Biophysical Journal Volume 92 April 2007 2311-2328 2311

A Probability Density Approach to Modeling Local Control of
Calcium-Induced Calcium Release in Cardiac Myocytes

George S. B. Williams,* Marco A. Huertas,* Eric A. Sobie,*$ M. Saleet Jafri,’* and Gregory D. Smith*

*Department of Applied Science, College of William and Mary, Williamsburg, Virginia; TDepartment of Bioinformatics and Computational
Biology, George Mason University, Manassas, Virginia; *Medical Biotechnology Center and the Institute of Molecular Cardiology, University
of Maryland Biotechnology Institute, Baltimore, Maryland; and SDepartment of Pediatrics, New York University School of Medicine,

New York, New York

ABSTRACT We present a probability density approach to modeling localized Ca2™ influx via L-type Ca2* channels and Ca?"-
induced Ca®* release mediated by clusters of ryanodine receptors during excitation-contraction coupling in cardiac myocytes.
Coupled advection-reaction equations are derived relating the time-dependent probability density of subsarcolemmal subspace
and junctional sarcoplasmic reticulum [Ca®"] conditioned on “Ca®* release unit” state. When these equations are solved
numerically using a high-resolution finite difference scheme and the resulting probability densities are coupled to ordinary
differential equations for the bulk myoplasmic and sarcoplasmic reticulum [Ca®*], a realistic but minimal model of cardiac
excitation-contraction coupling is produced. Modeling Ca®" release unit activity using this probability density approach avoids the
computationally demanding task of resolving spatial aspects of global Ca®" signaling, while accurately representing hetero-
geneous local Ca®* signals in a population of diadic subspaces and junctional sarcoplasmic reticulum depletion domains. The
probability density approach is validated for a physiologically realistic number of Ca2* release units and benchmarked for
computational efficiency by comparison to traditional Monte Carlo simulations. In simulated voltage-clamp protocols, both the
probability density and Monte Carlo approaches to modeling local control of excitation-contraction coupling produce high-gain
Ca®" release that is graded with changes in membrane potential, a phenomenon not exhibited by so-called “common pool”
models. However, a probability density calculation can be significantly faster than the corresponding Monte Carlo simulation,
especially when cellular parameters are such that diadic subspace [Ca®*]is in quasistatic equilibrium with junctional sarcoplasmic

reticulum [Ca®*] and, consequently, univariate rather than multivariate probability densities may be employed.

INTRODUCTION

The mechanical function of the heart depends on complex
bidirectional interactions between electrical and calcium
(Ca®") signaling systems. Each time the heart beats, current
flowing through the ion channels in the plasma membrane
(sarcolemma) causes a characteristic change in membrane volt-
age known as an action potential (AP). Membrane depolari-
zation during the AP causes L-type Ca>* channels to open, and
Ca®" current through these channels causes the release of a
larger amount of Ca>* from the sarcoplasmic reticulum, a
process known as Ca’*-induced Ca®>" release (CICR). This
leads to a large, transient increase in [Ca2+] in each heart cell,
and contraction occurs when these Ca®" ions bind to myofil-
aments, a sequence of events known as excitation-contraction
(EC) coupling. In addition, intracellular [Ca®*] feeds back
upon and changes the cell’s membrane potential through the
Ca®>" dependence of several ion channels and membrane
transporters.

Mathematical and computational modeling has proved to
be an important tool for understanding cardiac electrophys-
iology and EC coupling. Computer simulations have been
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used to test hypotheses about heart cell function and predict
underlying mechanisms (1-4). Most investigations have
employed deterministic models that ignore molecular fluc-
tuations and assume an isopotential cell, an approach that is
valid for simulating current flowing through a large popu-
lation of voltage-gated ion channels. Even though the indi-
vidual channels open and close stochastically, each channel
experiences the same voltage, so identical rate constants
apply to each channel and only average behavior needs to
be considered. However, this approach is not suitable for
simulating CICR release during EC coupling because the
overall release flux represents a collection of discrete events,
known as Ca®" sparks, evoked by local—rather than
global—increases in Ca®" concentration (5). That is, each
spark reflects Ca®>* release from a cluster of Ca®"-regulated
intracellular Ca®>" channels known as ryanodine receptors
(RyRs) that is triggered by entry of Ca®>* through nearby
L-type Ca** channels (6). Thus, different groups of RyRs
experience different local Ca>* concentrations and stochas-
tically gate in a manner that depends on whether nearby sar-
colemmal Ca®" channels have recently been open or closed.
One consequence of this ‘‘local control’” (7) mechanism
of cardiac CICR is that deterministic ‘‘common pool’”’
models—whole cell models in which all RyR clusters in a
myocyte experience the same [Ca’']—fail to reproduce
several important experimental observations. In particular,
the high gain and positive feedback of common pool models
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ensures that Ca’" is released in an all-or-none fashion
(2,3,8-10) as opposed to being graded with the amount of
Ca®" influx, as observed in numerous experiments (6,11,12).
Deterministic common pool models of cardiac CICR during
EC coupling that have been able to reproduce graded release
have done so in an ad hoc fashion (4,13-16).

Models of EC coupling are able to simulate graded Ca**
release mechanistically by treating L-type Ca>* channels and
juxtaposed Ca®" release sites as stochastic “‘Ca®”" release
units’” (CaRUs), each of which is associated with its own
diadic subspace Ca** concentration. When activated spon-
taneously or through membrane depolarization these CaRUs
may deplete Ca®" stored in localized regions of junctional SR
and, on a slower timescale, interact with one another via
diffusion of Ca>* within the network SR and bulk myoplasm.
This approach, however, requires relatively large computa-
tional resources to perform Monte-Carlo simulations of
stochastic Ca* release from a large population of CaRUs.
Indeed, the number of simulated CaRUs is often reduced to
unphysiological values in such models to obtain shorter run
times (7,17-19).

