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ABSTRACT Two models were recently proposed to enable us to understand the dynamics of synaptic vesicles in hippocampal
neurons. In the caged diffusion model, the vesicles diffuse in small circular cages located randomly in the bouton, while in the stick-
and-diffuse model the vesicles bind and release from a cellular cytomatrix. In this article, we obtain analytic expressions for
the fluorescence correlation spectroscopy (FCS) autocorrelation function for the two models and test their predictions against
our earlier FCS measurements of the vesicle dynamics. We find that the stick-and-diffuse model agrees much better with the
experiment. We find also that, due to the slow dynamics of the vesicles, the finite experimental integration time has an important
effect on the FCS autocorrelation function and demonstrate its effect for the different models. The two models of the dynamics are
also relevant to other cellular environments where mobile species undergo slow diffusionlike motion in restricted spaces or bind
and release from a stationary substrate.

INTRODUCTION

Fluorescence correlation spectroscopy (FCS) can probe

translational, rotational, and reaction kinetics of fluorescent

molecules from sub-microsecond to second timescales (1).

See Rigler and Elson (2), Hess et al. (3), Schwille (4), and

Thompson (5) for recent reviews. The FCS technique exploits

the intensity fluctuations that occur as fluorescently labeled

molecules pass through a small optical detection volume. The

intensity autocorrelation function is then measured and

compared with model predictions. The FCS autocorrelation

has been derived for multiple diffusive reacting species (1,6),

rotational diffusion of dipolar molecules (7,8), in the presence

of uniform flow (9), with singlet-triplet state transitions (10),

for finite detection volumes (11), and other models of

dynamics and reaction kinetics.

Despite these advances, studying motion in cellular envi-

ronments using FCS remains challenging. Diffusion is among

only a handful of models for which FCS has an analytic

solution. However, in the cell, species often interact with bind-

ing partners as well as structural elements, and rarely undergo

pure diffusion. Often this motion is restricted by both cellular

(11) and intracellular boundaries. If these compartments are

of the order of the laser beam radius W, then the measured

correlation function deviates from the expected form. Lastly,

the motion of intracellular species is typically slow with

correlation half-decay times t1/2 commonly approaching

seconds, less than two orders-of-magnitude smaller than the

total integration time T. This leads to a significant finite T
correction to the autocorrelation function (12–14).

Recently FCS was used to study the dynamics of synaptic

vesicles in hippocampal synapses (15,16). This system

exhibits all the above properties that render solutions in these

environments elusive. The vesicles enclose neurotransmit-

ters, which are released in response to action potentials. The

vesicles are 40 nm in size and are contained in a synaptic

bouton that is only a few beam diameters in its lateral

dimension (1 mm). The vesicles cannot be observed directly

with light microscopy. However, they can be fluorescently

labeled, the fluorescence intensity fluctuations resulting from

movement in and out of the small detection volume can be

measured, and the correlation function calculated. These FCS

experiments were performed under a variety of conditions and

supplemented by fluorescence recovery after photobleaching

(FRAP) experiments. Together these experiments show:

1. Synaptic vesicles move sluggishly, taking seconds to move

about the synapse. This, if interpreted as free diffusion,

would imply a viscosity that is ;2500 times larger than

that for water and a diffusion constant ;100 times larger

than expected for inert particles of this size diffusing in the

cell.

2. The fluctuations of the intensity are much smaller than

the average intensity.

3. Synaptic vesicles move 30 times faster in the presence of

the phosphatase inhibitor okadaic acid (OA), and the

dynamics are well modeled by simple diffusion. This agent

is thought to eliminate binding of vesicles to structural

elements. Eliminating actin filaments alone, which is

thought to be the dominant structural protein and source of

enhanced ‘‘viscosity’’ in the synapse, has little effect on

vesicle dynamics (1).

4. A moderate change in the system’s temperature alters the

correlation time dramatically, which cannot be explained

by pure diffusion or any diffusionlike process that obeys
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the Stokes-Einstein relation. This effect is consistent with

an enzyme activity.

To understand this set of observations we proposed a stick-

and-diffuse model in which the vesicles bind and release from

the cellular cytomatrix. The vesicles are free to diffuse when

not bound (2). An alternative model based on the very slow

dynamics and a very small value of normalized FCS auto-

correlation function was also proposed by Jordan et al. (1).

They assumed a caged diffusion model in which the vesicles

undergo diffusion in circular cages within the bouton.

Although both the stick-and-diffuse and the caged diffu-

sion models are motivated by the observations of vesicle

motions in central synapses, the dynamics described by these

models are common in biological systems. For instance, gene

regulation and signal transduction are often accomplished by

reversible binding and unbinding of a protein to its substrate,

including DNA, RNA, or other proteins (17). The stick-and-

diffuse model may be relevant for the diffusing protein. The

caged diffusion model is relevant for the sterically restricted

diffusion of biomolecules in the aqueous lumen of certain

intracellular organelles, such as mitochondria and endoplas-

mic reticulum (18). Recent studies also reveal that lateral

diffusion of membrane proteins is corralled by the underlying

cytoskeleton structures (19,20) and may also be described by

caged diffusion. The close relations between these important

cellular processes and the dynamic behaviors ascribed by the

stick-and-diffuse and the caged diffusion models provide a

strong motivation for solving the models analytically.

