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Abstract
The classic neuropathological diagnostic markers for AD are amyloid plaques and neurofibrillary
tangles, but their role in the etiology and progression of the disease remains incompletely defined.
Research over the last decade has revealed that cell cycle abnormalities also represent a major
neuropathological feature of AD. These abnormalities appear very early in the disease process, prior
to the appearance of plaques and tangles; and it has been suggested that neuronal cell cycle regulatory
failure may be a significant component of the pathogenesis of AD. The amyloid precursor protein
(APP) is most commonly known as the source of the β-amyloid (Aβ) peptides that accumulate in the
brains of patients with AD. However, a large body of work supports the idea that APP is also a
signaling receptor. Most recently, it has been shown that familial AD (FAD) mutations in APP or
simple overexpression of wild type APP cause dysfunction of APP signaling, resulting in initiation
of DNA synthesis in neurons and consequent apoptosis. In this article, we review the evidence that
APP has the potential to activate aberrant neuronal cell cycle re-entry in AD, and we describe a signal
transduction pathway that may mediate this abnormal activation of the cell cycle.

Keywords
Alzheimer’s disease; amyloid precursor protein; p21 activated kinase; APP-BP1; cell cycle;
apoptosis

1. Introduction
AD is a progressive, incurable disease that always ends in death. Its predominant clinical
manifestation is memory loss, but a number of other changes in brain function, including
disoriented behavior and impairments in language, comprehension, and visual-spatial skills,
also characterize this disorder. The diagnostic hallmarks of AD, namely neuronal attrition,
amyloid deposits, and neurofibrillary tangles, have not as yet explained the etiology and
pathogenesis of the disease. However, additional markers of AD have been described that may
give some clues to the mechanism by which neurons die in AD brain. Notably, aberrant
expression of cell cycle proteins and DNA tetraploidy in neurons in pathologically affected
regions of AD brain have been described. It has been shown also that those neurons that have
entered the cell cycle subsequently undergo a form of programmed cell called apoptosis. By
now, the evidence that neuronal death in AD may be at least partly due to cell cycle entry
followed by apoptosis, is considerable. This has clear therapeutic implications: understanding
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the molecular pathways underlying this cell cycle-mediated neurodegeneration will reveal new
therapeutic targets and lead to novel strategies for slowing or even blocking the onset and
progression of AD. One such pathway, that is mediated by APP, will be described.

2. Cell cycle abnormalities in AD
2.1 The cell cycle is activated in neurons in AD brain

A decade ago, Vincent and Davies showed definitively that activation of cell cycle components
occurred in AD brain (1). Subsequently, abnormal expression of such cell cycle molecules as
cdc2, cdk4, p16, Ki-67, cyclin B1, and cyclin D was reported in pathologically affected or
vulnerable neurons in AD brain (2–6). Busser et al. (6) found ectopic expression of cell cycle
proteins in regions of AD brain displaying extensive cell death, and Chow et al. (7) detected
increased expression of genes encoding cell cycle proteins in single neurons in late-stage
relative to early-stage AD brain. A number of these cell cycle regulators have been reported
to appear in vulnerable neurons prior to lesion formation (6,8,9).

These data showed correlations between the expression of cell cycle markers and AD
neuropathology, but did not reveal the consequences for AD neurodegeneration of such
activation of cell cycle proteins. Yang et al. (10) showed that one of these consequences appears
to be that vulnerable neurons in AD brain re-enter the cell cycle. This report demonstrated that
a significant number of hippocampal pyramidal (4% vs. 0% in control hippocampus) and basal
forebrain neurons in AD brain had undergone full or partial DNA replication, evidence that
these neurons had completed the S phase of the cell cycle. Such DNA synthesis is not normally
seen in neurons; and indeed, it was not detected in regions of AD brain untouched by pathology
or in control brains. Yang et al. (10) suggested that the state of tetraploidy eventually is lethal
to neurons. In a follow-up report, this same group (11) described the emergence of cell cycle-
related proteins prior to neuronal cell death not only in the brains of individuals with advanced
AD, but also in the brains of individuals with mild cognitive impairment, which usually
progresses to AD. Yang and co-authors went on to describe the reexpression of cell cycle
markers in four different plaque-bearing mouse models of AD (12). In one of these models,
cell cycle events were detected many months before the first appearance of plaques. These in
vivo observations supported reports showing that at least two in vitro models for AD
neurodegeneration featured re-activation of cell cycle entry in neurons (13,14).