Two recent deterministic models have used a minimal
Ca’" release unit formulation of interactions between L-type
channels and RyR clusters to produce graded release (20,21).
In these models ordinary differential equations for the fraction
of Ca®" release units in each of a small number of states are
solved under the assumption that subspace [Ca’*] is an
algebraic function of the bulk myoplasmic and network SR
[Ca2+]. This function depends on Ca’" release unit state and
is determined by balancing the Ca®" fluxes into and out of the
diadic subspace. While the large number of Ca** release units
in cardiac myocytes—estimated in the range of 10,000—
20,000 via both structural (22) and functional (23) observa-
tions—does indeed suggest that it should be possible to
produce deterministic local control models of EC coupling,
the assumption that diadic subspace [Ca®"] is in quasistatic
equilibrium with bulk myoplasmic and network SR Ca*>* may
be overly restrictive. Indeed, this modeling approach is only
valid when the dynamics of subspace [Ca®"] are very fast
compared to stochastic Ca®" release unit transition rates. More-
over, [Ca®*] in a particular subspace is likely to depend on the
local “‘junctional’” SR [Ca2+] rather than the bulk or network
SR [Ca*"], especially if junctional SR depletion influences
RyR gating, as suggested by both simulations (18) and recent
experiments (24,25).

Here we present an alternative deterministic formalism for
modeling local control of CICR during cardiac EC coupling
that captures the collective behavior of a large population of
Ca®" release units without this restrictive assumption. We
utilize the fact that the number of Ca”* release units is large
(similar to Hinch (20) and Greenstein et al. (21)), but we do
not assume a simple algebraic relationship between the local
diadic subspace [Ca2+] associated with each Ca®" release
unit and the bulk Ca*" concentrations. Instead, we define a
set of multivariate continuous probability density functions

Biophysical Journal 92(7) 2311-2328

Williams et al.

for the diadic subspace and junctional SR [Ca’*] condi-
tioned on CaRU state (26-28). As described below, these
probability density functions solve a system of advection-
reaction equations that are derived from the stochastic
ordinary differential equations used in Monte Carlo simula-
tions of local control. These equations are solved numeri-
cally using a high-resolution finite difference scheme while
coupled to ordinary differential equations for the bulk myo-
plasmic and network SR [Ca®"]. This produces a minimal
model of cardiac EC coupling that avoids computationally
demanding Monte Carlo simulation while accurately represent-
ing heterogeneous local Ca*t signals; in particular, the statis-
tical recruitment of CaRUs and the dynamics of junctional SR
depletion, spark termination, and junctional SR refilling.

Some of these results have previously appeared in abstract
form (29).

MODEL FORMULATION

The minimal whole cell model of cardiac EC coupling that is the focus of
this article can be formulated as a traditional Monte Carlo calculation in
which heterogeneous local Ca*" signals associated with a large number of
CaRUs are simulated. In this Monte Carlo formulation, a diadic subspace
and junctional SR compartment is associated with each CaRU and the
[Ca*"] in these compartments is found by solving a large number of ordinary
differential equations. Alternatively, these heterogeneous local Ca®* signals
can be simulated using a novel probability density approach that represents
the distribution of diadic subspace and junctional SR Ca®" concentrations
with a system of partial differential equations (see below). Because many of
the equations and parameters of the whole cell model of EC coupling are
identical in the two formulations, we begin by presenting the Monte Carlo
formulation.

Whole cell model of EC coupling:
Monte Carlo formulation

Fig. 1 shows a diagram of the components and fluxes of the model of local
Ca*" signaling and CaRU activity during cardiac EC coupling that is the
focus of this article. As illustrated in Fig. 1 A, each Ca®" release unit includes
two restricted compartments (the diadic subspace and junctional SR) with
[Ca*] denoted by ¢gs and ¢, respectively, where the superscripted  is an
index over a total number of Ca®>" release units (denoted by N). Each Ca**
release unit includes an L-type Ca®' channel dihydropiridine receptor
(DHPR) and a minimal representation of a cluster of RyRs that is either fully
closed or fully open. The fluxes Jg,, andJi, indicate Ca>" entry into a
subspace via the DHPR or RyR cluster, respectively. Diffusion of Ca®"
between the nth diadic subspace and bulk myoplasm (cpy,) is indicated by
g - Similarly, Jiq, indicates diffusion between the network SR (cy,) and
junctional SR compartment associated with the nth Ca>* release unit.

Fig. 1 B illustrates how the bulk myoplasm and network SR Ca*"
concentrations in the model are coupled via the diffusion fluxes
(/e andJ0:) to a large number of Ca®”* release units (for clarity only
four are shown). Importantly, each of the N Ca’" release units may have a
different diadic subspace (cg,) and junctional SR (cfsr) Ca>”" concentration.
Four additional fluxes directly influence the bulk myoplasm: a background
Ca*" influx denoted by J;,, extrusion of Ca>" via the Na*-Ca®" exchanger
(Jnex), SR Ca®*-ATPase (SERCA) pumps (Jserca) that resequester Ca®" into
the network SR, and a passive leak out of the network SR to the bulk
myoplasm (Jieqy)-
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FIGURE 1 Diagrams of model components and fluxes. (A) Each Ca*"

release unit consists of two restricted compartments (the diadic subspace and
junctional SR with [Ca®*] denoted by cqs and cjy, respectively), a two-state
L-type Ca®" channel (DHPR), and a two-state Ca®>" release site (a RyR
““megachannel’’ (18)). The t-tubular [Ca®*]is denoted by cex; and the fluxes
J“j‘hpr, J;’yr, Jintax> Trefinns Jins Inexs Jsercas and Jieai are described in the text. (B)
The bulk myoplasm (¢yy,) and network SR (cyg) Ca’" concentrations in the
model are coupled viaJ,, andJq; to a large number of Ca** release units
(for clarity only four are shown), each with different diadic subspace (cg)

and junctional SR (c'j“sr) Ca”" concentration.

A complete description of CICR would include stochastic gating of
roughly N = 20,000 CaRUs, each of which would contain multiple L-type
Ca®* channels (1-10) (30) and RyRs (30-300) (31), with each individual
channel described by a Markov chain that consists of two to several tens of
states. However, previous Monte Carlo simulations of EC coupling focusing
on local control have often used Markov models of reduced complexity
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(7,18,20). Because such minimal models capture the essential characteristics
of EC coupling gain and gradedness in simulated whole cell voltage clamp
protocols, this level of resolution will suffice for our main purpose, which is
to introduce the probability density approach as an alternative to Monte
Carlo simulation.