This article is organized as follows: First, the bias due to

the finite integration time T is summarized. Next, we derive

analytic expressions for the autocorrelation functions for the

stick-and-diffuse model and for the caged diffusion model.

This allows us to compare the predictions of the two models to

our experimental FCS data. We find that the stick-and-diffuse

model gives a significantly better description of our exper-

imental result while the caged diffusion model gives fits

similar to that for free diffusion. Finally, a Summary is

provided, where additional lines of evidence in support of the

stick-and-diffuse model are discussed.

FINITE INTEGRATION TIME CORRECTION

The quantity of interest in an FCS experiment is the nor-

malized autocorrelation function. This was originally defined

as (3)

GTðtÞ ¼
1

T � t

�
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where the Æ. . .æ indicates an ensemble average, I(s) is the de-

tected intensity at time s, and �IT ¼ T�1
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0
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where GN(t) is the autocorrelation function for infinite T,

D�IT ¼ �IT � �I and

D�IT�t;0 ¼
1

T � t

Z T�t

0

dsðIðsÞ � �IÞ;

D�IT�t;t ¼
1

T � t

Z T

t

dsðIðsÞ � �IÞ: (3)

This bias is always negative and can lead to GT (t) being

negative even if GN(t) is always positive.

More recently, Schätzel et al. (15) and Saffarian et al. (16)

has pointed out the advantage of a ‘‘symmetrically’’ nor-

malized autocorrelation function,

GTðtÞ ¼
1

T � t

�
1
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where �IT�t;t9 ¼ ðT � tÞ�1 R T�t1t9

t9
ds IðsÞ. Expanding to sec-

ond-order in D�IT=�I gives
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To second-order in D�IT=�I the bias in the GT (t) comes

entirely from the subtraction of �IT�t;0 and �IT�t;t in Eq. 4. The

effect of normalizing by the product �IT�t;0
�IT�t;t instead of by

�I 2
T in Eq. 4 contributes corrections at higher order in D�IT=�I.

The biases for the two normalization methods are essen-

tially the same at short times but can be significantly smaller

for symmetrically normalized case at long times. An example

is given in Supplement S1 in the Supplementary Material.

Another important advantage of symmetric normalization is

that the variance is much smaller than in the asymmetric case

(15,16).

MODELS OF VESICLE DYNAMICS

Comparison of free diffusion with
experimental FCS

Fig. 1 shows the FCS autocorrelation function obtained in our

earlier experiments on vesicle dynamics in a hippocampal

synapse. (Please see Supplement S6 in the Supplementary

Material and (2) for complete descriptions of the methods and
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materials used in this experiment, and Supplement S5 in the

Supplementary Material for a detailed discussion of how the

averages were performed and an estimate of uncertainties.)

We used an optical spot with e�1/2 radius W¼ 110 nm. (Note

that W is 1/2 the more commonly quoted e�2 beam radius.)

The total integration time was limited to T ¼ 200 s by

photobleaching effects. During this integration time the total

intensity decreased by ;40–50% relative to the mean. The

raw fluorescent intensity I(t) was binned to Dt ¼ 0.01 s and

then fitted to the form I9ðtÞ ¼ Ae�t=tc1B, which mimics the

trend-line of the fluorescence decay. The symmetrically

normalized autocorrelation is given by

GTðtiÞ ¼
�

1

N � i

+
N�i

j¼1
ðIj � I9ðtjÞÞðIi1j � I9ðti1 jÞÞ

�IN�i;0
�IN�i;i

�
; (6)

where the Æ. . .æ indicates an ensemble average over the 39

runs and N ¼ T/Dt. The average intensities in the denom-

inator are

�IN�i;0 ¼
1

N � i
+
N�i

j¼1

Ij; �IN�i;i ¼
1

N � i
+
N

j¼i11

Ij: (7)

The autocorrelation function was obtained offline with ti ¼
iDt. We found that the autocorrelation function was domi-

nated by the trend-line if we did not subtract I9(t) but that

the obtained autocorrelation function did not depend sensi-

tively on the choice of the fitting form for the trend-line. We

also found that fluctuations about the trend-line were not

correlated with the trend-line, i.e., ÆðIðsÞ � I9ðsÞÞðI9ðs1tÞ�
�IT�t;tÞæ � 0. See Supplement S2 in the Supplementary Mate-

rial for a more detailed discussion of the effect of subtracting

the trend-line. We note that while there was essentially no

difference whether we normalized by �I2
T or �IN�i;0

�IN�i;i, the

subtraction of the trend-line means that GT (ti) corresponds to

the symmetrically normalized autocorrelation function.

