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ABSTRACT Natronomonas pharaonis halorhodopsin (pHR) is an archaeal rhodopsin functioning as an inward-directed, light-
driven Cl� pump. To characterize the electrophysiological features of the Cl� pump activity of pHR, we expressed pHR in
Xenopus laevis oocytes and analyzed its photoinduced Cl� pump activity using the two-electrode voltage-clamp technique.
Photoinduced outward currents were observed only in the presence of Cl�, Br�, I�, NO�3 , and SCN�, but not in control oocytes,
indicating that photoinduced anion currents were mediated by pHR. The relationship between photoinduced Cl� current via
pHR and the light intensity was linear, demonstrating that transport of Cl� is driven by a single-photon reaction and that the
steady-state current is proportional to the excited pHR molecule. The current-voltage relationship for pHR-mediated
photoinduced currents was also linear between �150 mV and 150 mV. The slope of the line describing the current-voltage
relationship increased as the number of the excited pHR molecules was increased by the light intensity. The reversal potential
(VR) for Cl� as the substrate for the anion pump activity of pHR was about �400 mV. The value for VR was independent of light
intensity, meaning that the VR reflects the intrinsic value of the excited pHR molecule. The value of VR changed significantly for
the R123K mutant of pHR. We also show that the Cl� pump activity of pHR can generate a substantial negative membrane
potential, indicating that pHR is a very potent Cl� pump. We have also analyzed the kinetics of voltage-dependent Cl� pump
activity as well as that of the photocycle. Based on these data, a kinetic model for voltage-dependent Cl� transport via pHR is
presented.

INTRODUCTION

Halorhodopsin (HR), discovered in the archaebacterium

Halobacterium is an inward-directed Cl� pump (1–4). HR,

functioning as a Cl� pump, has the ability to transport Cl�

against an electrochemical gradient, and can generate an

inside-negative membrane potential to support ATP synthe-

sis (1,5,6). Since its original discovery, several HRs from

different sources have been reported; but most studies

focusing on the functional aspects of HR have used

Halobacterium salinarum halorhodopsin (sHR) and Natro-
nomonas pharaonis halorhodospin (pHR) as model systems

(4,7). These two proteins show high similarity in amino acid

sequences (identity, 66%; homology, 97%). Based on the

high sequence homology between the two Cl� pumps and

their similar photoinduced intermediates, it has been as-

sumed that these proteins have similar structure (8–11).

Recently, the x-ray crystal structure of sHR was deter-

mined at a resolution of 1.8 Å, and it showed striking sim-

ilarity to that of bacteriorhodopsin (BR) (4,12,13). sHR is

composed of seven a-helices, forming a transmembrane

channel-like structure. The channel is divided into a cytoplas-

mic (CP) and an extracellular (EC) half-channels, separated

by the chromophore retinal, which is bound through the

Schiff base to Lys-242 (12). The crystal structure revealed

that Cl� interacts with the proton of the protonated Schiff

base and the hydroxyl group of Ser-115, as well as the hy-

drophobic methyl group of Thr-111. The crystal structure

also indicated that Cl� is hydrated by a cluster of three water

molecules that form hydrogen bonds with neighboring amino

acid residues. It is noteworthy that anion binding is observed

in the crystal structure only at this position of the EC channel,

implying that Cl� is translocated to the cyotoplasmic space

by the photon (12). It is assumed that a Cl�-binding or -in-

teracting site in the cytoplasmic channel is also required for

the release of the translocated Cl� into the cytoplasmic space.

Based on the crystal structure, as well as the kinetic

analysis, of photoinduced intermediates, the vectorial trans-

port of Cl� via HR is composed of three main processes

(6,9,11,12,14): 1), Cl� binding to the vicinity of the pro-

tonated Schiff base region of the retinal chromophore (the

EC binding site); 2), Cl� translocation; and 3), Cl� release

from the CP binding site. Investigation of the electrophys-

iological features of HR pump activity is very important for

a better understanding of the function of the pump at the

molecular level. The functional activity of HR has been

studied using different experimental approaches (1,5,15–19).

The function of HR as an inward-directed Cl� pump has

been clarified with cell envelope vesicles from H. salinarum,
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as well as with intact bacteria (1,5,20). Spectroscopic and

flux measurements under conditions of different membrane

potential have been done with vesicles or bacteria, but these

were difficult experiments since precise analysis of voltage

dependence is difficult to study with these systems owing to

the small size of the bacteria or membrane vesicles. Direct

electrical measurements have been undertaken with HR

membrane sheets capacitatively coupled to black lipid mem-

branes (15) or to thin films (16–18), and also with membrane

suspensions (19). The latter system has an inherent drawback

because the orientation of HR cannot be controlled well.

Thus, details of the electrophysiological aspects of the Cl�

pump activity of HR are still lacking.

In this study, we used the Xenopus laevis oocyte expression

system to elucidate the electrophysiological features of N.
pharaonis halorhodopsin (pHR). In this system, the photoin-

duced currents due to anion transport could be determined pre-

cisely to analyze the kinetics of the transport process. Here, we

demonstrate that the Cl� pump activity via pHR is dependent

on membrane potential. Based on this voltage dependence, we

show for the first time that the value of reversal potential (VR) at

which the pump current by pHR becomes zero is an intrinsic

property of the pump independent of light intensity. These

studies also show that the Cl� pump activity by pHR can

generate a considerable negative membrane potential (;�400

mV), indicating that pHR is a highly active Cl� pump.