A minimal four-state Ca®* release unit model

Previous modeling studies indicate that the gating of the cluster of RyRs
associated with each CaRU is all-or-none (7,17,18) and this suggests the
following minimal two-state model of an RyR ‘‘megachannel’’,

kr;rr (CZN C;']sr)
[closed]C Olopen] , (D)
=
Tyr

where the Ca®" activation of the cluster of RyRs is a sigmoidal function of
the diadic subspace [Ca%™] (18),
n \4

(Cds)
Tyr 4 a4
(KW") + ((’ds)
and the influence of junctional SR [Ca®>"] on RyR gating is included by
making the half-maximal activation of the RyR megachannel (K, a

decreasing function of cj-“sr,

kT =k

Tyr

max n
Kr)"' = Kryr - afyrcjsr’
so that depletion of the junctional SR will render CaRUs refractory to
activation after release terminates (18).
Similarly, to illustrate and validate the probability density approach it is
sufficient to consider a two-state model of the L-type Ca>* channel (DHPR),
ke (V)

dhpr

[closed]C Olopen] , )

k

dhpr

with a voltage-dependent activation rate k}hpr given by (4)

0
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and constant deactivation rate kg, that sets the mean open time (0.2 ms) and
maximum open probability (0.1) of the channel. Although this two-state
DHPR model ignores voltage- and Ca”*-dependent inactivation of L-type
Ca*" channels, these processes do not significantly influence the triggering
of CICR during the whole-cell voltage clamp protocols that are the focus of
this article (cf. Hinch (20)).

When the kinetic schemes of the RyR megachannel and DHPR (Eqs.
1 and 2) are combined we obtain the following minimal four-state model of a
Ca’" release unit,

n

c'sr)
J CO [RyRsopen]
k;hm 1|’ kd-;pr(v) (3)
OO  [bothopen],

n
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C
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where the horizontal transitions represent RyR opening and closing whereas
vertical transitions represent DHPR gating.

Concentration balance equations

In the Monte Carlo formulation of the minimal whole cell model of EC
coupling there are 2 + 2N ordinary differential equations representing Ca>*
concentration balance for the bulk myoplasm, network SR, N diadic
subspaces, and N junctional SRs. Consistent with Fig. 1 these equations are

d ‘myo
(’d}’ _jleak+]fﬂux_Jncx_]serca+Jin (4)
t

dcs, 1
d; = /\ (thpr +Jr Jefﬂux) (5)
A _ 1 (720 = 72,) (©)

dt - )\jsr refill

dcos: 1

df = m(‘]serca - Jreﬁll ]leak) (7)

where 1 = n = N in Egs. 5 and 6 and the total efflux and refill fluxes
occurring in Eqs. 4 and 7 include a contribution from each CaRU and thus
are given by JTo, = Z:IZIJ:'eﬂn and JTg, = Zn - Similarly, the total
(trigger) flux via DHPR channels and the total release flux via RyR mega-
channels throughout the whole cell model are given by

N
dhpr Z ‘]dhpr and J Z Jrnyr' (8)
n=1

The effective volume ratios A g, Ags, and A, in Eqs. 57 are defined with
respect to the physical volume (Vyy,) and include a constant-fraction Cca’t
buffer capacity for the myoplasm (By,y,). For example, the effective volume
ratio associated with the network SR is

A

Vner Vnsr nsr
Ansr === /B

meo B ‘/myo/ﬁmyo7

with effective volumes defined by Visr = Vinsr/Brsr ad Vingo = Vingo /Bungo-
Because each individual diadic subspace is assumed to have the same
physical volume (V45) and buffering capacity (Bgs), the effective volume
ratio that occurs in Eq. 5 is

‘}ds _ Vds/Bds _ l V:;;/Bds
meo VmYO/Bmyo N VmYO/Bmyo ’

where the second expression defines A 4 in terms of the total physical volume
of all the diadic subspaces in aggregate (V. = NVy;). Similar assumptions
and equations apply for the junctional SR so that the definition of A, follows
Eq. 9.

We also define an overall myoplasmic [Ca "] that includes contributions
from the bulk myoplasm and each of the N diadic spaces (scaled by their
effective volumes),

Ags = (€))

A _ meocmyo + Vds zn lcds o meocmyo + V Cds
Cmyo&ds - A - % 9

meocmyo +N Vds meocmyo + Vds

(10)

where the second equality uses natural definitions for the total effective
diadic subspace volume, VES = NVy,, and the average diadic subspace
[Ca*"],

= Z (1
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Similarly, the overall SR [Ca®"] involves both the junctional and network
SR,

7. Y N n 7. HT avg
A Vnsrcnsr + ‘/jsrznzlcjsr Vnsrcnsr + ‘/jbrcjsr (12)
Cnsr&jsr = A A = )
Vnsrcnsr + N‘/jsr Vnsrcnsr + V

jst

where V_],r = _]SF/B_]\I" Vigr

NV, and the average junctional SR [Ca® ] is
defined as cav° =N, o

Description of fluxes

The trigger Ca®" flux into each of the N diadic spaces through DHPR
channels (/g in Eq. 5) is given by

n Amn
J

i — )
dhpr z F dhpr

(13)
where A, = CrBimyo/Vmyo- The inward Ca®* current (lghp, =0) is given by

o V/Vg .
. . PUlhpr <ZFV> ch.e — Cext

[dhpr = ‘ydhpr N VH eV/Vg —1 ’

(14)

where Vo = RT/zF, Pdh . is the total (whole cell) permeability of the L- type
Ca?* channels, and Ydnpr 18 a random variable that is 0 when the L-type Ca?*
channel associated with the nth CaRU is closed and 1 when this channel is
open (Egs. 2 and 3).