2.2. Cell cycle activation may link to tangles in AD
Activation of the cell cycle may also contribute to the formation of neurofibrillary tangles,
which are pathological markers for AD that contain hyperphosphorylated microtubule
associate protein tau. The phosphoepitope S214 of tau, that appears in neurofibrillary tangles
in AD, is a prominent phosphorylation site in metaphase but not in interphase of dividing cells
expressing tau (15). The tau TG3 epitope (phosphorylated T231) has been detected in mitotic
cells but not in quiescent cells (1). Moreover, tau is hyperphosphorylated during mitosis in
neuroblastoma cells (16), and a cdc2-related kinase is associated with paired helical filaments,
the ultrastructural correlates of neurofibrillary tangles, in AD brain (17). Patrick et al. (1999)
showed that activation of the p25/Cdk5 complex results in hyperphosphorylation of tau and
reduces the ability of tau to associate with microtubules. Mitotic phosphorylation of tau likely
causes conformational changes, which may be associated with the development of
neurofibrillary tangles. These data support the idea that reactivation of the cell cycle machinery
not only causes DNA synthesis but also may cause tau hyperphosphorylation in AD brain.

2.3. Cell cycle activation may lead to apoptosis in AD brain
Activation of cell cycle proteins in neurons also can, under certain circumstances, lead to a
form of cell suicide called apoptosis (reviewed in ref. 18). The possibility that such a process

Neve and McPhie Page 2

Biochim Biophys Acta. Author manuscript; available in PMC 2008 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



occurs in AD brain was first suggested by Su et al. (19), when they reported evidence for DNA
fragmentation in neurons in AD brain. This same group showed that β-amyloid induces
neuronal apoptosis in vitro (20), a finding that has been replicated in many laboratories. In
support of the idea that apoptosis may be one means by which neurons die in AD, several
groups have reported the presence of activated caspases in the postmortem brains of individuals
with AD (21–23), and have described apoptotic neurons in the brains of transgenic mouse
models for AD (24–27). Apoptosis normally proceeds to completion within 16–24 hours, which
seems incompatible with the relatively slow progression of AD. However, Cotman (28) and
Raina et al. (23) have both proposed that the induction of compensatory responses to apoptosis
in the AD brain protects the neurons from terminal apoptosis, and that a dynamic balance
between cell death processes and compensatory responses exists in AD brain.

3. APP Signaling Pathways That Mediate Cell Cycle Activation
3.1. APP is a signaling protein

The amyloid precursor protein (APP) is the source of the β-amyloid peptides that accumulate
in the brains of patients with Alzheimer’s disease (AD). The primacy of APP in the etiology
of AD is underscored by the fact that virtually all individuals with Down syndrome (DS), who
as a consequence of chromosome 21 trisomy overexpress APP, develop AD by the age of 40.
This finding, together with the observation that either specific mutations in APP or simple
duplication of the wild type APP gene can cause some forms of FAD (29,30), suggests the
possibility that an alteration in the normal function of APP may occur in AD, and has refocused
attention on the delineation of the function that APP subserves in the brain.

The notion that APP may be a signaling receptor was originally proposed on the basis of the
predicted amino acid sequence of APP, which suggested that APP was a type 1 intrinsic
membrane protein whose structure was consistent with that of a “cell surface receptor” (31).
The first direct evidence in support of this idea was the finding that the APP cytodomain
interacted with and activated the heterotrimeric G protein Go (32), a finding that was
subsequently confirmed independently (33). During the last decade, a multitude of additional
cytosolic proteins that interact with the APP cytodomain have been described (14,34–43),
suggesting that APP has versatile signaling roles.

To define neuronal signaling pathways that may be mediated by APP, we established an in
vitro paradigm for AD neurodegeneration, in which wild type or FAD APP cDNAs were
expressed as transgenes in primary cortical neurons (14,44). Using this model, we showed that
overexpression of wild type or even modest expression of FAD mutants of APP in neurons
leads to neuronal DNA synthesis and apoptosis (14,44), suggesting that an APP-mediated
signaling pathway may play a role in the cell cycle activation and neurodegeneration seen in
AD.

3.2. APP-BP1, which binds to APP, is a cell cycle protein
As a first step in defining neuronal signaling pathways that may be initiated by APP, a search
of brain cDNA libraries was carried out to detect genes encoding proteins that interact with
the cytodomain of APP (14,43). One of these, APP-BP1, was found to be an essential cell cycle
protein that drives the cell cycle through the S-M checkpoint in dividing cells, but which causes
apoptosis when overexpressed in neurons (44). Overexpression of wild type APP or expression
of FAD mutants of APP in neurons, using the paradigm described above, resulted in an increase
in expression of APP-BP1 in lipid rafts, followed by entry of the neurons into the S phase of
the cell cycle, and neuronal apoptosis (44). As predicted by these in vitro results, APP-BP1
was shown to be overexpressed in lipid rafts in at-risk regions of human AD brain relative to
cognitively intact controls (45). Consistent with these observations, modest overexpression of
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APP-BP1 in neurons, sufficient to mimic the observed increases of this protein in lipid rafts
in AD brains, caused neuronal cell cycle entry and apoptosis (45).

