensor set values to 8.

From Eq. 11 and Eq. 8, decomposition for the 10 paired

NNs gives a self-consistent set of expectations obeying

while the symmetrical set of eight tensor parameters can be

inferred from the inverse relations

This decomposition enlightens the meaning of the com-

position free S term as the 16-dimer ensemble mean

expectation value and of Vz as the half-differential expec-

tation between AT containing and CG containing dimers.

Most important, the double determination of Mxz and Myz

values in the last two expressions in Eq. 13 should coincide

for a self-consistent set of dimer values. Explicitly, self-

consistency introduces links relating composition order sym-

metry among dimer properties as

EAT � ETA 1 EGC � ECG ¼ 2ðEGA�TC � EAG�CTÞ
EAT � ETA 1 ECG � EGC ¼ 2ðECA�TG � EAC�GTÞ:

(14)

Note that, analogous to the composition closure relations

(Eq. 9), the dimer expectation self-consistency relations (Eq.

14) may also be combined to read

+
b¼A;T;C;G

ðEAb � EbAÞ ¼ 0;

+
b¼A;T;C;G

ðEGb � EbGÞ ¼ 0: (15)

COMPARISON WITH EXPERIMENTAL DATA

To compare this self-consistent formulation with double-

strain DNA oligonucleotide free energy data, four extra

terms corresponding to the different 59 terminal composi-

tions need to be considered with the dimer contributions of

Eq. 7. End effects include duplex initiation and other duplex

and solvent terminal interactions. However, only two param-

eters, that discriminate AT end pairing from CG end pairing,

without 59–39 order discrimination, seem to be relevant and

have often been included in general thermodynamic analysis

of DNA (10–12). A symmetry penalty of entropic origin

given as ln(2) RT ¼ 0.43 kcal/mol, is also usually assigned

for the physically distinct case of self-complementary se-

quences. We will adopt the same set of initiation and symme-

try parameters here in order not to loose the focus on the NN

set presentations.

The determination of oligonucleotide free energies has

been a long-standing problem (1,14,15). SantaLucia et al.

(10–12) has reviewed the data from seven laboratories and

given a table of unified values for DNA dimer contributions

to standard free energies at 37�C and 1M salt concentration:

DG37. This unified data set is not self-consistent a priori.

Adopting an ab initio approach, we proceed to fit the same

set of thermodynamic data from 108 sequences used to

establish the unified NN dimer parameter set (11); using the

eight parameter tensor decomposition of dimer properties

(Eq. 12) plus three extra parameters: an entropic correction

for symmetric self-complementary sequences; and terminal

corrections for AT and CG initiations.

For example, the sequence AATG would be decomposed as

EAATG ¼ EAA�TT 1 EAT 1 ECA�TG ¼ 3S 1 2Vz

�Mxx 1 Myy 1 Mzz 1 2Mxz 1 4Myz;
(16)

ETA ¼ S1Vz�Mxx�Myy 1Mzz�2Mxy�2Mxz�2Myz

EAT ¼ S1Vz�Mxx�Myy 1Mzz�2Mxy 12Mxz 12Myz

EAA�TT ¼ S1Vz 1Mxx 1Myy 1Mzz 12Mxy

EAG�CT ¼ S1Mxx�Myy�Mzz�2Mxz

EGA�TC ¼ S1Mxx�Myy�Mzz 12Mxz

EAC�GT ¼ S�Mxx 1Myy�Mzz�2Myz

ECA�TG ¼ S�Mxx 1Myy�Mzz 12Myz

EGG�CC ¼ S�Vz 1Mxx 1Myy 1Mzz�2Mxy

ECG ¼ S�Vz�Mxx�Myy 1Mzz 12Mxy 12Mxz�2Myz

EGC ¼ S�Vz�Mxx�Myy 1Mzz 12Mxy�2Mxz 12Myz;

(12)