Similarly, the flux through the RyR megachannel associated with the nth
CaRU (J5,) is given by

T
n 0 Yor( n n
err = ywr ]3 (str - cds)a (15)

where 7y, = 0 or 1 when the release site is closed or open, respectively (Eqgs.
1 and 3). Diffusion from each subspace into the bulk myoplasm is given by

T
J:fﬂux = %(Cda - Cmyo) (16)

and, similarly, diffusion from the network SR to each junctional SR
compartment is given by

T
V.

n __ refill _ a0

St = N (Cnsr (’jsr)' 17)

The remaining four fluxes that appear in Egs. 4-6 include J;,
(background Ca®>* influx), Joox (Na™-Ca®" exchange), Jeerca (SR Ca**-
ATPases), and Jj,k (the network SR leak). The functional form of these four
fluxes that directly influence the bulk myoplasmic [Ca®*] follows previous
work (3,32,33) (see Appendix A).

Whole cell model of EC coupling: probability
density formulation

The probability density approach to modeling local Ca** signaling and CaRU
activity during cardiac EC coupling is an alternative to Monte Carlo
simulation that is valid when the number of Ca®>* release units is large. We
begin by defining continuous multivariate probability density functions for
the diadic subspace (¢4s) and junctional SR (Cjs;) Ca’" concentrations jointly
distributed with the state of the Ca®" release unit (S) (34,35,26), that is,

pi(cdS7 Cisry 1)deasdesy =Pr{cgs < G4s(t) < cgs +dcgs  and
Ciw < Ciu(t) < ¢ + dcje  and
S(r) = i,
(18)
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where the index i € {CC,CO, OC, OO} runs over the four Ca>* release unit
states (see Eq. 3) and the tildes on éqs(f), Gise(f), and S(¢) indicate random
quantities. If the meaning of Eq. 18 is not obvious, it may be helpful to imagine
performing a Monte Carlo simulation as described in the previous section with
a very large number of CaRUs. At any time ¢ one could randomly sample one
CaRU from this population to produce an instance of the random variables
(1), ¢as(?), and Gjsr(¢), corresponding to the current state of the sampled
L-type channel and RyR cluster and the diadic subspace and junctional SR
[Ca®*] associated with this CaRU. The quantity p'(cas, Cjsr» #) defined in Eq. 18
simply indicates the probability with which you would find this sampled
CaRU in state i with diadic subspace [Ca®*]in the range [cqs, Cgs + dcgs] and
junctional SR [Ca®"]in the range [Cjs, Cjor + dcjs] provided the total number
of CaRUs is very large.

For the multivariate probability densities defined by Eq. 18 to be
consistent with the dynamics of the Monte Carlo model of cardiac EC
coupling described in the previous section, they must satisfy the following
system of advection-reaction equations (26-28),
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unit state changes move probability from one joint probability density to
another in a manner that may [ (as, Cjsr)] or may not (kg (V), kg, and
kyy, ] depend on the diadic subspace and junctional SR [Ca**].

It is important to note that the functional form of the fluxes J . and J e
occurring in Egs. 23 and 24 involve the bulk myoplasmic and network SR Ca”"
concentrations (Crmyo(f) and cng(f) in Egs. 26 and 27). These bulk Cca’t
concentrations satisfy ordinary differential equations (ODEs) that are similar in
form to the concentration balance equations used in the Monte Carlo approach
(Eqgs. 4 and 7),

d ‘m (¢
(;hy = Jleak + ‘]efﬂux - Jnex - Jserca + Jin (29)
dcos: 1
d[ - T(Jscrca - ‘]renl] chak) (30)

where Jicak, Jnexs Jsercas and Ji, are defined as in the Monte Carlo approach
(see Appendix A), but J¥n.x and JiEg, are functionals of the probability

D - L e s
ot Ocgs © ® Ocjor O " ” "
= ) [f] el *
w2 ) L] - (k:yr ) @
where the advection rates £5C, £, - - -, fQO are functions of ¢4 and ¢, that densities [p'(cas. ¢, 1] governed by Eqs. 19-22, that is,

can be read off the ordinary differential equations for the evolution the diadic
subspace and junctional SR [Ca”*]. Consistent with Eqs. 5 and 6 we have

fds (ydhprthpr ryr‘] - Jefﬂux) (23)
ds
i 1 T i 4T
fjsr = )\j(‘]reﬁll - ywrjwr>7 (24)

jst

where yéhp, indicates whether or not the L-type Ca>* channel is open
('ydhpr ygl?pr =0, yffhpr thpr =1)and, 51m11arly, ym mdlcates Whether
or not the RyR channel cluster is open (yryr = yryr =0, yryr = yryr =1).
Eqgs. 23 and 24 include four fluxes that may influence the diadic subspace and
junctional SR [Ca®"] and consistent with Eqs. 13—17 these are given by

‘I;l;/r = V;l;/r(cjsr - Cds) (25)
‘]erfﬂux = v-crfﬂux [Cds - Cm)")(t)} (26)
J, rTeﬁn Vrenn [Cnse(2) — €] 27
1% cgsev/ A
thpr = A Pdhprvg eV/VH 1 (28)

The advection terms in Eqgs. 19-22 involving partial derivatives with
respect to cqs and Cigr correspond to the deterministic dynamics of diadic
%ubspace and junctional SR Ca®" that depend on Ca* release unit state via
Vanpr and yryr (Egs. 5 and 6). Conversely, the reaction terms in Eqs. 19 and 22
correspond to the stochastic gating of the four-state Ca" release unit model
whose transition rates are presented above (Eqs. 1-3). That is, Ca®" release

J;fﬂux = / / VZfﬂux [cas — Cmyo(t)]pT(cdmcjsrvt)dcdsdcjsr
0 Jo
(3D

J;ﬁll = / / V;Feﬁll[c"Sf(t) _str]pT(Cds,cjsrvt)dcdsdcjsrv (32)
0 Jo

where pT(cqs, Cjsr, £) = pE+pC +pC+p°C is the total probability distri-
bution of the diadic subspace and junctional SR [Ca®*] irrespective of the
state of a randomly sampled CaRU, and the double integrals account for all
possible values of diadic and junctional SR [CaH].