The interaction of APP with APP-BP1 activates a pathway leading to the conjugation of
NEDD8, a ubiquitin-like protein, to its target (Fig. 1, ref. 44). APP-BP1, together with hUba3,
is functionally analogous to the ubiquitin activating enzyme E1, with hUba3 containing the
active cysteine and ATP binding site. When NEDD8 is activated by the APP-BP1/hUba3
complex, it forms a thiol ester bond with hUbc12, which has a function parallel to that of
ubiquitin-conjugating enzyme Cdc32. Subsequently, NEDD8 is covalently coupled to lysine
residues in its target proteins (46). So far, the proteins known to be neddylated via this pathway
are a family of proteins called cullins (47) and the Mdm2 oncogene product, which in turn
regulates neddylation of the cell cycle protein p53 (48). Cullins are scaffold proteins for the
E3 ubiquitin ligase complex, and neddylation of cullin enhances its ability to promote
ubiquitination (49,50). Indeed, NEDD8 has been found in ubiquitinated neurofibrillary tangles
in AD brain (51). NEDD8 signalling has been shown to regulate protein degradation pathways
participating in cell cycle progression (52–55). The discovery of a novel protein, NUB1, which
recruits NEDD8-conjugates to the proteasome for degradation, provides a direct link between
these 2 systems (56,57). Inhibition of the neddylation pathway in neurons by expression of a
dominant negative mutant of hUbc12 prevents FAD APP-mediated cell cycle entry and
apoptosis (44,45). Thus, elements of this pathway are attractive targets for potential therapies
aimed at preventing neurons in AD brain from entering the cell cycle.

3.3. p21 activated kinase 3 mediates neuronal DNA synthesis caused by FAD mutants of APP
In addition to APP-BP1, the p21-activated kinase PAK3 also was shown to bind to the C-
terminus of APP (14). PAK3 is a serine/threonine kinase whose activity is regulated by the
p21 family of small GTPases. Mutations in this molecule, which is expressed selectively in
the nervous system (14), cause one form of X chromosome-linked mental retardation (58,59).
PAK3 is involved in the control of cytoskeleton dynamics, possibly affecting cognition by
regulating the shape of neuronal synapses. Consistent with this idea, mice lacking the Pak3
gene are impaired in both synaptic plasticity and cognition (60).

PAK3 also has been implicated in the abnormal DNA synthesis and apoptosis caused by
overexpression of wild type APP or ectopic expression of FAD mutants of APP in neurons in
vitro (14). A graphic representation of the neuronal signaling pathway activated by interaction
of FAD APP with PAK3 is shown in Figure 2. A dominant negative kinase-dead mutant of
PAK3 inhibits wild type or FAD APP-mediated neuronal apoptosis and DNA synthesis in our
in vitro model; this effect is abolished by deletion of the PAK3 APP-binding domain or by co-
expression of a peptide representing this binding domain (14). These data suggest that both the
kinase activity of PAK3 and also its interaction with APP are important for the FAD APP
signaling pathway. The specificity of PAK3 involvement in FAD APP-mediated apoptosis
rather than in general apoptotic pathways is suggested by the facts that a constitutively active
mutant of PAK3 does not alone cause neuronal apoptosis, and that the dominant negative
mutant of PAK3 does not inhibit chemically-induced apoptosis. In vitro, FAD APP-mediated
DNA synthesis precedes FAD APP-mediated apoptosis in neurons; and inhibition of neuronal
entry into the cell cycle blocks the apoptosis (14).

Pertussis toxin inhibits DNA synthesis and apoptosis caused in vitro by FAD APP mutants,
implicating Go in the process as well (14). These data are consistent with the reports by
Nishimoto and colleagues that the His657-Lys676 domain of APP-695 activates the
heterotrimeric GTP-binding protein Go in a GTPγS-inhibitable manner (32,61). Their
demonstration that an antibody to the extracellular domain of APP that acts as a ligand mimetic
(62) causes activation of Go, argues that APP may be a G protein-coupled receptor. Notably,
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neuronal expression of FAD APP deleted for residues His657-Lys676 does not cause cell cycle
entry (14).