MATERIALS AND METHODS

Construction of the expression plasmid of the
histidine-tagged pHR in the oocyte expression
vector pGH19

The pGH19 vector (kindly provided by Dr. Peter S. Aronson, Yale University

School of Medicine) contains the 39- and 59-untranslated regions of the

Xenopus b-globin gene on the downstream and upstream sides, respectively,

of the cloning site. The coding region of pHR was amplified by polymerase

chain reaction using the primers 59-GATATATAGCCATGACTGAGACA-

TTGCCACC-39 (sense) and 59-TAAGCTTCAGTGGTGGTGGTGGTGGT-

GCTCCAGGTCGTCAGCGGGAGTGC-39 (antisense), and pET21c(1)-pHR

plasmid (21) as the template. A HindIII site (underlined residues) was added

to the 59-end of the antisense primer for the purpose of subcloning. The

polymerase chain reaction product was first subcloned in a pGEM-T vector

(Promega, Madison, WI), and the confirmation of its complete sequence was

carried out with the Taq DyeDeoxy terminator method, employing an

automated Applied Biosystems 377 Prism DNA sequencer (PerkinElmer,

Foster City, CA). The insert was then released by EcoRI/HindIII double

digestion. The pGH19 vector was linearized with EcoRI/HindIII and then

used for the ligation of the pHR cDNA. The resultant product was partially

sequenced to confirm the orientation of the insert. The mutant plasmid for

the expression of R123K pHR was constructed with a Quickchange site-

directed mutagenesis (Stratagene Cloning Systems, San Diego, CA), as

described previously (14). The mutation introduced into the plasmid was

also confirmed by sequencing.

Functional expression of the histidine-tagged
pHR in Xenopus laevis oocytes

The amplified pHR cDNA was expressed heterologously in Xenopus
oocytes by cRNA injection. Capped cRNA was synthesized using

mMESSAGE mMACHINE kit (Ambion, Austin, TX). Mature oocytes

(stage V-VI) from Xenopus were isolated by treatment with collagenase

(1.6 mg/ml), manually defolliculated, and maintained at 18�C in modified

Barth’s medium, supplemented with 3 mM retinal and 50 mg/ml gentamicin,

as described previously (22,23). On the following day, oocytes were injected

with 50 ng pHR cRNA in a 50 nl volume and incubated for 3–5 days. The

oocytes were used for electrophysiological studies 3–5 days after cRNA

injection. Electrophysiological studies were performed with the two-

electrode voltage-clamp (TEVC) technique, as described previously. The

oocyte was superfused with perfusion buffer (96 mM NaCl, 2 mM KCl,

1 mM MgCl2, 1 mM CaCl2, 10 mM Hepes, and 6 mM Tris, pH 7.5). After

the current stabilized, the oocyte was superfused with the uptake buffer. The

oocyte was voltage-clamped at �50 mV. The composition of the uptake

buffer was 2 mM Kgluconate, 1 mM Mg(gluconate)2, 1 mM Ca(gluconate)2,

10 mM Hepes, and 100 mM sodium salt (NaCl, NaBr, NaI, NaSCN, NaNO3,

or sodium 2-(N-morpholino)ethanesulfonate (NaMes)), pH 7.5. The current-

voltage (I-V) relationship was analyzed immediately before and within a few

seconds after illumination with green light (530 6 18 nm) when the current

reached the maximum and steady state. The green light was produced by a

light-emitting diode, Luxeon V Star (Lumileds Lighting, San Jose, CA). The

measurements of currents at different membrane potentials were made using

short pulses (100 ms) in the range of �150 mV to 150 mV in 20-mV

increments. Each pulse was separated with a pause (250 ms). TEVC ex-

periments were performed with a TEVC amplifier CEZ-1250 (Nihon

Kohden Industry, Tokyo, Japan) and a commercially available program

(Clampex software, Axon Instruments, Foster City, CA). The photoinduced

current at each applied voltage was calculated as the difference between the

steady-state currents recorded before and after illumination. Saturation

kinetics of photoinduced currents associated with the anion pump activity

was analyzed with seven different concentrations of NaX (X ¼ Cl�, Br�,

NO�3 , SCN�, and I�). The light-induced currents are defined by kinetic

parameters Imax (the maximal photoinduced current) and K0.5 (the anion

concentration necessary for the induction of half-maximal current). Data for

the photoinduced current (I) were fitted to the following Michaelis-Menten

equation, describing a single saturable component, by an iterative nonlinear

least-squares method (Origin, MicroCal, Northampton, MA):

I ¼ Imax½s�
K0:5 1 ½s�; (1)

where [s] is the concentration of the transportable anion in the perfusion

buffer.

Protein expression and purification of the
histidine-tagged pHR

The experimental details for protein expression and purification employing

Escherichia coli BL21(DE3) cells have been described in a previous article

(21). Fractions of the proteins using Ni-NTA agarose (Qiagen, Hilden,

Germany) were collected by elution (flow rate, 56 mL/h) with buffer E (50

mM Tris-HCl (pH 7.0), 300 mM NaCl, 150 mM imidazole, and 0.1%

n-dodecyl b-D-maltopyranoside (dodecyl maltoside (DM)) (Dojindo Lab,

Kumamoto, Japan)). The yield of the recombinant pHR was almost the same

as that reported previously (21).

Flash photolysis spectroscopy

The photocycle of pHR was analyzed by flash spectroscopy with a

computer-controlled flash-photolysis apparatus for measuring transient

absorption changes every 0.5 ms in the time range from 10 ms to 220 ms.