Summary of model formulation

The probability density and Monte Carlo formulations of the minimal model
of EC coupling presented above have much in common. For example, the
dynamics of the bulk myoplasmic and network SR [Ca®"] take similar forms
(compare Egs. 29 and 30 to Egs. 4 and 7). However, the two approaches differ
fundamentally in how the heterogeneous localized Ca®>" concentrations
associated with a large number of Ca®" release units are represented. In the
traditional Monte Carlo simulation, 2N ordinary differential equations are
solved to determine the dynamics of [Ca**] in the diadic subspace and
junctional SR compartments associated with N Ca>* release units (Egs. 5 and
6). In the probability density formulation, time-dependent multivariate
probability densities for the diadic subspace and junctional SR [Ca®" ] jointly
distributed with CaRU state are updated by solving four coupled advection-
reaction equations (Eqs. 19-22), one for each state of the chosen CaRU model
(Eq. 3). Further details of the probability density approach are presented in
Appendices B-D.
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RESULTS

In the following sections, traditional Monte Carlo simula-
tions of voltage-clamp protocols using the minimal whole
cell model of EC coupling presented above are shown to
produce high-gain Ca®" release that is graded with changes
in membrane potential, a phenomenon not exhibited by so-
called ‘‘common pool’’ models of excitation-contraction
coupling. Analysis of these Monte Carlo results suggests a
simplification of the advection-reaction equations that form
the basis of the probability density approach. This reduced
probability density formulation is subsequently validated
against, and benchmarked for computational efficiency by
comparison to, traditional Monte Carlo simulations.

Representative Monte Carlo simulations

Fig. 2 A shows representative Monte Carlo simulations of the
minimal whole cell model of EC coupling presented above
(Egs. 1-17 and Appendix A). In this simulated voltage-clamp
protocol, the holding potential of —80 mV is followed by a 20-
ms duration test potential to —30, —20, and —10 mV (dotted,
dot-dashed, and solid lines, respectively). Because these
simulations involve a large but finite number of Ca* release
units (N = 5000), the resulting Ca”" influx through L-type
Ca>" channels (th .), elevation in the average diadic sub-
space concentration (cdsg) and the induced Ca®™" release flux
(J T .) are erratic functions of time. As expected the test poten-
t1a1 of —10 mV leads to greater Ca influx, higher diadic
subspace [Ca *1, and more Ca*" release than the test
potentials of —30 and —20 mV. When the test potential is
— 10 mV a30X ““‘gain’’ is observed, here defined as the ratio

Jiyr /thpr where the overbar mdlcates an average over the
duration of the pulse. Importantly, Ca>* release exhibited by
this Monte Carlo model is graded with changes in membrane
potential (compare traces) and depolarization duration (not
shown), phenomena that are not exhibited by common pool
models of excitation-contraction coupling.

Figs. 2 B shows a direct comparison between test potentials
of —10 and 10 mV. These test potentials result in nearly
identical whole cell Ca®" currents (averaged over the duration
of the pulse, J| dnpr = 1.0 and 1.4 uM/s, respectively). In spite
of this, the 1nduced Ca®" release flux is signiﬁcantly greater
when the test potential is —10 mV (J T e = 47 uM/s) as
opposed to 10 mV (21 wM/s). This phenomenon occurs
because the L-type channel open probability is greater at 10
mV than —10 mV (Eq. 2), while the driving force for Ca®*
ions is reduced (Egs. 13 and 14). Although the overall trigger
Ca®* flux is nearly the same at these two test potentials, Ca**
release is more effectively induced when the trigger Ca®" is
apportioned in larger quantities among a smaller number of
diadic subspaces, because the influx that does occur is then
more likely to trigger Ca®" sparks. This physiologically real-
istic aspect of local control during EC coupling is observed in
Monte Carlo simulations (see also (19,21)), but cannot be re-
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FIGURE 2 (A) Monte Carlo simulation of the whole cell model exhibits
graded release during step depolarization from a holding potential of —80
mV to —30, —20, and —10 mV (dotted, dot-dashed, and solid lines,
respectively). From top to bottom: command voltage, average diadic
subspace [Ca®"] (c}%, Eq. 11), total Ca®* flux via L- type PM Ca*" channels
(thpr, Egs. 8, 13, and 14), and total Ca®*-induced Ca®* release flux (ler,
Eqgs. 8 and 15). The simulation used N = 5000 Ca®* release units. (B) Monte
Carlo simulations similar to panel A except that the step potential is —10
(solid lines) and +10 mV (dotted lines), respectively. Here and below
parameters are as in Tables 1-3.

produced by common pool models (7), nor is it seen in models
in which SR Ca®" release depends explicitly on whole-cell
Ca’" current (e.g., (16)).

The solid lines of Fig. 3 show [Ca?*] in the bulk myo-
plasm (¢pyo) and network SR (cyg,) during and after the —10
mV voltage pulse (note change in timescale). Approximately
400 ms is required for the bulk myoplasm and network SR
concentrations to return to resting levels. Note that although
the voltage pulse ends at t = 30 ms, the bulk myoplasmic
[Ca2+] continues to increase for ~20 ms. Similarly, the
network SR [Ca®"] concentration continues to decrease until
t = 80 ms.

The dashed line of Fig. 3 shows that the total SR [Ca2+]
including both network and junctional SR (Eq. 12) is
transiently less than the network SR [Ca2+] (CrsregjsrCnsr)s
reflecting the fact that for several hundred milliseconds after
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FIGURE 3  Solid lines show the dynamics of bulk myoplasmic (cpy.) and
network SR (cnep) [Ca2+] in the whole cell voltage clamp protocol of Fig. 2
with step potential of —10 mV (note longer timescale). Dashed lines show
the overall myoplasmic (¢myods, Eq. 10) and network SR (Cngrejsr» Eq. 12)
[Ca®*] that include contributions from diadic subspaces and junctional SR,
respectively. Note that ¢pyogds is only slightly greater than ¢y, and the two
traces are not distinguishable.

the voltage pulse junctional SR Ca®" is depleted. While the
ratio between the total junctional SR effective volume and the

A

network SR effective volume is VJTqr / Vnsr ~ 2, the correspond-
ing ratio between the total diadic subspace volume and the
myoplasmic volume is much smaller (VdTS / meo ~ 1074).
Consequently, the elevated average diadic subspace [Ca**]
during the depolarizing voltage step (c.° ~ 10 uM as shown
in Fig. 2) does not significantly increase the overall myo-
plasmic [Ca2+] (Crmyo&ds = Cmyo and the two traces overlap in
Fig. 3). On the other hand, depleted junctional SR Ca** during
and after the voltage pulse (cj;® ~ 500 uM, not shown)
represents a significant depletion of the overall SR Ca®"
content (Cnsrejsr<<Cngr in Fig. 3). Although junctional SR
depletion develops rapidly after the initiation of the voltage
pulse, refilling of these compartments via diffusion of Ca>*
from the network SR (/1.5 in Eq. 6) is not complete until ~400
ms after the termination of the voltage pulse (compare solid

and dashed lines).

