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The spiking activity of single neurons in the primate motor cortex
is correlated with various limb movement parameters, including
velocity. Recent findings obtained using local field potentials
suggest that hand speed may also be encoded in the summed
activity of neuronal populations. At this macroscopic level, the
motor cortex has also been shown to display synchronized rhyth-
mic activity modulated by motor behavior. Yet whether and how
neural oscillations might be related to limb speed control is still
poorly understood. Here, we applied magnetoencephalography
(MEG) source imaging to the ongoing brain activity in subjects
performing a continuous visuomotor (VM) task. We used coher-
ence and phase synchronization to investigate the coupling be-
tween the estimated activity throughout the brain and the simul-
taneously recorded instantaneous hand speed. We found
significant phase locking between slow (2- to 5-Hz) oscillatory
activity in the contralateral primary motor cortex and time-varying
hand speed. In addition, we report long-range task-related cou-
pling between primary motor cortex and multiple brain regions in
the same frequency band. The detected large-scale VM network
spans several cortical and subcortical areas, including structures of
the frontoparietal circuit and the cerebello–thalamo–cortical path-
way. These findings suggest a role for slow coherent oscillations in
mediating neural representations of hand kinematics in humans
and provide further support for the putative role of long-range
neural synchronization in large-scale VM integration. Our findings
are discussed in the context of corticomotor communication, dis-
tributed motor encoding, and possible implications for brain–
machine interfaces.

large-scale networks � magnetoencephalography � motor cortex �
oscillations � visuomotor integration

Neurophysiological recordings in nonhuman primates have
revealed that neuronal discharges in primary motor cortex

(M1) are correlated with various movement parameters, includ-
ing hand speed (1, 2). Furthermore, recent findings show that
information on hand speed may also be accessible, at a more
macroscopic level, from the summed synaptic activity of neural
populations by recording local field potentials (LFPs) in M1 (3).
Velocity-related activity has also been found in other brain areas,
including the premotor cortex (2), posterior parietal cortex (4),
and cerebellum (5). Recent reports based on simultaneous
multielectrode recordings (6, 7) lend further support to the
hypothesis that limb kinematics are encoded in multiple cortical
areas. In humans, cerebral areas involved in speed control can be
detected with functional imaging (8, 9). However, the inves-
tigation of the underlying neural mechanisms requires high
(millisecond-range) temporal resolution and is still poorly
understood.

Evidence from a parallel body of research investigating rhyth-
mic activity in motor cortex, its relationship to peripheral motor
behavior (10, 11), and its interaction with muscle activity (12–20)
suggests that neural oscillations in distinct frequency bands are

related to various aspects of motor behavior and may play a
functional role in corticomuscular communication. However, it
is still unclear from these studies whether oscillatory brain
activity is directly related to limb speed and, if so, to what extent
it contributes to mediating neural representations thereof. In-
deed, previous work has largely focused on the role of central
oscillations in isometric motor behavior, rather than on fine-
tuned skilled motor control. Here we used whole-head magne-
toencephalography (MEG) and recent source-imaging solutions
(21), combined with spectral analysis techniques, to investigate
the putative relationship between ongoing neural oscillations
and time-varying hand speed in humans performing a continu-
ous visuomotor (VM) compensation task.

Results
We recorded neuromagnetic signals from 15 subjects while they
continuously manipulated a track ball to counter the unpredict-
able movements of a cube randomly rotating about its center [see
supporting information (SI) Movies 1 and 2]. The subjects were
cued to switch between the VM task and a resting (R) condition
every 8–12 sec. The track-ball displacements were acquired
simultaneously with the steady-state MEG data and were used
to derive the trace of the instantaneous speed of the manipu-
lative hand movements throughout the experiment. By contrast
to classical evoked response analysis, we estimated the under-
lying cerebral activity from single-trial data sweeps (i.e., no prior
averaging) and searched for correlations between cerebral os-
cillations and manipulative hand speed during ongoing VM
control.