The computer-controlled flash-photolysis apparatus was constructed as

described previously (14). The absorbance of the sample in 50–1000 mM

NaCl (containing 10 mM MOPS (pH 7.0) and 0.1% DM) was 0.5 at the

absorption maximum, and the temperature was maintained at 20�C.
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Data analysis of photocycling

The data collected at all wavelengths from 410 to 710 nm were fitted to a

multiexponential equation. Singular value decomposition analysis of the

observed data confirmed the existence of four kinetically distinguishable

photoinduced intermediates (14). The spectrum of the ith-intermediate, Pi,

and its decay time constant, ti, were calculated according to the Chizhov and

Engelhard method (11,14).

RESULTS

Induction of photoinduced outward currents
by Cl2 and other anions in pHR-expressing
Xenopus oocytes

The photoinduced currents were monitored under voltage-

clamp conditions in oocytes 3–5 days after microinjection of

pHR cRNA. When pHR-expressing oocytes were illumi-

nated with green light (lmax ¼ 530 6 18 nm) from the light-

emitting diode, the presence of Cl� in the perfusion buffer

induced marked outward currents (Fig. 1). Similar currents

were also observed with other anions, such as Br� and I�,

NO�3 , or SCN�. These currents were, however, specific since

the substitution of Cl� with Mes� failed to induce detectable

currents. Uninjected oocytes and oocytes injected with water

did not show photoinduced currents in the presence of Cl�

with or without incubation of the oocytes with retinal (data

not shown). These data demonstrate that pHR is able to

transport Cl�, Br�, I�, NO�3 , and SCN�, and that the

transport process is associated with the induction of outward

currents. Outward currents in oocytes under voltage-clamp

conditions indicate the transfer of negative charges into the

oocytes, suggesting that pHR-mediated entry of Cl� and

other anions into the oocytes is responsible for the outward

currents. It is known that pHR transports not only Cl� and

other halides (Br� and I�) but also NO�3 and SCN� (5,24–

26). Our electrophysiological data with pHR, expressed

heterologously in Xenopus oocytes, confirm these earlier

observations.

Voltage dependence and VR for pHR-mediated
anion pump activity

We then characterized the anion pump activity of pHR by

using the photoinduced anion-dependent outward currents as

the readout of the activity. Fig. 2 summarizes the I-V

relationship and anion-dependent photoinduced currents at

�50 mV. The I-V curve showed linearity in the measurable

range of membrane potential (from �150 mV to 150 mV)

(Fig. 2 A). At �50 mV, the order of the anion-dependent

current induced by photons is Cl� ¼ Br� . I� . NO�3 .

SCN� (Fig. 2 B). The I-V relationship data were extrapolated

to determine the x-intercepts (i.e., zero current), which

correspond to the reversal potentials for different anions. The

values for VR for different anions ranged from �250 mV to

�450 mV (Fig. 2 C): The VR for Br� is the most negative,

followed by that for Cl� and I�.

The voltage dependence of the photoinduced current via

pHR-mediated Cl� transport was determined at different

light intensities (Fig. 3). The magnitude of the photoinduced

and Cl�-dependent currents via pHR was linear with light

intensity initially but began to plateau subsequently (Fig. 3

A). The profile of the curve indicated that the transport of Cl�

is driven by a single-photon reaction and that the steady-state

current is proportional to the excited pHR molecule. The

slope of the lines describing I-V relationship increased as the

light intensity increased (Fig. 3 B). The x-intercept values

were similar (;�400 mV) at all light intensities tested,

showing that the VR is independent of light intensity and that

this value represents an intrinsic characteristic of the excited

pHR molecule. This is further substantiated by the significant

change in VR for the Arg-123 (R123K) mutant (Fig. 4). Arg-

123 is critical for Cl� recognition and transport, and when

this amino acid is mutated, it changes the Cl� pump activity

and the VR. Taken collectively, the data show that the Cl�

pump activity of pHR is robust and that the pump can

theoretically generate a large negative membrane potential

(;�400 mV) in the presence of extracellular Cl�.

Kinetics of photoinduced currents associated
with pHR-mediated Cl2 pump activity

Employing Cl� as the substrate, we analyzed the saturation

kinetics of photoinduced currents in pHR-expressing oo-

cytes. The relationship between the photoinduced current

and Cl� concentration at different membrane potentials is

described in Fig. 5. The photoinduced outward currents were

saturable with increasing concentrations of Cl� at all

FIGURE 1 Traces of representative currents photoinduced via pHR

expressed heterologously in pHR-expressing Xenopus oocytes were super-

fused with standard buffer containing different anions (as sodium salts) at a

concentration of 100 mM. The hatched bars below the current traces indicate

the period (10 s) of illumination with green light (530 6 18 nm). In control

oocytes with no pHR expression, there were no detectable currents in

response to light pulses (data not shown).
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membrane potentials examined. The inset in Fig. 5 shows the

Eadie-Hofstee plot at a membrane potential of �50 mV. The

kinetic parameters were calculated by fitting data to Eq. 1;

estimated values were K0.5 (concentration of Cl� needed for

the half-maximal photoinduced current) ¼ 24.0 6 2.5 mM

(mean 6 SE) and Imax (maximal photoinduced current) ¼
324 6 22 nA (mean 6 SE). Under the conditions employed

in these studies, the dissociation constant of pHR for Cl� is

thus estimated to be ;25 mM. Similar experiments were

conducted with other anions recognized by pHR and kinetic

parameters were calculated for each of them (Table 1). The

order of the reciprocal of K0.5 value reflecting a binding

affinity of anion is: Br� . I� . Cl� . SCN� . NO�3 . The

K0.5 value seems to be related to the size of the hydrated

anions. The order of Imax value is: Cl� . Br� . I� .