Dynamics of a representative Ca®* release unit

Fig. 4 shows the dynamics of an individual Ca®" release unit
from the Monte Carlo simulations above (test potential of
—10mV, solid line of Fig. 2). Fig. 4 A shows the state of this
representative Ca”" release unit and the associated diadic
subspace and junctional SR Ca** concentrations. When the
DHPR initially opens (transition from state CC to OC in Eq. 3)
an influx of trigger Ca®" leads to ~7 uM increase in diadic
subspace [Ca?*] and causes the RyR cluster to open (OC —
OO transition). The resulting Ca®"-induced Ca** release
quickly drives the diadic subspace [Ca**] to ~150 uM but
over the next 10 ms the resulting decrease in junctional SR
[Ca®"] leads to decreasing diadic subspace [Ca®"]. Note that
junctional SR depletion is nearly complete in Fig. 4 before the
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FIGURE 4 (A) Dynamics of the diadic subspace (cg,) and junctional SR

2 . . . . 2 . .
(cjyr) Ca * concentrations associated with a single Ca>* release unit during

the voltage clamp protocol of Figs. 2 and 3. (B) The dynamics of these local
Ca®* concentrations in the (Cas:Cjsr)-plane. Trajectory color indicates CaRU
state: both the L-type channel and the RyR cluster closed (CC, black); L-type
channel open and RyR cluster closed (OC, green); L-type channel closed
and RyR cluster open (CO, blue); both the L-type channel and the RyR
cluster open (OO, red). Colored dashed lines correspond to estimates of
diadic subspace [Ca®>*] given by Eq. 33.

COtCC transition that ends Ca’" release; however, this
example is not representative in this regard because most
sparks terminate via stochastic attrition whereas depletion is
only partial. Superimposed on the gradual decrease in diadic
subspace [Ca2+] are square pulses of increased [Ca2+] (7
M) due to the stochastic openings of the L-type Ca>* channel
associated with this CaRU (CO=QOQ transitions).

The observation that diadic subspace [Ca”] decreases
during the voltage pulse suggests that its dynamics are fast
compared to the time evolution of junctional SR [Ca®"]. In
fact, for the physiologically realistic parameters used in Figs.
2-4, the diadic subspace [Ca’"] (c§,) is well approximated
by assuming quasistatic equilibrium with the junctional SR
(cj‘sr), bulk myoplasmic (¢pyo), and network SR (cyg) Ca%*
concentrations. Setting the dcg /dt = 0 in Eq. 5 and solving
for ¢y, we find that

Biophysical Journal 92(7) 2311-2328
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where 'ydhpr and ym depend on Ca”" release unit state and
JY dhpr and J! dhpr are functions of plasma membrane voltage de-
fined by JT dhpr = =J dhpr+cd5]dhpr with thpr as in Eq. 28.

Fig. 4 B replots the dynamics of the diadic subspace and
junctional SR [Ca**] shown in Fig. 4 A in the (cgs, Cjsr)-
plane. The black arrows indicate the direction of the tra-
jectories and color of the solid lines indicates CaRU state
(CC, black; OC, green; OO, red; CO, blue). The diagonal
trajectory is one consequence of diadic subspace [Ca’®"]
being “‘slaved’’ to junctional SR [Ca?"] as the junctional SR
depletes. The four colored dotted lines correspond to the four
functional relationships between cg, and cj, given by Eq. 33
(one for each CaRU state). The dynamics of diadic subspace
[Ca2+] (solid lines) are well approximated by these dotted
lines (save for short time intervals immediately following
CaRU state transitions), demonstrating the validity of the
quasistatic approximation leading to Eq. 33.

Dynamics of the population of Ca®>* release units

Fig. 4 shows the dynamics of the diadic subspace and
junctional SR [Ca®"] associated with a single Ca>" release
unit during a voltage clamp step (Figs. 2 and 3). Conversely,
Fig. 5 presents the state of each of the 5000 CaRUs at a
particular moment in time (¢ = 30 ms, halfway through the test
potential of —10 mV). To interpret this figure, it is important
to understand that the four central panels of Fig. 5 correspond
to the four CaRU states and are arranged in a manner
corresponding to the transition state diagram of Eq. 3. At this
moment during the simulation, ~5% of the Ca’" release units
have open L-type channels (N°C+N9° = 244) whereas
~30% have an open RyR cluster (NY+N9° = 1459).
Note that for each of the four subpopulations of CaRUs there
is a linear relationship between cqs and cjg,, that is, the open
circles tend to be arranged in lines, the position of which
depends on CaRU state (and the slope of which depends on
whether or not the RyR cluster is open). Thus, Fig. 5 de-
monstrates that across the entire population of Ca>" release
units, the observed diadic subspace [Ca®*] is well approxi-
mated by the quasistatic approximation given by Eq. 33.
Fig. 5 also shows histograms of the observed distribution
of diadic subspace [Ca’*] (horizontal) and junctional SR
[Ca®"] (vertical). The histograms associated with CaRU
state CC clearly indicate that most of these 3387 CaRUs have
replete junctional SR (cj, &~ 1000uM), something that is not
obvious from the open circles in the (cgs, Cjs)-plane.
Similarly, most of the 154 CaRUs in state OC are associated
with replete junctional SR. Conversely, the junctional SR
[Ca®*] for the 1369 CaRUs in state CO is broadly distributed
with the ‘‘average’’ junctional SR severely depleted (~100
uM). At t = 30 ms only 90 CaRUs are in state OO and the
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FIGURE 5 The open circles are a snapshot at t = 30 ms of the diadic

subspace (cg,) and junctional SR (CN) Ca** concentrations in the Monte

Carlo simulation of Fig. 2. Each of the four central panels corresponds to a
particular Ca®" release unit state and size of each subpopulation at this
moment is indicated by N through N°°. The horizontally (vertically)
oriented histograms give the marginal distribution of diadic subspace
(junctional SR) [Ca®*] conditioned on CaRU state. Histograms are scaled
for clarity and in some cases also truncated (asterisks).

distributions of junctional SR [Ca®"] and diadic subspace
[Ca2+] associated with this state are bimodal.