Relationship Between Hand Speed and Slow Cortical Oscillations. The
power spectrum of the track-ball speed (TBS) during online
motor control revealed that most of the hand velocity energy
(92.8%) was concentrated in the low-frequency range (�5 Hz),
peaking at 2 Hz (Fig. 1a). Furthermore, applying single-trial
source imaging to the raw MEG data, we obtained the trial-by-
trial time course of the cortical activations at �12,000 brain
locations for all subjects during both VM and R conditions (see
Materials and Methods). The presence of correlations between
the activity of the brain and the speed of the moving hand could
then be investigated in the frequency domain by exhaustive
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evaluation of the coherence between the time-varying hand
speed and ongoing cortical activity at each brain location (see
Materials and Methods). To investigate task-related coupling at
a population level, individual coherence maps (for VM and R)
were normalized, and the task-related changes (VM vs. R) were
mapped to a standard brain. The resulting map of task-related
modulation of coherence between the estimated cerebral activity
and TBS (Fig. 1b) demonstrates that hand speed is coherent with
the activity of the contralateral primary motor and sensory areas
in the 2- to 5-Hz range (P � 0.001), with maximum coherence
located on the precentral gyrus [M1 hand area, Brodmann’s area
(BA) 4]. The profile of the coherence between the activity at this
location (labeled M1) and ongoing hand speed plotted as a
function of frequency (from 1–30 Hz) shows a notable peak at
�4 Hz (Fig. 1c). In addition, the power spectrum of the activity
in M1 during motor control shows a significant increase in the
3- to 5-Hz band compared with the R condition (Fig. 1d).
Furthermore, to disentangle the effects of amplitude and phase
on the low-frequency coupling, we also measured task-related

phase synchronization (47) between all brain areas and hand
speed around the frequency of maximum coherence (4 Hz) and
found significant phase locking between M1 and hand movement
speed (Fig. 1e; P � 0.001). Remarkably, during periods of
particularly strong phase locking, the task-related synchroniza-
tion between instantaneous hand speed and M1 activity can be
demonstrated by simply band-pass filtering the single-trial time
series of the two signals (Fig. 2).

Long-Range Neural Synchronization Between M1 and Multiple Brain
Areas. Are the speed-related slow oscillations found in M1 during
VM control functionally coupled to the activity of other brain
structures? To answer this question, we computed the coherence
between the activity in M1 and all brain areas in the 2- to 5-Hz
range, the frequency band of statistically significant M1–TBS
coupling. The result (Fig. 3) shows that, during VM control, M1
activity becomes significantly coherent (P � 0.005) with the
activity in multiple brain areas, including the contralateral dorsal
premotor (PMd, BA6), primary somatosensory (BA3), inferior

Fig. 1. Coherence between brain activity and hand speed. (a) TBS power spectrum during VM (blue) and R (green) conditions. (b) Cortical map of task-related
Z-transformed coherence with TBS (VM vs. R) in the 2- to 5-Hz range (P � 0.001, corrected). The white dot indicates the location of maximum coherence difference
(Montreal Neurological Institute coordinates: �42 �17 � 67 mm, hand area M1). (c) M1–TBS coherence spectrum during VM and R, with a peak at 4 Hz. (d) M1
power spectrum. Compared with R (green), VM (blue) has more power in 3–5 Hz (P � 0.05, corrected), followed by the well known power suppression of �10-
and �20-Hz oscillations. (e) Cortical map of difference in brain–TBS phase locking �4 Hz (�1Hz) between VM and R (P � 0.001, corrected). The white dot indicates
the location of maximum phase-locking difference. Power and coherence spectral plots (calculated with 1-Hz bin width) depict mean � SEM.
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parietal (IPL, BA 40), bilateral secondary motor (SMA and
pre-SMA, BA6), superior parietal lobule (SPL, BA7), left
dorsolateral prefrontal cortex (DLPFC), right ventral and or-
bital prefrontal cortices (PFv and PFo, BA 11), ipsilateral
anterior cerebellum, and subcortical areas, including the thala-
mus. The components of this large-scale cerebral network are
largely consistent with regions known to be involved in visually
guided motor behavior in humans (22). More importantly, the
detection of these areas via their interaction with M1 within the
same frequency range of M1–TBS coupling suggests that these
areas are part of a spatially distributed functional network
involved in the neural encoding of limb kinematics, providing
further support for the putative role of cortical synchronization
in mediating long-range communication between distant but
functionally related areas in the brain.