Our experimental data given in Fig. 1 b show that the

correlation function half-decay time is ;3 s and that GT (t) is

clearly negative at intermediate times. Fig. 2 shows the best

fits of the experimental data to the different theoretical

models. Fig. 2 a gives the comparison for two-dimensional

free diffusion. There are two fitting parameters, the ampli-

tude GN(0) and the diffusion time tD (see Table 1 for details

of fitting parameters). The model is corrected for the finite

integration time T ¼ 200 s. The fits were performed by

minimizing x2 defined as

x
2 ¼ +

i

ðGTðtiÞ � Gexp;iÞ2

s
2

i

; (8)

where si is the uncertainty of GT at time ti. The calculation of

the uncertainty was subtle due to the large heterogeneity in

the amplitude of the autocorrelation function. This is dis-

cussed in more detail in the Supplementary Material. In most

FCS experiments, the autocorrelation function is obtained

online resulting in times ti that are distributed uniformly in log

t. This allows one to investigate dynamics with multiple

timescales. To mimic this, we prune our times which are

originally uniformly distributed in time t so that we fit 51 data

points uniformly distributed in log t between t¼ 0.01 s and t¼
20 s. Following Jordan (1) the sum is restricted to i such that ti
, 20 s. The autocorrelation function is most affected by the

systematic decay in the intensity for times t , 20 s (shown in

Supplement S2 in the Supplementary Material). In addition to

this systematic effect, the autocorrelation function for times

.20 s is very noisy since the integration time is only ;50

times larger than that of the half-decay time. Therefore, due to

the larger noise and the systematic effects of the decay in

intensity, the longer time data does not discriminate between

different models. As a result, we focus on the early time be-

havior t , 20 s. The fitting values in our previous article were

slightly different. Our earlier fit did not take the uncertainty into

account and also used the entire autocorrelation function 0 , t
, 200 s weighted by 1/t.

FIGURE 1 Panel a shows the experimental FCS autocorrelation function

from Shtrahman et al. (2) for the N ¼ 39 runs. The results are very hetero-

geneous with the amplitude varying by a factor of 20. Panel b shows the

average autocorrelation function as discussed. The lack of noise except at

long times shows that the heterogeneity in the shape of the autocorrelation

function is significantly smaller than the variation in the amplitude. A de-

tailed discussion of how the averaging is performed and the uncertainties are

estimated is given in Supplement S5 in the Supplementary Material.
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Fig. 2 a shows the fit to two-dimensional free diffusion with

GN(0)¼ 0.0170 6 0.006 and tD¼ (2.8 6 0.6) s corresponding

to D ¼ (4.3 6 0.9) 3 10�3(mm)2/s with x2 ¼ 118. The

uncertainty in tD was obtained by determining the values of tD

at which x2 increased by a factor (M 1 1)/M, where M¼ 2 is the

number of adjustable fitting parameters. The probability that a

x2 larger than this value occurs randomly for the model is (23)

G
N �M

2
;
x

2

2

� ��
G

N �M

2

� �
; (9)

where G(a, x) is the incomplete g-function, N ¼ 51 is the

number of data points in the fit, and N – M is the degrees of

freedom. We have assumed the fluctuations about the fit are

distributed in a Gaussian manner and are independent. The

probability of a random event yielding a x2 value .118 is

therefore G(24.5, 59)/G(24.5)¼ 1.3 3 10�7. (See Table 1 for

a summary of the fitting parameters for the different models.)

We also fitted the FCS data to one-dimensional free dif-

fusion (fit not shown). The fitting quality was approximately

the same as for two-dimensional diffusion with tD ¼ (1.1 6

0.3) s corresponding to a diffusion constant D ¼ (1.1 6 0.3)

3 10�2(mm)2/s and x2 ¼ 130. The probability of a larger x2

occurring randomly is 3 3 10�9. Therefore, both one-

dimensional and two-dimensional diffusion can be ruled out.

Finally, we also fit the experimental data to a two-

component diffusion model. As expected, the fit is much

better (x2 ¼ 50.3) than for the single component two-

dimensional diffusion but, as we will discuss later, worse

than that for the stick-and-diffuse model. The probability of a

larger x2 is 0.35. Therefore, two-component diffusion cannot

be ruled out based on goodness of fit. However, we found a

reasonable fit only occurs when the two components have

widely different timescales tD1¼ 3.5 s and tD2¼ 0.06 s. The

vesicles were synthesized by a clathrin pathway and ultra-

structure studies using electron-microscopy show extremely

uniform size-distribution of vesicles (24). This uniformity

rules out one of the common causes of variations in the

particle diffusivity; that is, the particle size distribution.

Although it is not possible to completely rule out other sources

of heterogeneity, it is difficult to see how either inter- or

intracellular variation can lead to such a wide separation in the

two diffusion times. The two component diffusion model is

also difficult to reconcile with the following observations:

1), FRAP data in which exponential recovery is observed;

2), the large changes in the FCS autocorrelation functions

when changing temperature; and 3), the diffusionlike behav-

ior on application of phosphatase inhibitor okadaic acid (OA)

(2). For the OA case, we found that the autocorrelation

FIGURE 2 The solid lines are the fits

of the experimental autocorrelation

function to the different models. (a)

Two-dimensional free diffusion (x2 ¼
118). (b) Stick-and-diffuse model with

two-dimensional diffusion (x2 ¼ 10.4).

(c) Caged diffusion with variable a

(x2 ¼ 99.3). (d) Caged diffusion with

fixed a ¼ 75 nm (x2 ¼ 202).