NO�3 . SCN�.

The dependence of the kinetic parameters, K0.5 and Imax,

on membrane potential is described in Fig. 6. The Imax de-

creased as the membrane potential became more negative, in-

dicating that the rate-determining process in pHR-mediated

FIGURE 2 Substrate specificity of pHR. (A) Representative current-

voltage relationship (I-V curve) at steady state for pHR-mediated photoin-

duced currents in the presence of different anions (as sodium salts) (100

mM). (B) Outward photoinduced currents at �50 mV in the presence of

various anions. The concentration of anions (as sodium salts) in the

perfusion medium was 100 mM. (C) Reversal potentials for the anion pump

activity of pHR with different anions. The I-V relationship was linear for all

anions tested. Reversal potentials were estimated from the x-intercepts (i.e.,

zero current) with the extrapolation of the lines describing the I-V relation-

ship. Data represent mean 6 SE (n ¼ 4–6).

FIGURE 3 Relationship of the Cl� pump activity of pHR to light intensity

(A) and membrane potential (B). The photoinduced currents in the presence

of 100 mM Cl� were determined at steady state in pHR-expressing oocytes

at different light intensities. The light intensity was measured with a

photometer and expressed as percentage of maximal light intensity. (A) The

dependence of photoinduced current at �50 mV on light intensity. (B) The

dependence of photoinduced current on membrane potential at different light

intensities. The VR was estimated from the x-intercepts by the extrapolation

of the lines describing the I-V relationship. The reversal potentials remained

unchanged irrespective of the light intensity. The inset in B represents the

dependence of VR on light intensity. Data represent mean 6 SE (n ¼ 7–10).
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Cl� transport is dependent on membrane potential. The K0.5

also showed marked changes when membrane potential was

altered. The value increased markedly as the membrane

potential became more negative, implying that the apparent

affinity for Cl� decreased at more negative membrane

potentials.

The photocycle of pHR with
varying Cl2 concentrations

To evaluate the Cl�-dependent and the rate-determining

processes during the photocycle reaction, we analyzed the

photocycle of pHR at different concentrations of Cl� (0.05–

1 M). The absorbance values observed at different wave-

lengths (410–710 nm) were fitted simultaneously with four

exponentials, since singular value decomposition analysis

and the calculation of standard deviation demonstrated the

existence of four intermediates. The spectra of the kinetically

distinguishable photoinduced intermediates were given in

Fig. 7 A. The spectra of P1 and P2 were almost the same, and

the absorption maximum (lmax) was ;520 nm, whereas the

spectrum of P4 showed the same absorption maximum as the

original pigment. The profiles of P1, P2, and P4 intermediates

were independent of Cl� concentration. The decay time

constants (t1 and t2) were also independent of Cl�

concentration (Fig. 7 B). The P1 and P2 intermediates are

identified as L1 and L2 intermediates, respectively, as

indicated by the spectral profile and the decay time constants.

Judging from the spectra and the extremely long time

constant, the P4 intermediate is identified as pHR9 interme-

diate. On the other hand, the spectra of P3 intermediate had

two absorption maxima, implying that P3 is comprised of at

least two physically defined intermediates that attain equi-

librium promptly. Only the P3 spectrum revealed large Cl�

dependence where considerable shift of the equilibrium

occurs from one intermediate with lmax at ;610 nm to the

other with lmax at ;510 nm. The intermediate with lmax at

FIGURE 4 Reversal potentials for wild-type and mutant (R123K) pHRs.

(A) Representative I-V curve at steady state for wild-type and mutant

(R123K) pHRs. The concentration of Cl� in the perfusion medium (as NaCl)

was 100 mM. (B) Reversal potentials for wild-type and mutant (R123K)

pHRs. The values were determined from the x-intercepts by the extrapo-

lation of the lines describing the I-V relationship. Data represent mean 6 SE

(n ¼ 6).

FIGURE 5 Saturation kinetics of the photoinduced Cl� pump activity of

pHR. (A) Representative I-V curve at steady state in pHR-expressing

oocytes at increasing concentrations of Cl� (as NaCl) (1–100 mM). (B)

Photoinduced currents at �50 mV indicative of Cl� entry as a function of

Cl� concentration. The experiment was repeated five times with different

oocytes. Since the expression levels of pHR varied among the oocytes, data

were normalized by the value of Imax, calculated using Eq. 1, in each oocyte.

The inset shows the Eadie-Hofstee plot. The K0.5 and Imax values calculated

with a Michaelis-Menten-type equation (Eq. 1) were 24.0 6 2.5 mMand

324 6 22 nA, respectively. Data represent the mean 6 SE (n ¼ 5).
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;610 nm can be thought to be Cl�-free, because the lmax

value is attributed to a Cl�-free environment of the

protonated Schiff base (21,24,26). Váró et al. (9,10) and

Chizhov and Engelhard (11) also described the fast equilib-

rium between anion-bound and anion-free states in the

photocycle. The shift of equilibrium in the P3 intermediate

with changes in Cl� concentration means that this interme-

diate is involved in the interaction between Cl� and pHR.