S¼ 1

16
½2ðEAA�TT 1EAG�CT 1EGA�TC 1EAC�GT 1ECA�TG

1EGG�CCÞ1ðETA 1EAT 1ECG 1EGCÞ�

Vz ¼
1

8
½2ðEAA�TT�EGG�CCÞ1ðETA 1EAT�ECG�EGCÞ�

Mxx¼
1

16
½2ðEAA�TT 1EAG�CT 1EGA�TC�EAC�GT�ECA�TG

1EGG�CCÞ� ðETA 1EAT 1ECG 1EGCÞ�

Myy¼
1

16
½2ðEAA�TT�EAG�CT�EGA�TC 1EAC�GT 1ECA�TG

1EGG�CCÞ� ðETA 1EAT 1ECG 1EGCÞ�

Mzz ¼
1

16
½2ðEAA�TT�EAG�CT�EGA�TC�EAC�GT�ECA�TG

1EGG�CCÞ1ðETA 1EAT 1ECG 1EGCÞ�

Mxy¼
1

16
½2ðEAA�TT�EGG�CCÞ� ðETA 1EAT�ECG�EGCÞ�

Mxz ¼
1

8
ð�ETA 1EAT 1ECG�EGCÞ ¼

1

4
ð�EAG�CT 1EGA�TCÞ

Myz ¼
1

8
ð�ETA 1EAT�ECG 1EGCÞ ¼

1

4
ð�EAC�GT 1ECA�TGÞ:

(13)
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plus one AT and one CG initiation contribution. A set of 108

equations linear on the eight tensor plus two initiation param-

eters were thus defined. The free-energy parameters for the

symmetrical set were determined by minimization of non-

weighted square deviations for all sequences,

x
2 ¼ +

108

i¼1

ðEcalcðiÞ � EexpðiÞÞ2: (17)

The free-energy mean standard deviation from this decom-

position estimate gives 0.14 kcal/mol/dimer, exactly the

same deviation found from using the unified-set results,

which is the order of experimental precision. The symmet-

rical set then becomes (in cal/mol)

S ¼ �1375; Vz ¼ 571; M ¼
40 �71 �36

�71 �12 �50

36 50 �47

0
@

1
A;
(18)

plus the two initiation contributions given in Table 1.

The precision of the symmetrical set has been estimated

from a resampling analysis including 100 random data

subsets with 70 sequences as 620 cal/mol for S and 610 cal/

mol for the remaining parameters. Accordingly, the self-

consistent set for dimer free energies and deviations is given

in Table 1. Comparing both dimer set results (see Table 1),

deviations of the order of only 0.05 kcal/mol per NN indicate

that the unified set is already close to self-consistency within

experimental error. However, we notice greater discrep-

ancies in the free energies of AG and AC dimers, which were

given as almost identical to the GA and CA NNs,

respectively, for the unified set. We interpret these as mean

values determined from the unified set analysis, within two

underestimated energy splittings between AG and GA and

between AC and CA NNs. These splittings only become well

resolved through self-consistency requirements of the sym-

metrical set (see Fig. 3).

DISCUSSION

Entropy release is mainly due to freezing of the ribo-

phosphate backbone degrees of freedom and is quite

insensitive to base composition. Differential entropic con-

tributions to Vz should be correspondingly small and 2Vz

estimates the linear differential enthalpy contribution of a

characteristic A/T to C/G single hydrogen-bonding energy

difference of H ; 1.1 kcal/mol. This is of good order (16)

and can be taken as a reference value since no precise

estimate for this quantity is universally accepted. The mean

contribution S ; 1.4 kcal/mol to the free energy can be

interpreted in terms of a relatively high mean entropy release

of ;�23 cal/(mol.K) (10) compensated by a mean enthalpy

gain of �8.3 kcal/mol, which amounts to include mean

hydrogen-bonding energy of order 2.5 H ;�2.8 kcal/mol

and approximately two-times stronger mean stacking inter-

actions. This is also in accordance with estimates of mean

stacking interactions (16,17). Differential stacking contribu-

tions to the standard free energy, given by M matrix

elements, are one order-of-magnitude weaker while no clear

dominant feature appears. Finally we wish to point out that

the symmetrical representation allows for the analysis of

duplex dimer physical properties in terms of composition

structure at three levels (Fig. 3). In the first level, properties

TABLE 1 NN standard free energies DG37 (in kcal/mol)