TABLE 1 Fitting parameters and v2 (Eq. 8) and the probability of a larger v2 (Eq. 9) for the different models

Model x2 Prob. larger x2 Fitted parameters

1-D diffusion 130 3 3 10�9 GN(0) ¼ 0.0191 6 0.007, tD ¼ (1.1 6 0.3) s

2-D diffusion 118 1 3 10�7 GN(0) ¼ 0.0170 6 0.006, tD ¼ (2.8 6 0.6) s

2-D diffusion (two components) 50.3 0.35 GN,1(0) ¼ 0.0159 6 0.006, tD1 ¼ (3.6 6 0.7) s

GN,2(0) ¼ 0.0029 6 0.0013, tD2 ¼ (0.06 6 0.05) s

Stick and diffuse (1-D) 21.7 0.9994 GN(0) ¼ 0.0176 6 0.0002, tD ¼ (0.085 6 0.045) s

tu ¼ (1.8 6 0.4) s, tb ¼ (3.6 6 0.5) s

Stick and diffuse (2-D) 10.4 0.999999994 GN(0) ¼ 0.0176 6 0.0002, tD ¼ (0.22 6 0.07) s

tu ¼ (2.0 6 0.4) s, tb ¼ (4.2 6 0.4) s

Caged diffusion 99.3 0.00002 GN(0) ¼ 0.0163 6 0.0006, tD ¼ (3.3 6 1.2) s

a ¼ (360 6 140) nm

Caged diffusion (Fixed a ¼ 75 nm) 202 2 3 10�20 GN(0) ¼ 0.0158 6 0.0006, tD ¼ (33.5 6 7) s

The very large values of this probability for the stick-and-diffuse model likely indicates that the uncertainty in GT(t) is overestimated and/or the fluctuations

around the fit are not independent. The diffusion constant D was the fitting parameter for the caged diffusion model. This was converted to a diffusion time

using tD ¼ W2/D for comparison purposes.
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function was well fitted by single-component diffusion with a

characteristic diffusion time similar to the free state diffusion

time in the stick-and-diffuse model. Details of the fit to the

two-component diffusion model are given in Supplement S4

in the Supplementary Material.

Stick-and-diffuse model

Autocorrelation function

Previous studies have established that synaptic vesicles in

central nerve systems are divided into distinct functional

pools. These include a readily releasable pool that is docked

at an active site and a reserve pool that is remote from the

active site (25). However, it is unclear from these earlier

experiments how the readily releasable pool is replenished

by the reserve pool after the docked vesicles are released. We

addressed this kinetic question directly using FCS and FRAP

by monitoring the mobility of vesicles under different

conditions (2). Our experiment showed that only a small

fraction of the reserve pool vesicles is mobile and therefore

able to dock in the active zone, thereby playing a role in

chemical transmission. We also found that the mobile pool

fraction can be modulated by increasing the bath temperature

and by application of the phosphatase inhibitor, OA. The

diffusion constant of mobilized vesicles is 30 times larger

and is the same order of free diffusion of comparable-sized

objects in a cytoplasmic environment. These observations

suggest that a synaptic vesicle has two intrinsic states, a state

in which the vesicle is bound, presumably to the cellular

cytomatrix, and a second unbound state in which the vesicle

is free to diffuse. However, it is unclear whether this stick-

and-diffuse model of vesicles can account for the autocor-

relation function observed in our FCS measurements, and

more importantly if the parameters extracted from the FCS

measurements can be compared with the data from electro-

physiological measurements (25). With these in mind, we

set out to derive the autocorrelation function based on stick-

and-diffuse phenomenology. A very rough sketch of the

derivation of the FCS autocorrelation for this model was

given in our previous article (2). Here we give a detailed

derivation of the autocorrelation function.

We assume that the bound state is a Poisson process with

unbinding rate 1/tb and the unbound state is a Poisson

process with binding rate 1/tu. Therefore, the average bound

and unbound intervals are tb and tu, respectively. Once

unbound, the free particle has a diffusion time tD ¼W2/D in

the light box formed by a tightly focused laser beam (see

Supplement S6 in the Supplementary Material). The steady-

state probability that a vesicle is, respectively, bound and

unbound are

Pb ¼ tb=ðtb 1 tuÞ; Pu ¼ tu=ðtb 1 tuÞ: (10)

To calculate GN(t), let us assume that during time t a

vesicle is free for time s1, then bound for time b1, then free

for time s2 and so on, such that s ¼ s1 1 s2 1 . . . and t – s ¼
b1 1 b2 1 . . . . The autocorrelation function at time s1 is

therefore the same as if the vesicle underwent free diffusion

for time s1, that is, GNðs1Þ ¼ Gdiff
N ðs1Þ}ð11ÆDrðs1Þ2æ=

ð4W2ÞÞ�1
, where Æ Dr(s1)2 æ ¼ 4Ds1 is the mean-square

displacement for the free diffusion process. The vesicle is

frozen for time b1, so the intensity does not change during

this time and the autocorrelation function is constant:

GNðs11b1Þ ¼ GNðs1Þ ¼ Gdiff
N ðs1Þ. The vesicle then becomes

free to diffuse for time s2. At the end of time s2, it is clear that

the vesicle will be in the same position as if it had undergone

free diffusion for time s1 1 s2. Since the contribution of a

vesicle to the autocorrelation function at time t depends only

on the vesicle positions at time 0 and t, this implies that the

autocorrelation function at time s1 1 b1 1 s2 is the same as that

of free diffusion at time s1 1 s2, e.g., GNðs11b11s2Þ ¼ Gdiff
N ðs1

1s2Þ}ð11ÆDrðs11s2Þ2æ=ð4W2ÞÞ�1
, where ÆDrðs11s2Þ2æ ¼

4Dðs11s2Þ is the mean-square displacement for free diffusion

after time s1 1 s2. Repeating this argument for all the segments

shows that the autocorrelation function after time t depends only

on the total free time s¼ s1 1 s2 1 . . . and not on the individual

free segments. Furthermore the vesicle at time t is in the same

position as if it had undergone free diffusion for time s so that the

vesicle’s contribution to the autocorrelation function at time t is

the same as for a vesicle undergoing free diffusion for time s:
Gdiff

N ðtÞ}ð11s=tDÞ�d=2
.