The decay time constant (t3) decreased markedly as Cl�

concentration increased. Judging from the photocycle se-

quence and the acceleration of the transition rate from P3 to

P4 (pHR’) by the external Cl�, we conclude that the transi-

tion is involved in the Cl� binding process. Váró et al. (9,10)

also demonstrated that the process of Cl� binding to pHR

becomes faster as the external Cl� concentration is increased.

DISCUSSION

In this article, we report on the successful expression of

functional pHR in Xenopus laevis oocytes for electrophys-

iological characterization of its anion pump activity. This has

allowed us to carry out a detailed analysis of the photoin-

duced anion-dependent outward currents associated with

pHR-mediated entry of anions into the oocyte. As can be

seen in Fig. 1, photoinduced outward currents were detect-

able only in pHR-expressing oocytes when the oocytes were

superfused with anions such as Cl�. Substrate specificity

studies showed that pHR can recognize and pump a variety

of anions, including not only monoatomic (e.g., Cl�, Br�,

and I�) but also polyatomic (e.g., NO�3 and SCN�) anions.

These data are in accordance with those reported previously

(5,24,26). The photoinduced currents showed saturation

kinetics with all anions that were transported via pHR.

Duschl and Lanyi have also determined the Cl� transport

activity via pHR, employing envelope vesicles from N.
pharaonis (5). The concentration dependence of Cl� trans-

port activity by pHR followed the Michaelis-Menten-type

kinetics, with a single saturable component. The K0.5 value

for Cl� reported by Duschl and Lanyi was 25 mM, consistent

with the data presented here. The K0.5 value, which ap-

proximates the dissociation constant for the interaction of the

transporter with its substrate, was determined for five dif-

ferent anions (Table 1). Based on these data, the rank order

of substrate affinity is as follows: Br� . I� . Cl� . SCN�

. NO�3 . The order of the affinity seems dependent on the

size of hydrated rather than dehydrated anions, because there

is good correlation between the K0.5 value and the reciprocal

of the limiting equivalent conductivity (l0) of anions in

water (Fig. 8 A). In general, the l0 value reflects the mobility

of ion in water, which is dependent on the Stokes radius

of ion. Using the spectroscopic analysis of the binding of

different anions to sHR, Schobert and Lanyi demonstrated

that the binding affinity is related not to the dehydrated

radius of the transportable anion, but to the Stokes (i.e.,

hydrodynamic) radius, which reflects the radius of the

hydration shell around the anion (27). On the basis of the

crystal structure of sHR, the binding pocket of Cl� is

composed of the protonated Schiff base, Ser-115, Arg-108,

Asp-215, and Trp-112. It is noted that the anion Cl�

remained partially hydrated by a cluster of three water mol-

ecules (12), suggesting that the binding pocket has enough

room to accommodate anions with different sizes. This is one

TABLE 1 Kinetic parameters for anion transport via pHR in

the voltage-clamped oocytes at �50 mV

Kinetic parameters

Ion K0.5 (mM) Imax (nA)

Cl� 24.0 6 2.5 324 6 22

Br� 11.2 6 1.3 280 6 27

I� 17.2 6 1.3 243 6 20

NO�3 45.5 6 3.8 193 6 21

SCN� 27.4 6 2.0 160 6 19

The photoinduced currents indicating anion transport rates at �50 mV were

determined with increasing concentrations of the anion substrates (1–100

mM). The experiment was repeated with five oocytes. The values for K0.5

and Imax were calculated with a Michaelis-Menten-type equation (Eq. 1).

Data represent the mean 6 SE (n ¼ 5).

FIGURE 6 Influence of membrane potential on K0.5 (i.e., concentration

of Cl� needed for the half-maximal photoinduced current) (A) and Imax (i.e.,

the maximal photoinduced current at saturating concentrations of Cl�) (B)

in pHR-expressing oocytes.
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of the reasons why the affinity of anions is dictated by the

radius of the hydration shell around the anion. In contrast to

the K0.5 values, the capacity of the pump activity, Imax, is

dependent on the dehydrated sizes of the anions (Fig. 8 B);

the rank order of the maximal capacity of the pump activity is

as follows: Cl�.Br�.I�.NO�3 .SCN� (Table 1). These

results suggest that the rate-determining step in the transport

cycle shows a dependence on the size of dehydrated ion.

Recently, using FTIR spectroscopic analysis data, Shibata

et al. demonstrated that the hydrophobicity of the environ-

ment in the vicinity of the protonated Schiff base is involved

in the translocation of the anion from the EC binding site to

the CP binding site (28). The anion might be dehydrated when

it is translocated from the EC binding site to the CP binding

site (12).