Discussion
Synchronization Between M1 Oscillations and Hand Kinematics. To
date, most of the direct evidence for movement-related coupling
between components of central and peripheral oscillations has
come from studies of corticomuscular coherence (12–20). Such
coherence, which is thought to reflect corticomotor communi-
cation during voluntary movement, has mostly been reported
during simple isometric movements and predominantly detected
at frequencies �5 Hz (but see ref. 23 for an exception). Given
that the kinematics of manipulative hand movements are gen-
erated by the synergistic action of multiple muscles, and bearing
in mind that the hand’s mechanical properties restrict the range
of achievable movement frequencies, corticomuscular synchrony
may only provide indirect evidence for the presence of synchrony
between global limb kinematics and oscillatory brain activity. In
other words, measuring coupling between brain signals and the
electromyogram may only yield limited information on whether
hand speed per se has a coherent neural representation at a
cortical level. The present study reveals task-related coupling
directly between time-varying hand speed and oscillatory signals
in M1. This finding suggests a role for slow (�5 Hz) oscillations
in motor cortex in the neural mechanisms underlying the neural
control of limb speed and may also be interpreted as evidence for
the existence of a neural representation of low-frequency com-
ponents of limb kinematics. Such centrally encoded kinematic
plans might be used by the CNS to generate the appropriate
muscle forces via kinematics–dynamics transformations (24).

Localization of the Neural Activity Phase Locked to Time-Varying Hand
Speed. Earlier studies investigating velocity-related activity by
using MEG or electroencephalography were restricted to rhyth-
mic limb movements, and the analysis was performed at the
sensor level, yielding limited spatial resolution (25, 26). In
contrast, the results presented here overcome these limitations
by using source-imaging techniques, combined with appropriate
statistical inference techniques at the group level, to identify the
anatomical origin of the brain activity that is correlated with
hand kinematics. The improved spatial resolution (which was
achieved here via MEG source imaging, allowing the shift from
sensor- to source-level analysis) enabled us to pinpoint M1 (hand
area, BA4) as the peak area of significant coherence detected
between the sensorimotor cortex and hand speed. Second, the
sustained VM paradigm used here was explicitly designed to
yield smooth hand movements continuously adjusting to unpre-
dictable pseudorandom changes in task demands. Therefore, the
hand-speed profile differed considerably from the one generally
obtained in tasks that impose repetitive pulsatile movements at
a given frequency.

A Role for Low-Frequency Oscillations in Motor Control. The low-
frequency aspect of the coherence revealed in this study between
limb kinematics and neural activity in humans is in line with
recent findings in nonhuman primates. Averbeck et al. (4)
investigated the accuracy with which hand velocity could be
predicted from the activity of simultaneously recorded neurons

Fig. 3. Multiple brain areas coherent with activity at M1. Right (a), left (b),
top (c), front (d), right medial (e), and left medial ( f) views of the cerebral map
of task-related Z-transformed coherence with M1 activity (VM vs. R) in 2- to
5-Hz range (P � 0.005, uncorrected). A white dot indicates the location of M1,
the reference signal. Data represent group-level statistical analysis (n � 15).
Significant values are overlaid on an inflated template brain, with gray-coded
sulci and gyri identified by curvature indices.