Since the vesicles are independent, we can sum up the

contribution from each vesicle. However all values of total

free time s , t are possible. Therefore we need to sum up

over all possible values of s weighted by the probability

P(s, t)ds that the vesicle is free for total time between s and

s 1 ds during time interval t:

GNðtÞ ¼ GNð0Þ
Z t

0

ds
Pðs; tÞ

ð1 1 s=tDÞd=2
: (11)

To find P(s, t), consider the probability of having the free

time s occurring in n unbound intervals with m intervening

bound intervals. Note that m must be equal to n – 1, n or n 1

1. Different expressions will be obtained if the vesicle is free

or bound at the beginning of the interval. Summing over the

different cases,

Pðs; tÞ ¼ Pu +
N

n¼1

P
u

n;n�1ðs; tÞ1 P
u

n;nðs; tÞ
	 


1 Pb +
N

n¼1

P
b

n;nðs; tÞ1 P
b

n�1;nðs; tÞ
	 


; (12)

where Pu
nmðs; tÞ is the conditional probability density given

that the vesicle is unbound at the beginning of the interval,

that there is total free time s in n free intervals and total

bound time t – s in m bound intervals. Pb
nmðs; tÞ is the same

except that the vesicle is bound at the beginning of the

interval.

Start with the case where a vesicle is initially unbound.

Assume there are n 1 1 unbound intervals and n bound
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intervals where n $ 1. We need two conditions to find

Pu
n11;nðs; tÞ. The first is that there are n binding events in time

s for a Poisson process that occurs with binding rate 1/tu.

This probability is given by a Poisson distribution with mean

value s/tu,

P
u

nðsÞ ¼
1

n!

s

tu

� �n

e
�s=tu : (13)

The second condition is that the nth event occurs at time t – s
for a Poisson process that occurs at freeing rate 1/tb. This

probability density is given by the Erlang distribution,

P
b

nðt � sÞ ¼ 1

ðn� 1Þ!
1

tb

t � s

tb

� �n�1

e
�ðt�sÞ=tb : (14)

Multiplying the two distributions together and including the

n ¼ 0 case gives

P
u

n11;nðs; tÞ ¼
1

tb

1

n!ðn�1Þ!
s

tu

	 
n
ðt�sÞ

tb

	 
n�1

e
�s=tu e

�ðt�sÞ=tb n $ 1;

e
�s=tu dðt � sÞ n ¼ 0:

(

(15)

For n free intervals and n bound intervals there are n – 1

binding events in total time t – s and the nth freeing event

must occur at time s:

P
u

n;nðs; tÞ ¼
1

tu

1

ððn� 1Þ!Þ2
sðt � sÞ

tutb

� �n�1

e
�s=tu e

�ðt�sÞ=tb ; n $ 1:

(16)

Similar arguments apply when the vesicle is initially bound:

P
b

n;nðs; tÞ ¼
1

tb

1

ððn� 1Þ!Þ2
sðt � sÞ

tutb

� �n�1

e
�s=tu e

�ðt�sÞ=tb ;

P
b

n;n11ðs; tÞ ¼
e
�t=tb dðsÞ n ¼ 0

1

tu

1

n!ðn�1Þ!
s

tu

	 
n�1
ðt�sÞ

tb

	 
n

e
�s=tu e

�ðt�sÞ=tb n $ 1:

8<
:

(17)

Substituting Eqs. 10 and 15–17 into Eq. 12 and then into Eq.

11 gives our final result:

GNðtÞ
GNð0Þ

¼ tbe
�t=tb

tu 1 tb

1
tu

tu 1 tb

e
�t=tu

11ðt=tDÞ
1

1

tu1tb

+
N

n¼1

1

ðn�1Þ!n!Z t

0

ds
e
�ðt�sÞ=tb�s=tu

1 1 s=tD

2n1
s

tb

1
t � s

tu

� �� �
sðt � sÞ

tu tb

� �n�1

:

(18)

The finite T autocorrelation function GT (t) can be found

using Eq. 5 once GN(t) is calculated.

In general, Eq. 18 must be solved numerically but the

model can be easily understood in two limits:

1. tb � tD � tu: The vesicle essentially undergoes free

diffusion. Only the second term in Eq. 18 is nonnegli-

gible, and

GNðtÞ � GNð0Þ=ð1 1 t=tDÞ: (19)

2. tb, tu � tD: There are many binding and unbinding

events before the vesicle moves through the detection

area. For times t � tu, tb, this is effectively diffusion

with a reduced diffusion constant D9 ¼ tuD/(tu 1 tb)

and/or increased diffusion time t9D ¼ (tu 1 tb)tD/tu:

GNðtÞ � GNð0Þ=ð1 1 t=t9DÞ: (20)

We performed direct simulations of the stick-and-diffuse

model to test the theoretical expression Eq. 18 and the limiting

behavior given by Eqs. 19 and 20. Results were obtained for

tb¼ 0.1 s, tD¼ 1 s, and tu¼ 10 s, and also for tb¼ 0.2 s, tD¼
2 s, and tu¼ 0.1 s to test limiting behavior. We also performed

simulations for tb¼ 4.2 s, tD¼ 0.22 s, and tu¼ 2.0 s, which,

as we show below, are the parameters we obtained from fitting

the experimental autocorrelation function to the stick-and-

diffuse model. In all cases, agreement with the theoretical

expression Eq. 18 was excellent. See Supplement S3 in

the Supplementary Material for more details concerning the

simulation method and results.