It is interesting to note that the anion pump activity of pHR

shows voltage dependence. The I-V relationship is linear

over the range of membrane potential employed (between

�150 and 150 mV). The profile of the I-V relationship

remains unchanged irrespective of the illumination intensity

(Fig. 3). The slope of the I-V curve increased as the number

of the excited pHR molecules increased with the light

intensity, whereas the VR, obtained by the extrapolations of

the lines describing the I-V relationship, did not change with

different intensities of light. It seems plausible that the slope

of the line describing the I-V relationship is a factor of the

number of photoexcited pHR molecules. The linear rela-

tionship between photoinduced current and illumination

intensity (Fig. 3) demonstrates that the transport of Cl� via

pHR is driven by a single photon. On the other hand, the

value of VR changed markedly for the mutant of Arg-123

(R123K) (Fig. 4). Since Arg-123 is very critical for the

binding and transport of the substrates, the change in VR as a

consequence of mutation of this particular residue suggests

that VR directly reflects the intrinsic ion motive force of the

pHR pump. On the basis of this voltage dependence, we

show for the first time that the VR value at which the pump

current is reduced to zero reflects the intrinsic motive force of

the excited pHR molecule to pump Cl� into the cell. Based

on the thermodynamic theory, the Gibbs free energy for the

transport of Cl� by the excited pHR molecule (DGimf) is

given by the following equation, since one chloride anion is

transported per one photon absorption:

FIGURE 7 Results of the global fitting

of the flash-photolysis data of wild-type

pHR. (A) Absorption spectra of unphoto-

lyzed (ground) state (P0,) and four kineti-

cally distinguishable intermediates at three

representative Cl� concentrations (solid
line, 50mM; dashed line, 400 mM; dotted

line, 1000 mM). The P3 state shows the

largest dependence on Cl� concentration,

both in terms of the time constant (t3) and

the absorption spectrum. The figures rep-

resent the time constants corresponding to

the states in 50 mM NaCl, pH 7.0, at 20�C.

(B) Time constants for the photochemi-

cal transitions as a function of Cl� concen-

tration.

FIGURE 8 Dependence of K0.5 on the limiting equivalent conductivities

(l0) of anions in water (A) and dependence of Imax on the dehydrated radii

(B). The values for the limiting equivalent conductivities (l0) of anions in

water and the dehydrated radii were taken from published reports (33,34).
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DGimf ¼ ziFVR; (2)

where zi and F represent the valence of the anion and

Faraday’s constant, respectively. According to Eq. 2, the

DGimf value was estimated with VR value �400 mV to be

�38.6 (kJ/mol). Employing Planck’s constant, the quantum

energy for one mole of photon at 580 nm (DEphoton) is

calculated to be 206 (kJ/mol). The probability that pHR

absorbs the light quantum energy, followed by the excitation

of pHR, i.e., the isomerization of the retinal from all-trans to

13-cis, is assumed to be 50%. On the basis of a single photon

reaction, the conversion efficiency from the energy of the

photon stored in the retinal isomerization to the Cl� trans-

location energy is 18.7%.

It has been well characterized that the light-driven pump

BR from H. salinarum can generate electrochemical poten-

tial of up to�280 mV inside the cell (29), which corresponds

to a proton motive force to be used for ATP synthesis and is

coupled to other secondary active transporters in the plasma

membrane. Nagel et al. also estimated the VR value based on

the extrapolation of the line describing the I-V relationship in

Xenopus oocyte expressing BR to be �220 mV, which is in

accordance with the electrochemical potential for protons

(30). It should be noted that the Cl� pumping activity by

pHR can generate a more negative membrane potential,

�400 mV, compared with that of BR. The substantial

negative VR of pHR implies that it is a much more effective

anion pump than BR.

As shown in Figs. 2 and 3, the uniqueness of the I-V

relationship resides in its linear nature. This raises an

interesting question: What is the mechanism for the voltage-

dependent change in the anion pump activity of this trans-

porter? In other words, which particular step(s) in the anion

pumping via pHR is (are) regulated by the electric field? The

photoinduced current was saturable with respect to Cl�

concentration and followed Michaelis-Menten-type kinetics

(Fig. 5). Both K0.5 and Imax values showed voltage-depen-

dence; the K0.5 value increased when the membrane potential

became more negative, whereas the Imax value decreased. It

is of note that the I-V relationship is mainly governed by the

voltage-dependent K0.5 and Imax values. To clarify which

step in the photocycle is related to these kinetic parameters

with regard to Cl� pumping, we performed flash-photolysis

analysis with different Cl� concentrations (Fig. 7). In this

analysis, we evaluated the rate determining process as well as

the Cl�-dependent processes, for two reasons: 1), all in-

termediates attain steady state under conditions of continu-

ous illumination, and the excited pHR consists almost

entirely of the population of intermediate molecules in the

rate-determining transition; and 2), the photoinduced cur-

rents at steady state show Cl� dependence. It is feasible that a

kinetic model describing the photoinduced current at steady

state can be simplified, as shown in Fig. 9. Based on these

properties of photochemical reaction, we have developed the

kinetic model describing the photoinduced current at steady

state (See Appendix and Fig. 9). The scheme is comprised of

two processes: one is the fast transition of intermediates

corresponding to Cl� translocating and releasing processes,

and the other is the rate-determining transition corresponding

to Cl� binding processes. The photoinduced current is re-

duced to the following simple equation:

I ¼ krateP
�
F½Cl

��
ka

kd
1 ½Cl

�� ; (3)

where ka and kd represent the association and dissociation

rate constants, respectively, for Cl� binding to the EC site,

krate is the rate constant for the rate-determining transition,

i.e., the pHR9/pHR transition, P* is the pHR molecule

involved in the photoinduced current, and F is Faraday’s

constant. Analysis of the data using Eq. 3 shows that the

voltage dependence of Imax is attributed to the pHR9/pHR

transition, which decreased as the membrane potential

became more negative. The K0.5 value increased as the

membrane potential became more negative, implying that

the transition decreased, i.e., the association rate decreased

and/or the dissociation rate increased as the membrane

potential became more negative. Taking the negative charge

of Cl� into account, we hypothesize that during the vectorial

FIGURE 9 A kinetic model for the photoinduced current at steady state

for pHR on the basis of the photocycle. Under conditions of continuous

illumination, all intermediates attain steady state, the excited pHR consists

almost entirely of the population of intermediate molecules in the rate-

determining transition, and the photoinduced current is governed mainly by

the rate determining process. Therefore, focusing only on the intermediates

involved in the photoinduced current at steady state, we simplify the

photocycle scheme of pHR and construct the kinetic model describing the

photoinduced current due to Cl� transport via pHR. The kinetic model is

comprised of two processes: one is the fast transition of intermediates

corresponding to Cl� translocating and releasing processes, and the other is

the rate-determining transition corresponding to Cl� binding processes.