Fig. 2. Three-second sample of continuous VM control (one subject). (a)
Track-ball trajectory with time markers from 0 to 3 sec. (b and c) Correspond-
ing instantaneous hand speed and activity at M1, respectively. (d) Signals in b
and c band-pass filtered in the 2- to 6-Hz band (i.e., �2–4 Hz, the frequency of
maximal coherence). Note that the selected sample corresponds to an epoch
with high (�0.8) M1–TBS phase locking and the filtered signals are
normalized.
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while monkeys performed a tracing task. The average transfer
function of the model that provided the best velocity prediction
was found to be a low-pass filter. This finding reflects the fact
that, similarly to our observations, hand velocity power was
band-limited to frequencies ��5 Hz, whereas the neural activity
also contained power at higher frequencies. Moreover, a recent
study by Rickert et al. (27) examined how different frequency
components of the LFPs recorded in monkey motor cortex were
modulated during center-out arm movements. Although direc-
tional tuning occurred in several frequency bands, the best
prediction of arm movement direction (i.e., decoding power) was
achieved by using the amplitude of the low-frequency range (�4
Hz) of the LFP signals. Although the latter study did not
specifically address the spectral aspect of speed encoding, these
data suggest a prominent role for low-frequency neural activity
in encoding movement parameters, consistent with our finding
that 2- to 5-Hz cortical oscillations in human M1 increased in
amplitude and became phase locked with hand speed during
motor control.

Intrinsic Versus Task-Related Motor Oscillations. It is important to
distinguish between two closely related, although subtly differ-
ent, interpretations of the low-frequency coupling found here
between the M1 and hand kinematics. The first is to consider the
slow 2- to 5-Hz oscillations to be an intrinsic (i.e., physiological)
central motor rhythm, and the second is to view the frequency
of these oscillations as reflecting the neural encoding of task-
related parameters. Although linking our findings to previous
reports of slow intrinsic motor rhythms (e.g., 3-Hz peripheral
oscillations involved in VM control; see ref. 28) could be
tempting, our experimental design and current analysis do not
allow for such conclusions. However, we can reasonably assume
that the low-frequency coherences (and, more specifically, the
detected phase locking) reflect the central motor encoding of the
limb’s kinematic parameters. This interpretation is strengthened
by the fact that the M1–TBS coherence peaked in the M1 and,
importantly, not in the somatosensory cortex, which also makes
an interpretation uniquely based on sensory feedback unlikely.
Nevertheless, it might be conceivable that both intrinsic and
task-related oscillations are present in our data. Further exper-
iments will have to be designed to fully resolve this specific issue.

Cerebro–Cerebral Interactions Revealed by MEG Source Imaging. The
long-range task-related coherence detected between M1 and
various brain areas in this study highlights the advantage of the
whole-head source-imaging approach. The high spatiotemporal
(and hence spatiospectral) resolution that has now become
achievable with MEG source-imaging techniques allowed us to
scan the entire brain in search of neural activity coherent with
that of M1. Although the reliability of single-trial MEG source
imaging is generally challenged by the low signal-to-noise ratio
of raw MEG data, the present analysis indicates that this
limitation might be overcome by applying source-imaging tech-
niques to sufficiently long epochs of data, splitting the investi-
gation into specific frequency bands, and relying on statistical
inference to detect robust task-related modulations. Such an
approach also requires an adapted steady-state experimental
design. Although this procedure allows for the detection of
long-range oscillatory coupling, one should be extremely cau-
tious when interpreting observations of short-range coherences.
The local spatial smoothing inherent to the regularized mini-
mum norm-imaging solution makes it difficult to disentangle
short-range physiological coupling and local data smearing. For
instance, it is impossible to rule out that the short-range coher-
ence reported in this study between M1 and BA3 is not at least
in part due to spatial resolution limits. Moreover, although the
ability of MEG to detect subcortical activations is still a matter
of debate, we have strong reasons to believe that deep sources

reported here do represent cerebellar and thalamic activity.
First, it is likely that these areas are picked up more easily by
scanning for their task-related coherence modulations with
respect to a reference signal (here M1) than by performing
classical source reconstructions in search of stimulus-locked
activity throughout the cerebral volume. Second, our confidence
comes from the permutation testing that reveals statistically
significant coupling between these structures with M1 by con-
trasting VM with R epochs. Finally, an additional level of
confidence comes from the physiological plausibility of the
findings (e.g., ipsilateral but no contralateral cerebellar involve-
ment) and evidence from an increasing number of MEG studies
reporting activity in these deep structures (e.g., refs. 17, 19, 29,
and 30).