Comparison of stick-and-diffuse model with
experimental FCS

Fig. 2 b shows the fit of our FCS data to the stick-and-diffuse

model. The fit was performed the same way as for the free

diffusion case. We determined GN(t) by evaluating Eq. 18

numerically and then determined GT(t) using Eq. 5. The four

fitting parameters were tb¼ (4.2 6 0.4) s, tu¼ (2.0 6 0.4) s,

tD ¼ (0.22 6 0.07) s, and amplitude GN(0) ¼ 0.0176 6

0.0002. The fit is significantly better than for free diffusion,

with x2 ¼ 10.4 being a factor-of-11 smaller. The probability

of obtaining a x2 .10.4 is almost 1 (0.999999996). This is

likely an indication that we overestimated the uncertainties

of GT(t) and/or the fluctuations are not independent (see

explanation following Eq. 8).

The fitted value of the diffusion constant, D ¼ W2/tD ¼
(5.4 6 1.6) 3 10�2(mm)2/s, was consistent with the diffusion

constant measured when OA was used to release the vesicles

from the cellular cytomatrix, D � 1 3 10�1(mm)2/s (2). This

procedure eliminates the bound state leaving only the free

state. The average binding time tb � 4 s was also consistent

with the timescale observed in vesicle refilling experiments

(26,27) and our measurements of the time required for the

fluorescent signal to recover after photobleaching (2).

Therefore the stick-and-diffuse model predicts that, on

average, a vesicle bound state lasts ;4 s and the vesicle free

state lasts on average 2 s. During the free period the vesicle

can explore the entire detection area since tu/tD� 10 and the

intensity is essentially uncorrelated between bound states. As

a result, the long time correlation function is determined by

tb and the autocorrelation function is not very sensitive to the

details of the short time dynamics as indicated by the large

2276 Yeung et al.

Biophysical Journal 92(7) 2271–2280



fractional uncertainty in tD. This insensitivity holds as long

as the vesicle has time to explore the detection volume

during an average free interval.

To further demonstrate the insensitivity of the result to the

short time dynamics, we also fitted the experimental FCS

autocorrelation function to the stick-and-diffuse model

assuming that the diffusion is effectively one-dimensional

in its free state. The fit quality is only slightly worse than for

the stick-and-diffuse model in two dimensions with x2 ¼
21.7. The probability of a larger x2 is 0.9994 again indicating

that our estimates of the uncertainty are too large. We find

that tu ¼ (1.8 6 0.4) s, tb ¼ (3.6 6 0.5) s is only slightly

changed from the two-dimensional result but tD ¼ (0.085 6

0.045) s is ;65% lower. In fact we expect similar quality of

fit even if the short time motion was nondiffusive as long as

the dynamics are fast enough so that the vesicles can move

through the detection area during a free segment and the

direction of motion is uncorrelated from one free segment to

the next.

Caged diffusion model

Autocorrelation function

Jordan et al. (1) proposed a caged diffusion model to explain

their FCS data. They assumed that each vesicle is restricted

to a circular cage of radius a. The vesicle is assumed to

undergo diffusion with diffusion constant D inside this

circular cage. For simplicity, the cages are assumed to be

located randomly within the bouton and the vesicles are

assumed to be independent. In this section we will obtain

an expression for the FCS autocorrelation function for the

caged diffusion model and compare the results with our FCS

data.

Consider a single vesicle in a cage of radius a with the

cage center at R. The nonnormalized autocorrelation func-

tion g(t) is defined by

gðtÞ1 Æ�I2æ ¼ ÆIð0ÞIðtÞæ

¼ Q
2
e

2

Z
dr
Z

dr9IoðrÞIoðr9ÞÆC1ðr; 0ÞC1ðr9; tÞæR;

(21)

where Q is the quantum efficiency, e is the absorbance, and

Io(r) is the laser beam intensity profile. The brackets ÆæR

indicate an average over all initial conditions r0 inside the

cage. The concentration C1(r, t) is the solution to the

diffusion equation

@C1=@t ¼ D=
2
C1; (22)

corresponding to a single particle at ro at t ¼ 0 with no flux

boundary conditions at the edge of the cage. A cage centered

at R with a beam centered at the origin is equivalent to

having a cage centered at the origin and the beam centered at

r ¼ – R. Making this shift, Eq. 21 becomes

gðtÞ1 Æ�I2æ ¼ Q2
e

2

Z
A

dr
Z

A

dr9Ioðr 1 RÞIoðr9 1 RÞ

3 ÆC1ðr; 0ÞC1ðr9; tÞæ0; (23)

where the integrals are restricted over the area A¼ pa2 of the

cage. Assuming a Gaussian beam profile and N independent

particles in N cages centered at Ri, i ¼ 1, . . . , N, gives

gðtÞ1 Æ�I2æ ¼ Q
2
e

2
I

2

o +
N

i¼1

Z
A

dr
Z

A

dr9e
�ð2R

2
i 12Ri �ðr1r9Þ1r

2
1r9

2Þ=ð2W
2Þ

3 ÆC1ðr; 0ÞC1ðr9; tÞæ0 (24)

The ensemble average now corresponds to an average over

cage positions Ri. Performing this average gives

gðtÞ1 Æ�I2æ ¼ Q
2
e

2
N

V
W2

pI2

o

Z
A

dr
Z

A

dr9e�jr�r9j2=ð4W
2Þ

3 ÆC1ðr; 0ÞC1ðr9; tÞæ0: (25)

We have assumed that the area of the bouton V is much

larger than the detection area and that the positions of the

cages are not correlated.