According to the mass conservation, a mass-balance equation consists of the

original pHR, the photoexcited pHR (pHR*) molecules, and Cl� free and

bound intermediates (Xfree and Xbound, respectively). Taking into consider-

ation that the krate value is much smaller than any other rate constants (kfast,

ka, and kd), the photoinduced current at steady state is reduced to Eq. 3.
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transport of Cl� there exists an electrical field in the EC

channel which affects Cl� uptake from the EC bulk space.

The binding of various anions has been studied exten-

sively using detergent-solubilized pHR (21,24,26). Based on

the absorption wavelength shift caused by the binding of

anion to pHR, it has been concluded that the Cl� binding site

has a binding constant of 1–2 mM. Other halides also bind

strongly to pHR. On the other hand, the K0.5 values reflecting

the binding constants of anions in our studies (Table 1) are

at least one order of magnitude larger than the binding

constants of anions for detergent-solubilized pHR. There are

multiple factors that might explain the difference. The kinetic

constants for anion binding to detergent-solubilized pHR

were determined from the absorption wavelength shift

caused by the binding of the anion to the transporter protein

(21,24,26). In contrast, we determined the kinetic constants

from the photoinduced outward currents associated with the

transport of anions via pHR. The binding of the substrate

represents only one of multiple steps involved in the trans-

port process. What we determined in our studies is the ki-

netic constant for the entire transport process rather than for

just the binding of the substrate. In addition, membrane po-

tential might have contributed to the differences between the

studies. In our oocyte expression system, measurements of

pHR function were made in the presence of membrane

potential, which induces electrical field in the EC channel of

the transporter. According to stopped-flow experiments on

the anion binding to detergent-solubilized pHR, Cl� trans-

port via the transporter occurs mostly by passive diffusion

through the EC channel (21). This process is likely to be

affected markedly by alterations in the EC channel induced

by the electrical field. Furthermore, the binding process of

Cl� is coupled to an electrogenic event in the cycle. If the

binding site is not available when the occupancy of an

intermediate state at this event is lowered by the external

potential, the apparent affinity of the binding will be lowered

depending on the membrane potential. It is recognized,

however, that the membrane potential provides only a partial

explanation of the discrepancy in the kinetic constant values.

This is because the value for K0.5 is ;15 mM when the

membrane potential is zero (Fig. 6), and this value is still

many times higher than the value obtained with detergent-

solubilized pHR. The discrepancy between two experimental

systems may also be related to the possibility that Cl� binds

to different states of pHR depending on the experimental

system. The binding constant to pHR expressed in Xenopus
oocytes corresponds to the binding to the intermediate (Fig.

9), whereas the binding constant to detergent-solubilized pHR

corresponds to binding to the ground state.

Based on the crystal structure of sHR, the Cl� binding site

is located in the vicinity of the protonated Schiff base, 18 Å

below the extracellular membrane surface, i.e., Cl� is stuck

on one-third of its pathway through the membrane (12,13).

Supposing that the membrane potential is evenly imposed

through the perpendicular vector to the membrane, the

membrane potential from the EC bulk space to the EC

binding site is one-third of the whole membrane potential. As

shown in Fig. 6, the K0.5 value increased almost linearly

when the membrane potential was made gradually more

negative. Supposing that the increase in K0.5 values is

governed by the Nernst equation, the imposed membrane

potential through the EC channel can be estimated to be 20%

of the whole membrane potential. If the membrane potential

is �200 mV, the membrane potential of �40 mV might be

imposed at least through the EC channel, which corresponds

to 60% of the voltage difference in the EC channel

theoretically calculated on the basis of the linear membrane

potential gradient. In contrast to the formation of the mem-

brane potential gradient through the EC channel in pHR, a

hydrogen-bond network is formed through the EC channel in

BR, which facilitates movement of the proton through the

EC channel. This hydrogen network is believed to be a

proton-wire that can rapidly transfer the proton through the

EC channel in BR (31,32). Thus, there is no electrical field

through the EC channel in BR.

Under conditions of continuous illumination, the photo-

induced current attains a steady state. The photoinduced

current is governed by the rate-determining step, which is

also regulated by the applied electrical field. According to

Michaelis-Menten-type kinetics, the Imax value reflects the

rate-determining step. On the basis of flash photolysis

analysis, the Imax value is a function of the transition rate

constant krate and the photoexcited molecule of pHR. The

Imax value reflects the transition of pHR9/pHR, which was

estimated to be 10-fold smaller than any other transition in

the photocycle. It is important to note that the transition of

pHR9/pHR is also regulated by the applied electrical field.