Dimer set Unified Self-consistent

TA �0.58 �0.57 6 0.04

AT �0.88 �0.91 6 0.04

AA-TT �1.00 �0.97 6 0.02

AG-CT �1.28 �1.20 6 0.04

GA-TC �1.30 �1.35 6 0.03

AC-GT �1.44 �1.28 6 0.03

CA-TG �1.45 �1.48 6 0.03

GG-CC �1.84 �1.82 6 0.04

CG �2.17 �2.14 6 0.04

GC �2.24 �2.19 6 0.06

A-T ending 1.03 0.92 6 0.08

C-G ending 0.98 0.85 6 0.07

Symmetry 0.43 0.43

The unified set proposed by SantaLucia (10) is compared to the self-

consistent set. Both sets have been obtained by model fits to the same 108-

sequence data set (11).

FIGURE 3 Self-consistent free energy splitting. According to Eq. 12,

dimer physical properties split after three composition levels: 1), a nonlinear

Chargaff split is trans-composition or z-controlled; 2), dimer cis-composi-

tion split is x,y-controlled; and 3), nucleotide 5939 order split (ordo-

composition) also determines NN self-consistency relations. The scale to

the right is in kcal/mol.
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are split according to the number of hydrogen bonds. This

‘‘Chargaff splitting’’ is an AT-CG (trans-composition) split

controlled by z-coordinate alone and includes a nonlinear

Mzz differential stacking correction to the linear Vz three-

split. In the second level, a symmetrical splitting occurs for

different dimer compositions (cis-composition). This is

controlled by x,y-coordinates alone. For the third level,

another symmetrical split occurs for dimers in opposite 5939

orientations (ordo-composition). Four pairs of expectations

then become distinguished by nucleotide order and since

only two parameters (Mxz and Myz) control their properties, it

is this last splitting that also implies the self-consistency

relations (Eqs. 14 and 15). Composition order bias, produc-

ing highly unbalanced Mxz and Myz contributions, is seldom

produced in ordinary sequences. It would be desirable to

explicitly design and measure simple complementary or-

dered sequences such as GTAGTAG and GATGATG. Table

1 estimates a free energy difference of 5.78 � 4.40 ¼ 1.38

kcal/mol for the symmetrical set, against only 5.30� 4.64¼
0.66 kcal/mol for the unified set. Differential analysis of such

oligomer pairs should thus provide compelling evidence

against or toward the symmetrical model.

CONCLUSIONS

A geometrical representation of four-nucleotide sets as a

tetrahedron (Eq. 3 and Fig. 2) allows for the association of

the three most distinctive molecular group classifications

with corresponding orthogonal cubic axis. Physical proper-

ties of nucleotide sequences may be calculated with an

optimal set of tensor coefficients (Eq. 4) assuming projec-

tions within this tetrahedral representation. The coefficients

are expressed in hierarchical differential form, so lower

levels of approximation are explicitly embodied in the

description. This includes an ensemble mean expectation

from scalar coefficient S alone, and a global composition

approximation, as expressed through V-component contri-

butions. The symmetrical set is shown to provide a frame for

the analysis of DNA duplex free energy fully compatible

with experimental data (Eq. 18). Such a symmetrical set of

coefficients allows for the translation among different

decomposition frames. It also gives a proper irreducible

representation for dimer properties (Eqs. 8 and12). It solves

an old indeterminacy of dimer sets by establishing self-

consistency relations among dimer coefficients (Eqs. 14

and15). A self-consistent dimer set is given in Table 1. Self-

consistency relations provided by the present analysis should

increase the predictive power of NN models since with lesser

parameter number they should become more robust against

fitting noise of experimental data. Experiments with order-

biased sequences to test in depth the reliability of this model

have been suggested.
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