Large-Scale Coherent Network Mediating VM Control. The M1-
coherent large-scale network revealed in the current study (Fig.
3) includes areas involved in functionally well established cir-
cuits, such as the frontoparietal network and the cerebello–
thalamo–cortical pathway, presumably reflecting the sensorimo-
tor processing and the motor control loop at work during the
continuous VM task. This large-scale network was revealed in
our study by identifying areas that display significant coherence
with respect to M1 activity. Given that M1 was shown to be
significantly coupled to hand speed, it is interesting to ask
whether the other cerebral areas in Fig. 3, which are all coherent
with M1, are also directly coupled to hand speed. Such corre-
lations were indeed observed in our data, yet they were much
weaker than the one observed between M1 and hand speed, and
were thereby only visible in the unthresholded coherence maps
and did not pass the statistical significance tests. This observa-
tion highlights the pivotal role played by M1; it is the cortical
structure directly involved in movement execution and kinematic
encoding, yet it is also part of widespread networks involved in
sensorimotor transformation and motor control.

Interestingly, the frequency of the identified oscillatory net-
works (2–5 Hz) and the cerebral structures it comprises are
similar to those reported in the oscillatory network underlying
Parkinsonian resting tremor (30, 31). This further supports the
hypothesis that pathological tremors might be based on physi-
ologically preexisting cerebral networks (32, 33). Furthermore,
a subset of the brain structures reported in our study was also
found to be involved in the generation of the �8-Hz movement
discontinuities that occur during slow finger movements (17).
Using MEG and finger muscle recordings, the latter study
revealed the central origin of the peripheral �8-Hz oscillations
by showing that they were generated by an oscillatory network
formed by the contralateral M1, the premotor cortex, the
contralateral thalamus, and the ipsilateral cerebellum, which are
all synchronized at �8 Hz.

In this study, we restricted the coherence analysis between M1
and the rest of the brain to the 2- to 5-Hz range because this was
the frequency band of significant coupling between M1 and hand
speed. Previous reports have suggested a functional role for
cortico–cortical synchronization at higher frequencies in medi-
ating VM integration (34–38). The data presented here extend
these studies to the low-frequency range, and, more importantly,
we show a direct relationship between these slow neural oscil-
lations and hand kinematics. Therefore, if long-range neural
coherence is taken to reflect functional connectivity between
distant brain areas (20, 39, 40), then our results suggest that
low-frequency interregional coupling could be a highly relevant
index for the noninvasive investigation of normal and neurolog-
ically impaired voluntary control of limb movements.

Moreover, a better understanding of the spatially distributed
nature of movement encoding may also be crucial to the
development of neural prosthetic applications. Recent trends in
this field include (i) improving movement decoding via simul-
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taneous multielectrode recordings at multiple sites across the
brain (6, 7), and (ii) assessing the potential application of LFPs
as an alternative signal for movement prediction (3, 27, 41–43).
Although further research is required to accurately relate the
MEG source time series to intracranial LFP signals, we may
speculate, in the light of the current findings, that the high-
spatiotemporal resolution of the large-scale functional networks
revealed by whole-head MEG imaging in humans may help
develop neural decoding algorithms and identify behaviorally
relevant target frequency bands and candidate cortical and
subcortical structures for brain–machine interfaces.

Taken together, our findings extend previous reports on the
role of neural oscillations in motor behavior by demonstrating
that synchronization at remarkably low frequencies may be
involved in the central mechanisms encoding low-level motor
parameters. Incorporating these findings into a common frame-
work that describes the role of coherent oscillations at multiple
frequencies in mediating distinct aspects of sensorimotor behav-
ior (force, speed, and covariates) at several levels (brain, muscle,
and limb) may have crucial implications for the investigation of
the pathophysiology of motor control.