These data support a model in which APP normally is part of a Go protein-centered complex
including PAK3 that transduces extracellular signals to the cytoplasm (Figure 2), and in which
overexpression of wild type APP or expression of FAD APP causes dysfunction of this
pathway. How might this complex be related to the pathway activated by APP-BP1? At least
one of the downstream molecules in the PAK3-mediated pathway is the c-Jun N-terminal
kinase 3 (JNK3). A dominant negative mutant of JNK3 inhibits FAD APP-mediated cell cycle
entry, while a constitutively active mutant of JNK3 alone causes neuronal DNA synthesis
(McPhie, D.L. and Neve, R.L., unpublished data). The effect of the constitutively active JNK3
is not blocked by a dominant negative mutant of PAK3, implying that the action of JNK3 is
downstream of PAK3. However, inhibition of the APP-BP1-mediated neddylation pathway in
neurons by expression of a dominant negative mutant of hUbc12 prevents constitutively active
JNK3 activation of neuronal cell cycle entry (Chen, Y. and Neve, R.L., unpublished data).
Whereas pertussis toxin blocks neuronal DNA synthesis caused by ectopic expression of FAD
APP, it does not block neuronal DNA synthesis caused by APP-BP1. These data suggest that
the order of events in the FAD APP-mediated pathway leading to neuronal cell cycle entry and
apoptosis consists of formation of the APP-Go-PAK3 complex, followed by activation of
JNK3, which is then followed by activation of the APP-BP1 neddylation pathway. Intermediate
events are likely to occur.

These findings also implicate JNK3 in FAD APP-mediated neuronal DNA synthesis and
apoptosis, and are consistent with the finding that JNK3 is highly expressed and activated in
postmortem brains of individuals with AD (63). JNK3 is associated with neurofibrillary
tangles, and JNK upregulation colocalizes with phosphorylated tau (63), a microtubule
associated protein which has been shown to be phosphorylated by JNK (64). Abnormal
phosphorylation of tau by JNK3 causes the formation of oligomeric tau fibrils that have been
termed “pretangles” (65). In a transgenic mouse model of AD, JNK activation is associated
with amyloid deposits and phospho-tau. Age-dependent increased JNK activity is correlated
not only with increased amyloid deposition in this mouse model, but also loss of functional
synapses similar to that observed in AD brain (66).

We and others have hypothesized that APP and its C-terminal binding proteins – among them
Go, PAK3, and APP-BP1 -- have a regulated interaction that activates signaling pathways
important for normal brain function, perhaps mediating synaptic remodeling or neurogenesis
during learning. In analogy with the cell proliferation and resultant tumorigenesis caused either
by a constitutively active mutant of the epidermal growth factor receptor (EGFR) or by
sustained overexpression of wild type EGFR (Lorimer, 2002), neuronal cell cycle entry and
consequent apoptosis may be caused either by constitutive activation of APP signaling
pathways in neurons due to FAD mutations in APP or by sustained overexpression of wild
type APP. Thus, therapeutic reagents that target these signaling pathways may have efficacy
in treating AD neurodegeneration.

3.4. APP-C31 may mediate neuronal cell cycle entry and neurodegeneration in AD brain
All but one of the binding proteins for the APP cytodomain interact with APP within the last
31 amino acids of this domain. Why is this important? For one thing, C31 can be generated
from APP by caspase cleavage (67,68). Furthermore, this cleavage has functional significance,
in that expression of C31 alone has been shown to cause neuronal DNA synthesis and apoptosis
(14,45,68). Recently, inhibition of C31-producing caspase cleavage of APP was shown to
prevent the development of AD-like pathology and behavior caused by two FAD mutations of
APP (69). A D664A mutation (which prevents the generation of C31) was introduced into the
background of a human APP minigene carrying the K670N/M671L (Swedish) and V717F
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(Indiana) mutations. Both the original FAD mutant minigene (PDAPP) and also the D664A
version of it [PDAPP(D664A)] were expressed in transgenic mice under the control of the
PDGF B-chain promoter.

Interestingly, the authors showed that the D664A mutation neither altered the net in vivo
production of Aβ40 and Aβ42, nor affected the extent of amyloid plaque deposition in the
brains of PDAPP(D664A) mice compared to PDAPP mice. However, the D664A mutation
did have an effect on neurodegeneration and on behavior. The PDAPP mice without the D664A
mutation displayed decreased hippocampal presynaptic density number relative to controls at
8–10 months of age, a pronounced increase in GFAP immunoreactivity in the hippocampus
by 12 months, a loss in dentate gyrus volume at 3 months, learning and spatial impairments at
12 months, and an increase in the number of proliferating cells present in the subgranular zone
of the dentate gyrus in both 3- and 12-month. In contrast, the PDAPP(D664A) mice, with the
D664A mutation, were indistinguishable from controls in every one of these parameters.