A univariate probability density formulation for
junctional SR [Ca®*]

It is important to note that the Monte Carlo simulations pre-
sented in Fig. 5 are only a snapshot of the population of 5000
Ca’" release units. As the simulation progresses, imagine the
open circles moving around in these four (cq4s, Cjsr)-planes
consistent with Eqs. 5 and 6 with occasional jumps from one
plane to another when a CaRU changes state. These four
planes are analogous to the four time-dependent joint prob-
ability densities that form the basis of the probability density
approach presented above (Eq. 18).

The observation that the diadic subspace [Ca®™] is well
approximated by Eq. 33 across the entire population of Ca**
release units (Fig. 5) suggests that the multivariate joint
probability density functions defined in Eq. 18 will be well
approximated by

= p;sr(cjsﬁ t)a (Cds - E(:ls) 3 (34)

where Egs is a function of CaRU state and the junctional SR,
bulk myoplasmic, and network SR [Ca”" ] analogous to Eq. 33,

pi(cds; cjsm t)

—i ydhpr"dhpr + vefﬂux myo + yryrvryrc.l‘f 3 5
ds T + Jl ) ( )
’yryr ryr Vetﬂux ’ydhpr dhpr

where ydhpr, yryr, ]dhpr, and th . are as defined in the pre-
vious section. The univariate probablhty density pjsr(c”, 1)



Local Control Probability Density Model

that appears in Eq. 34 is the marginal density of the junc-
tional SR [Ca®"] jointly distributed with CaRU state defined
by

pj.sr(cjsr, Ndciy =Pr{ciy < (1) <c¢j +dcje and
S(t) = i}. (36)

That is, when the observed form of the joint multivariate
probability densities (Eq. 34) is integrated with respect to
diadic subspace [Ca®"] we obtain

/ (picdm stra t)dcds = / p;sr(cjsr; t)(s (cds - Ejis)dcds
0 0
= p}sr(cjsn t) / S(Cds - Ei:ls)dcds
0

= pi(Ciurs 1), 37)
where the last equality uses the unit mass of the & function,
fO S(Cds — Elds)dcds =1.

As shown in Appendix C, the observed form of the
multivariate probability densities (Eq. 34) and the definition
of the marginal density (first equality in Eq. 37) can be used
to reduce Eqs. 19-22 into a univariate version of the prob-
ability density formulation that focuses on the dynamics of
the marginal densities for the junctional SR [Ca®"] jointly
distributed with CaRU state [p}sr(cjsr, 1)]. The resulting
advection-reaction equations are (26-28),

8Pcc O [z ce
_Tsr
6t - _yjsr |;fj<r _]sr:| (k + kdhpr)pﬁr + kryrpﬁr + kdhpr jst
(38)
8pCO a
Tljsr CO CO + CC
at _acjsr |;f_;bl' 's :| (k + kdhpr) Jsr + kryrp_]br—i_ kdhpr Jsr
(39
ap.(?c O -
jsro oc _oc
at - _8str |;fjsr pjsr :| (k +kdhpr> Jsr + kryrp]sr +kdhpr _]bl'
(40)
8p00 9 N
TFhsr 00 00 + (’JC CcO
at - —acjsr [fjsr pjsr ] (k +kdhpr>pjsr +kryrpjsr kdhprpjsr )
(41)
where the advection rates f* ot » Jfro , ch’ and £ e © are given by
Eq. 24 with the substitution of ¢} for cgs, that is,
f"—i Jo—yJ" (42)
jst T )\T refill ’yryr ryr

jst

1 i i
= (Ml =l = A T o — 0]} @3)
jsr
where ¢, (#) is the function of Cmyo(1), Cjsr» and CaRU state (i)
given by Eq. 35.
In this univariate probability density formulation, the bulk
myoplasmic and network SR [Ca?"] are still given by Egs.
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29 and 30, but JFq,.xand Ji g, are now functionals of the joint
marginal probability densities [p}sr(cjsr, nl,

efﬂux Z

i=1J0

reﬂll z

i=1J0

— Cayo(1)] Pl (Ciry D)y (44)

ef flux [

rehll Cnﬁl' t)

- str]P;s,(str; t)dcjsr (45)

Comparison of probability density and Monte
Carlo results

The four histograms presented in Fig. 6, A-D, show the
marginal distributions of junctional SR [Ca®"] observed in
Fig. 5 on identical scales. When presented in this fashion it
becomes apparent that at + = 30 ms only a small fraction
(~5%) of the Ca®" release units have open L-type Ca**
channels (states OC and OO), while ~30% contain open RyR
clusters (CO and OO). Note that in Fig. 6 A the histogram bin
representing Ca’" release units with closed L-type Ca**
channel, closed RyR cluster, and replete junctional SR is
truncated; in fact, ~80% of CaRUs in state CC have ¢}, ~
With this understanding, a comparison of Fig. 6, A and B,
shows that CaRUs with open RyR clusters are more likely to
be depleted than CaRUs with closed RyR clusters, but CaRUs
with closed RyR clusters are not necessarily replete, because
recovery of junctional SR [Ca**] is not complete until ~400
ms after RyR closure (cf. Fig. 3).