Materials and Methods
Subjects and Behavioral Task. We studied 15 right-handed healthy
male volunteers. We recorded the ongoing magnetic activity of
their brain while they continuously manipulated a track ball to
counter the unpredictable movements of a cube rotating about
its center (stimulus and hand movements are shown in SI Movies
1 and 2). The participants were instructed to attempt to keep the
cube’s angular deviation at a minimum from its initial position
(blue face up) at all times. The VM task was alternated with an
R condition, during which the subjects relaxed while looking at
a motionless cube. The subjects were cued to switch between the
two conditions every 8–12 sec, yielding continuous epochs of
steady-state MEG data. The size of the projected cube and the
position of the display screen yielded a stimulus that spanned a
visual angle that remained below 4° throughout the experiment.
All subjects gave informed consent, and the study was approved
by the local medical ethics committee.

Recordings. The cerebral activity was recorded with a whole-head
MEG system (151 sensors; VSM MedTech, Coquitlam, BC,
Canada) with a band pass of 0–200 Hz. Bipolar Ag-AgCl
electrodes (band pass � 0.16–200 Hz) were used to record the
electrooculogram monitoring both horizontal and vertical eye
movements and the ECG detecting the subjects’ cardiac activity.
These recordings, as well as the x and y outputs from the
track-ball device and markers of the behavioral conditions, were
acquired in continuous mode (8-min MEG recording blocks),
digitized at 1.25 kHz, and stored for offline analysis. All subjects
also underwent a high-resolution 3D IR-FSPGR T1-weighted
anatomic MRI scan (1.5 T; GE Medical Systems, Milwaukee, WI).

Track-Ball Kinematics. The track-ball position signals were fed into
the acquisition system and recorded simultaneously with the
ongoing brain signals. The instantaneous track-ball velocity
vector was then derived by low-pass filtering and two-point
differentiation of the x- and y-position signals. Finally, the TBS
(and thus, to first order, hand speed) was computed as the
absolute tangential velocity, TBS(t) � �ẋ(t)2 � ẏ(t)2.

Preprocessing. The MEG data were first low-pass filtered (100-Hz
cutoff), down-sampled to 312.5 Hz, and subjected to visual
inspection. All data segments contaminated by eye blinks (de-
tected via the electrooculogram signals), unwanted swallowing,
coughing, or movement artifacts were rejected, and heartbeat
artifacts (measured by the ECG) were corrected by using a
heart-beat trace (QRS complex)-matched filter. All 8- to 12-sec

continuous MEG records of each condition (VM or R) were split
into nonoverlapping 1-sec epochs. Two hundred artifact-free
trials were thus obtained for each condition in all subjects.

Single-Trial MEG Source Estimation. In contrast to classical evoked
response analysis of MEG data, we imaged the cerebral activity
underlying the sensor measurements directly from single-trial
data sweeps, i.e., without prior data averaging. We thereby
preserved trial-specific temporal information, which is both
crucial to the study of the spatiotemporal properties of motor
encoding and fundamental to the analysis of induced brain
oscillations not systematically time-locked to a given stimulus
(44). The neural current density time series at each elementary
brain location was estimated by applying a minimum norm-
inverse solution (21) with constrained dipole orientations (nor-
mal to the cortical sheet) and standard Tikhonov regularization
to all time samples of the 200 one-sec segments of sensor data
(in fT) available in each condition (VM and R). This procedure
yielded 200 one-sec-long time windows of ongoing cerebral
activation (in units of Am) at each of �12,000 brain locations
(corresponding to the nodes of each subject’s individual cortical
tessellation). The single-trial source estimations were imple-
mented with the BrainStorm MEG and EEG Toolbox (www.
neuroimage.usc.edu/brainstorm), and the segmentations and
tessellations of all MRI data sets were performed with the
BrainVisa (www.brainvisa.info) and BrainSuite (45) packages.