It can be inferred from these data that the mutation Asp664 “rescues” multiple aspects of
neuropathology and impaired learning that are normally caused by the Swedish and Indiana
mutations in APP. In other words, if C31 cannot be generated, the FAD APP mutations cannot
cause certain pathological and behavioral abnormalities. What are the implications of these
findings? First of all, note that Asp664 selectively rescues the neurodegeneration and the
learning abnormalities of the PDAPP mice without decreasing the production of Aβ40 or
Aβ42. Thus, the rescue is independent of the production of Aβ. Secondly, the C31 region of
APP encompasses the binding sites for nearly all of the signaling proteins, including APP-BP1
and PAK3, that have been shown to bind to the intracellular domain of APP.

The data suggest a scenario in which C31, when removed from APP, abnormally activates or
disrupts signaling pathways mediated by APP. One possibility is that the signaling initiated by
interaction of the APP C-terminal domain with signal transduction proteins normally is tightly
regulated by binding of ligand(s) to its extracellular domain [variously identified as F-spondin
(70), notch (71,72), TGF-β2 (73), and even Aβ (74,75)]. In such a scenario, as suggested by
McPhie et al. (14), C31, when not attached to APP, is relieved of the normal constraints imposed
on it when the extracellular domain of APP is not occupied by a ligand, and becomes
constitutively active or else takes on signaling functions that it does not normally possess
(Figure 3).

To test the idea that C31 becomes constitutively active, one may ask whether causing APP
signaling to become tonically active results in the same consequences for the neuron that
expression of C31 alone does. It has been found that exposure of neuronal cells to the antibody
22C11, raised against the extracellular domain of APP, causes constitutive activation of Go
(62) which is known to bind to and be activated by APP (32,33). In this context, 22C11 could
be considered to be an APP ligand mimetic of sorts. Indeed, sustained exposure of neurons to
22C11 causes DNA synthesis (14) and neuronal apoptosis (14,76,77) via the APP-BP1- and
PAK3- mediated signal transduction pathway that is activated by C31 alone (14).

4. Concluding remarks
We have proposed that, in neurons, APP is a signaling receptor whose normal function is tightly
regulated by ligand binding (Figure 3). We hypothesize that this normal, regulated function is
altered by overexpression of wild type APP or by expression of FAD mutants of APP, leading
to neuronal cell cycle entry and consequent apoptosis. We have reported previously that, in
contrast to FAD mutant APPs, neither wild type nor FAD mutant presenilin enhance apoptosis
in neurons (78). In addition, we have shown (McPhie, D.L. and Neve, R.L., unpublished data)
that neither wild type or FAD mutant presenilin causes aberrant neuronal cell cycle entry. It is
worth noting that expression of FAD APP leads to increased levels of secreted α-APP and β-

Neve and McPhie Page 6

Biochim Biophys Acta. Author manuscript; available in PMC 2008 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



APP, and to elevation of levels of specific C-terminal fragments of APP in addition to Aβ,
while the only known effect of FAD presenilins on APP processing is alteration of the ratio of
Aβ (42) to Aβ (40). These data suggest that fragments of APP other than Aβ may play a role
in abnormal neuronal cell cycle entry and consequent apoptosis, and also suggest that there is
more than one pathway to neurodegeneration in AD. These data highlight the importance of
understanding the normal function of APP in the brain and how this function may be disturbed
in AD.
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Figure 1.
Graphic representation of the neddylation pathway activated by the interaction of APP with
APP-BP1. Steps in the cascade that are potential therapeutic targets include the interaction
between APP and APP-BP1, and the interaction of APP-BP1/hUba3 with the conjugating
enzyme hUbc12.
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Figure 2.
Graphic representation of the signaling pathway activated by the interaction of PAK3 with
APP and Go. Steps in the cascade that are potential therapeutic targets include interactions
among APP, Go and PAK3 or the activity of JNK3.
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Figure 3.
Schematic of a signal transduction pathway activated by FAD mutations of APP. In the normal
cell, the function of APP is tightly regulated by the binding of its ligand (portrayed in the figure
as a trapezoid). FAD APP is relieved of such constraints, and, together with PAK3, Go, and
APP-BP1, causes aberrant neuronal DNA synthesis and apoptosis.
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