On the basis of the binding analysis of Cl� to pHR with

stopped-flow experiments (21), the time course of the

binding to pHR was composed of two phases, indicating

that the uptake process of Cl� through the EC channel is

associated with a subtle conformational change or the subtle

distortion of the retinal accompanying an intramolecular

charge movement. Previously, Manor et al. determined the

effect of membrane potential on photochemical reactions of

three archaerhodopsins in H. salinarum, sensory rhodopsin I,

BR, and sHR (20). Each of these three exhibits a decreased

rate of thermal decay of the principal photoinduced in-

termediate when deenergized cells are energized artificially

to generate a more negative membrane potential. The in-

tramolecular charge movements with a vectorial component

normal to the plane of the membrane possibly occur in the

rate-determining thermal steps of each of the three pigments.

In other words, a voltage-dependent conformational change

common to their respective photocycles might occur.

Especially with regard to BR and HR functioning as ion

pumps, these conformational movements might be involved

in the electrogenic transport associated with the photocycles.

Further analysis of this voltage dependence of the rate-

determining step might provide a better insight into the
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mechanism of the subtle conformational change. The exact

mechanism remains yet to be elucidated.

In summary, we have established a pHR expression system

in Xenopus laevis oocytes to gain a better insight into the

mechanism of electrogenic anion transport via pHR. Using

this system, the photoinduced currents due to anion transport

could be determined precisely to analyze the kinetics of the

transport process. With this approach, we were able to

demonstrate that the Cl� pump activity via pHR is dependent

on membrane potential. On the basis of this voltage

dependence, we show, for the first time that we know of,

that the VR value at which the pump current by pHR is

reduced to zero represents the intrinsic ion motive force of the

excited pHR molecule to pump Cl� into cell. The Cl�

pumping activity by pHR can generate a substantial negative

membrane potential, �400 mV, i.e., pHR functions as a very

potent anion pump.

APPENDIX

It has been demonstrated clearly that Cl� transport into cells via HR is

coupled to the cyclic photochemical reaction of HR molecule: all-trans to

13-cis isomerization of the retinal induced by absorption of a light quantum

initiates the photochemical reaction, followed by thermal reisomerization to

the initial all-trans state. Under conditions of continuous illumination, all

intermediates attain steady state and the excited pHR consists almost entirely

of the population of the intermediate molecules in the rate-determining

transition. The photoinduced current is governed mainly by the rate-

determining process. The photoinduced current is also dependent on external

Cl� concentration (Fig. 4). Therefore, focusing only on the intermediates

involved in the photoinduced current at steady state, we simplify the

photocycle scheme of pHR and construct a kinetic model describing the

photoinduced current due to Cl� transport via pHR (Fig. 9). The kinetic

model is comprised of two processes: 1), the fast transition of intermediates

corresponding to Cl� translocating and releasing processes; and 2), the rate

determining transition corresponding to Cl� binding processes. According

to the mass conservation, a mass-balance equation consists of the original

pHR, the photoexcited pHR (pHR*) molecules, and the Cl� free and bound

intermediates (Xfree and Xbound, respectively).

dðApHR 1 ApHR
� Þ

dt
¼ krate AXbound

� kfast ApHR
� ; (A1)

dAXfree

dt
¼ kfastApHR

� 1 kd AXbound
� ka½Cl�AXfree

; (A2)

dAXbound

dt
¼ ka½Cl�AXfree

� ðkd 1 krateÞAXbound
; (A3)

where ApHR, ApHR� , AXfree
and AXbound

represent the amounts of original pHR,

pHR*, Xfree, and Xbound intermediates, respectively; kfast and krate are the rate

constants with regard to the fast transition and rate-determining transition

processes, respectively; and ka and kd are the association and dissociation

rate constants with regard to Cl� binding to the EC site in pHR.

Alternatively, the following equation with regard to the total amount of

excited pHR molecules involved in the photoinduced current cycle holds as

follows:

P
� ¼ ApHR

� 1 AXfree
1 AXbound

; (A4)

where P* is the total amount of pHR molecules involved in the

photoinduced current cycle. Under conditions of continuous illumination,

all intermediates attain steady state and all mass-balance equations described

above are equal to zero. Combining all equations, solving of the term, and

substituting the value into Eq. A4 yields the following equation:

P
� ¼ krate AXbound

1

kfast

1

kd 1 krate

ka

krate½Cl� 1
1

krate

0
B@

1
CA: (A5)

All intermediates attain steady state and all transition rates are equal. Thus,

the photoinduced current at steady state is expressed as the multiplicity of

AXbound
with krate and Faraday’s constant, F, as follows:

I ¼ krateFAXbound
¼ P

�
F

1

kfast

kd 1 krate

ka

krate½Cl� 1
1

krate

: (A6)

Taking into consideration that the krate value is much smaller than any other

rate constants (kfast, ka, and kd), Eq. A6 is reduced to

I ¼ krateFAXbound
¼ krate P

�
F½Cl�

kd

ka

1 ½Cl�
: (A7)

Substitutions of krateP*F with Imax and the ratio kd

ka
with K0.5 yield the

Michaelis-Menten-type equation (Eq. 1),

I ¼ krateFAXbound
¼ Imax½Cl�

K0:5 1 ½Cl�: (A8)

The ratio of P* to the unexcited original pHR is designated as a. P*

is expressed as

P� ¼ a

a 1 1
Ptotal; (A9)

where Ptotal is the total amount of the pHR protein expressed in the plasma

membrane of Xenopus oocyte. Substitution of Eq. A9 into Eq. A7 explains

why the photoinduced current is proportional to the intensity of illumination

in the range of low intensity, as shown in Fig. 3.
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