Solving the diffusion equation (Eq. 22) in cylindrical

coordinates with no flux boundary condition @C1=@rjr¼a ¼ 0

gives C1ðr; tÞ ¼ +
n;m;pAnmpcn;m;pðrÞe�Dk2

mnt=a2

where Anmp

are constants that depend on the initial position of the vesicle

and the functions cn,m,p(r) form the orthonormal basis for

the Laplacian in cylindrical coordinates (28). The basis

functions factor into a radial and angular part, Cn,m,p(r) ¼
cn,m(r)Qm,p(u),

cn;mðrÞ ¼
1

aJmðkmnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1� m
2
=k

2

mn

s
Jm

kmnr

a

� �
;

Qm;0 ¼
cosðmuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 1 dm;0Þ

p ; Qm;1 ¼
sinðmuÞffiffiffiffi

p
p ; (26)

where Jm(x) is the mth Bessel function of the first kind and

kmn is the (n 1 1)th zero of the derivatives of Jm(x), i.e.,

dJmðxÞ=dx jx¼kmn
¼ 0.

Taking C1(r, 0) ¼ d(r – ro) and then averaging over all

initial positions ro inside the cage of radius a gives the

concentration-concentration correlation:

ÆC1ðr; 0ÞC1ðr9; tÞæ0¼
1

pa
2 +

N

n¼0

+
N

m¼0

+
p¼0;1

Cn;m;pðrÞ

3 Cn;m;pðr9Þe�Dk
2
mnt=a

2

: (27)

The autocorrelation function becomes

gðtÞ ¼ NQ
2
e

2

V
+
n;m

ðI2Þnmexpð�k
2

mnt=taÞ; (28)

where the sum is over all n and m except for the term in

which both n ¼ 0 and m ¼ 0. Since k00 ¼ 0, this term

corresponds to the constant Æ�I2æ term in Eq. 21. The time

required for the vesicle to diffuse through the cage is ta ¼
a2/D and
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ðI2Þ
nm
¼ W2

pI2

o +
p¼0;1

Z
A

dr
Z

A

dr9e�jr�r9j2=ð4W
2Þ

3 cn;mðrÞcn;mðr9ÞQm;pðuÞQm;pðu9Þ;

¼ W
2
pI

2

o

Z a

0

dr

Z a

0

dr9rr9e
�ðr2

1r9
2Þ=ð4W

2Þ

3 cn;mðrÞcn;mðr9ÞFm

rr9

4W
2

� �
: (29)

Here Fm(y) is the angular part of the integration:

FmðyÞ ¼
2

1 1 dm;0

Z 2p

0

du e2y cosðuÞ
cosðmuÞ

¼ 4pi
m

Jmði2yÞ
1 1 dm;0

¼ 4py
m

1 1 dm;0

+
N

j¼0

y
2j

ðj!Þðj 1 mÞ!: (30)

Introducing the rescaling x ¼ kmnr/a gives

ðI2Þnm ¼
4pW

2
I

2

o

a
2
JmðkmnÞ2ð1� m

2
=k

2

mnÞ
a

kmn

� �4Z kmn

0

dx

Z x

0

dx9 x x9

e
�a

2ðx2
1x9

2Þ=ð2WkmnÞ2 Fm

a
2
xx9

ð2WkmnÞ2
� �

JmðxÞJmðx9Þ;

¼ 4pI
2

oW
2
a

2
Hnm

a

W

	 

; (31)

where the function Hnm(a/W) is only a function of the ratio a/

W. Equation 28 then becomes

gðtÞ ¼ NQ
2
e

2

V
4pI

2

oW
2
a

2 +
n;m

Hnm

a

W

	 

expð�k

2

mnt=taÞ: (32)

Therefore the ratio g(t)/g(0)¼GN(t)/GN(0)¼ f(t/ta, a/W) is a

function only of t/ta and a/W. Fig. 3 a shows this ratio as a

function over t/ta for different a/W. The symbols are results of

direct simulation of the caged diffusion model. There is an

excellent match between the analytical and the simulation

results.

The behavior of the caged diffusion model can be easily

understood in two limits:

1. a/W� 1: The cage is irrelevant since it is much larger than

the beam radius. The dynamics is the same as free diffusion

with a diffusion time tD¼W2/D¼ (W/a)2ta. (In this limit,

the sums in Eq. 32 can be converted to an integral over q¼
kmn/a. The exponential expð�k2

mnt=taÞ ¼ expð�Dk2
mnt=

a2Þ becomes exp(�Dq2t), thereby giving free diffusion.)