Estimating Source-Level Coherence, Phase Synchrony, and Power.
The coupling between the estimated neural time series and the
TBS was investigated by coherence estimation. Coherence is a
spectral measure of correlation between two signals x(t) and y(t)
across frequencies; it is calculated from the cross-spectral density
between the two waveforms and normalized by the power
spectral density of each:

C	 f 
 �

� �
i�1

N

Xi	 f 
Y*i 	 f 
�2

�
i�1

N

�Xi	 f 
�2 �
i�1

N

�Yi	 f 
�2

, [1]

where Xi( f ) and Yi( f ) are the Fourier transforms of the signals
x and y for the ith data segment at frequency f, and * indicates
the complex conjugate. Coherence values range from 0 (if the
signals are uncorrelated) to 1 (if the signals are perfectly
correlated). For the coherence estimates between brain activity
and hand speed, x(t) represents the time series of the estimated
current amplitude at an elementary brain location and y(t)
represents the time series of the TBS. For the coherence
estimations between M1 and the rest of the brain, the reference
signal y(t) is no longer TBS but simply the current amplitude time
series estimated at M1. The computations were carried out by
using the magnitude-squared coherence function (MATLAB;
MathWorks, Natick, MA) based on Welch’s averaged perio-
dogram method (applied to the n � 200 nonoverlapping 1-sec
time windows). To compare coherence between conditions
and perform statistical analysis across subjects, we used
Fisher’s Z transform of coherence (46): Zcoh � tanh�1(�C).
This procedure yields a constant variance given by
var{tanh�1(�C)} � 1/2N, where N is the number of disjoint
data segments used in the coherence estimate. Both phase and
amplitude coupling contribute to magnitude-squared coherence.
Therefore, to single out the role of phase consistency in task-
related coupling modulations, we evaluated the phase-locking
value to quantify the phase synchrony between the estimated
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neural activity and subject hand speed. The phase-locking value
between signals x and y at a given frequency f is defined as (47)

PLVt �
1
N � �

i�1

N

e j�	t, i
� , [2]

where �(t, i) � �X(t, i) � �Y(t, i) is the phase difference between
the two signals at time t in the ith segment/trial. The instanta-
neous signal phases �X and �Y at frequency f were determined
via the Hilbert transform. Finally, the signal power of the
estimated time series of the neural signals at an elementary brain
location (e.g., M1) was computed by using a standard power
spectral density function (MATLAB) based on fast Fourier
transform applied to each data segment (n � 200 time windows),
to which we previously applied a Hanning window to reduce
spectral leakage.

Spatial Normalization and Statistical Nonparametric Coherence Maps.
Individual maps of cortical coherence were first computed for
each condition (VM and R) by using the subject’s MRI. To
perform statistical testing at the population level, the cerebral
coherence data needed to be interpolated to a common source
space, such as the standard Montreal Neurological Institute
brain. This process was achieved by spatially normalizing the
individual MRI tessellation of each subject to the MNI-Talairach

space [by using a standard procedure based on anatomical
markers (AC-PC), the Talairach bounding box, and piecewise
affine transformations] and by using a regularized linear inter-
polation of the functional data from the vertices of the normal-
ized subject tessellation to the vertices of the Montreal Neuro-
logical Institute tessellation. We then averaged the coherence
maps over subjects and contrasted the two conditions, VM versus
R. The difference maps were thresholded at P � 0.001 by using
group-level (n � 15), one-tailed paired permutation tests, which
randomly exchanged the estimated values of coupling in R and
VM for each subject. We used exhaustive permutations (215 �
32,768) to estimate the empirical distribution under the null
hypothesis of no difference between the two conditions. The
alpha level was adjusted to the maximum statistic distribution to
control for the type I family wise error rate due to multiple
comparisons over the entire brain surface (48, 49). Unless
otherwise stated, all coherence and power plots presented here
were obtained with group-level (n � 15) statistical inference
based on paired permutation tests.
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