Fig. 3 b shows a comparison of the caged diffusion model

for a/W¼ 5 with two-dimensional free diffusion. The curves

coincide for t/tD , 4. At longer times the finite cage size

becomes important. The effect is similar to the finite sample

size corrections given by Gennerich and Schild (13).

2. a=W&1: The autocorrelation function is essentially inde-

pendent of the ratio a/W as long as a=W&1. As shown in

Fig. 3 c, GN(t) is dominated by the m¼ 1, n¼ 0 term in Eq.

32 and GNðtÞ;e�t=t, where t ¼ ta=k2
10 ¼ ta=3:39. This is

the slowest decaying mode since k2
01 ¼ 14:7.k2

10 ¼ 3:38.

The decay is a good single exponential for a/W as large as 1.

FIGURE 3 GN(t)/GN(0) for the caged diffusion model: (a) GN(t)/GN(0)

depends only on the ratios a/W and t/ta. The lines are the theoretical results

(Eq. 32) and the symbols are results from direct simulation of the caged

diffusion model. Results are shown for a/W¼1/4 (D), 2 (h), and 5 (s). (b)

For a� W, the cage diffusion model (solid) behaves similar to tD ¼ W2/D
(dashed). (c) The decay is approximately single-exponential for a=W&1

with decay time t ¼ a2/(3.39 D). The squares are just for the m ¼ 1, n ¼ 0

term in Eq. 32.
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Comparison of caged diffusion with experimental FCS

Jordan et al. (1) compared their FCS power spectrum with

simulations of the caged diffusion model. They found that the

experimental power spectrum very roughly matched their

simulations when they assumed a beam radius of ;85 nm, a

cage size of between 50 and 100 nm and a very small diffusion

constant of ;5 3 10�5 (mm)2/s. Fig. 2 c shows the best fit of our

experimental FCS autocorrelation to the caged diffusion model

with our beam radius W¼ 110 nm. The fitting parameters were

a ¼ (360 6 140) nm, D ¼ (3.7 6 1.5) 3 10�3(mm)2/s, and

GN(0) ¼ 0.0164 6 0.0006. The fit is significantly worse than

for the stick-and-diffuse model. We find x2 ¼ 99.3 with the

probability of a larger x2 being 0.000019. This value of x2 is

only slightly smaller than the fits to free diffusion. In particular,

the diffusion time tD ¼ W2/D � (3.3 6 1.3) s is close to the

diffusion time, tD¼ (2.7 6 0.7) s, obtained from the fit to two-

dimensional free diffusion. This is because a/W � 3.5 so the

finite cage size has little effect except at late times.

Our best fit parameters are in a different regime from those

obtained by Jordan et al. (1). In their case they found a&W
and a much smaller diffusion constant. Therefore we also fit

the caged diffusion model with the cage radius fixed at a ¼
75 nm. Fig. 2 d shows the best fit with a ¼ 75 nm and W ¼
110 nm fixed. The fit is poor with x2 ¼ 202, approximately

twice that of this model when we allow a to be adjusted. The

fitting parameters were D ¼ (3.6 6 0.8) 3 10�4 (mm)2/s and

GN(0) ¼ (0.0161 6 0.0006). The diffusion constant is

approximately seven times larger than the value obtained in

Jordan et al. (1). However, the functional form is not very

dependent on a/W for a , W so fixing a to 50 nm gives a

similar fit with D very similar to the value they obtained.

SUMMARY

In summary, we have obtained analytic expressions for the

intensity autocorrelation functions for two proposed models

of vesicle dynamics in central synapses, the stick-and-diffuse

model and the caged diffusion model. We find that the stick-

and-diffuse model gives a good fit to the experimental data,

while the fit to the caged diffusion model is poor and similar to

that of free diffusion. The better fit alone does not in itself

indicate that the stick-and-diffuse model is a valid description

of the dynamics. However, several independent experiments

provide additional support for the stick-and-diffuse model.

First, the free diffusion time (tD � 0.2 s, D � 0.05 (mm)2/s)

agrees well with the diffusion time measured in FCS experi-

ments on synapses exposed to OA (t1/2 � 0.1 s, D � 0.1

(mm)2/s), where vesicles are unbound and diffuse freely.

These dynamics agree reasonably well with the diffusion time

measured for inert particles of this size in cells (29) as well

as synaptic vesicles in synapses that lack synapsin, a major

vesicle binding protein (30,31). In contrast, the caged dif-

fusion model predicts a diffusion time which is ;300-times

larger. Next, changing the temperature of the system by

several degrees dramatically alters the vesicle dynamics. This

is not consistent with pure or caged diffusion, and is indicative

of an enzymatic process such as phosphorylation-dependent

binding. Lastly, the stick-and-diffuse model predicts both the

FRAP and the previously published electrophysiological

refilling results (26,27), with the sticking time tb consistent

with the exponential recovery time. These features cannot be

addressed by the caged diffusion model, which predicts no

fluorescence recovery or vesicle refilling.

Therefore the stick-and-diffuse model is consistent with

existing kinetic measurements of vesicle dynamics in syn-

apses. The model makes specific predictions about how the

vesicles move about in synapses and may be further tested in

future experiments using single-molecule techniques. The

analytic expressions for the autocorrelation function may also

be useful for analyzing FCS data in other biological systems,

which is suspected of undergoing bind-and-diffuse dynamics

or caged diffusion dynamics.
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