The solid lines of Fig. 6, A —D, show snapshots of the four
joint probablhty densities p - (CN, 1), pjcs?(cjsr, 1), pjfrc (Cisr, 1),
and pJsr (cJsr7 1) as calculated using the probability density
approach (¢ = 30 ms). These results were obtained by
numerically solving Eqgs. 29, 30, and 3845 using the
numerical scheme presented in Appendix D (parameters as
in Figs. 2-5). Importantly, the entire distribution of junctional
SR Ca”" concentrations observed for each CaRU state in the
probability density calculation (solid lines) agrees with the
corresponding Monte Carlo result (histograms), thereby
validating the probability density methodology and our
implementation of both approaches. In particular, notice
that the fraction of CaRUs in each state given by

~ Cngr-

Wi(t) = Pr{g(t) = l} = /oo pjsr(cjsnt)dcjsra (46)
0

in the probability density calculation is consistent with the
Monte Carlo simulation Fig. 5, for example, in Fig. 6 A 7€ =
0.67 and this corresponds to N°C /N = 3387,/5000 in Fig. 5 A.

While Fig. 6 shows the four marginal probability densities
[p}sr(cjsr, ?)] for the junctional SR [Ca2+] jointly distributed
with CaRU state at a particular moment in time, Fig. 7 A
shows the total probability density

T

CC CcO oc
pjsr(c.is” Z) = pjsr + pjsr + p_]sr p|sr ) (47)

evolving over time. Initially the mass of this probability
density is concentrated at cj, =~ 1000 uM (a in Fig. 7).

Biophysical Journal 92(7) 2311-2328
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FIGURE 6 Histograms of the junctional SR
Ca’" concentrations (c}‘sr) at t = 30 ms in the
Monte Carlo simulation of Figs. 2-5 jointly
distributed with CaRU state. These histograms
are plotted on the same scale, but one is
truncated for clarity. For comparison, the solid
lines show the four joint probability densities
Pfslrj(cjsrv 1), chs?(cjsrv 1, Pj?rc(cjsrv f), and
PO (cisr, ) for junctional SR [Ca**] (Eq. 34)
calculated via numerical solution of Eqgs. 29,
30, and 38-45. The probability density calcu-
lation of the fraction of subunits in each of the
four states is denoted by 77'i (Eq. 46).
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During the 20-ms voltage pulse, a significant fraction of the
probability density (~65%) moves to junctional SR Ca®*
concentrations that are more than half-depleted (b), while
~35% remains above 500 uM. Interestingly, the probability
density remains bimodal for ~200 ms after the voltage pulse
ends (c and d). During this time, the probability mass that
corresponds to depleted junctional SR (c) gradually moves to
higher values of ¢j, as these junctional SR compartments are
refilled via Ca®* transport from the network SR. At the same
time, the probability mass that corresponds to replete junc-
tional SR compartments (d) follows the network SR [Ca2+]
that decreases from ¢ = 30-100 ms and increases again when
t > 100 ms (recall the solid line in Fig. 3). Perhaps most
importantly, Fig. 7 shows that the shape and temporal evolu-
tion of the distributions that form the basis of the probability
density approach can be quite complicated.

Monte Carlo simulations converge to the
probability density result

The coupled system of advection-reaction equations used in
the univariate probability density approach (Eqs. 38—41) are
the master equations for the marginal probability densities for
junctional SR [Ca**] jointly distributed with the Ca** release
unit state (Eq. 36). Solving these partial differential equations
is equivalent to performing Monte Carlo simulation of diadic
subspace [Ca2+], junctional SR [Ca2+], and CaRU state
provided that: 1), diadic subspace [Ca2+] is a fast dynamic
variable in quasistatic equilibrium with junctional SR [Ca*"];
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and 2), the number of Ca" release units (V) is large enough.
Fig. 6 demonstrates agreement between probability density
simulations of a minimal whole cell model of EC coupling and
corresponding Monte Carlo simulations using N = 5000
CaRUs. Because this agreement will only improve when the
number of CaRUs is increased to physiologically realistic
values (N = 20,000), the probability density approach is
clearly a viable method of modeling heterogeneous diadic
subspace and junctional SR [Ca*"] during EC coupling.
Fig. 8 clarifies this point by showing how the total release
flux (JrTyr, open squares) observed in Monte Carlo simulation
converges to the probability density result (solid lines) as the
number of Ca®" release units is increased from N = 50—
20,000. Each panel shows a representative Monte Carlo
simulation with voltage step to —10 mV (solid gray line) as
well as the mean and standard deviation of 10 trials (open
squares and error bars). As expected, the fluctuations in the
total release flux decrease in magnitude as the number of
CaRUs used in the Monte Carlo calculation increases. Sim-
ilarly, Fig. 9 shows histograms of the junctional SR [Ca®"]
(irrespective of CaRU state) at + = 30 ms in Monte Carlo
simulations performed with a greater or lesser number of
CaRUs. Notice that the probability density function pT(cjsr, 1)
(Eq. 47) accurately represents the distribution of junctional
SR [Ca2+] so long as the number of CaRUs is 5000 or more.
Indeed, in both Figs. 8 and 9 the Monte Carlo simulations are
converging to the probability density result well before the
Monte Carlo calculations include a physiological number of
Ca®" release units (N = 20,000). This indicates that the
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FIGURE 7 Waterfall plot (A) and snapshots (B) of the time evolution of
the total probability density for the junctional SR [Ca®"] (pT(cjsr, t) given by
Eq. 47) calculated via numerical solution of Egs. 29, 30, and 38—45. The
solid black lines show the 20-ms voltage step to —10 mV. See text for
description of a—d.

probability density approach to modeling local Ca®" sig-
naling and Ca®" release unit activity in cardiac myocytes is a
viable alternative to Monte Carlo simulation.

The probability density calculation exhibits gain
and gradedness

To further compare the probability density and Monte Carlo
approaches, Fig. 10 A summarizes a large number of sim-
ulated whole cell voltage clamp protocols such as those
presented in Fig. 2. The open circles and error bars of Fig. 10
A show the trigger Ca>* influx via L-type Ca®" channels
integrated over the 20-ms voltage step to test potentials in the
range —40-40 mV (mean * SD for 10 Monte Carlo sim-
ulations using 10,000 CaRUs). For comparison, the solid
lines of Fig. 10 A show that the trigger Ca®" influx in the
probability density calculation agrees with the Monte Carlo
simulations. Similarly, the open squares of Fig. 10 A show
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FIGURE 8 Total Ca*" release flux (J};r) in Monte Carlo simulations

utilizing increasing numbers of Ca?" release units (N = 50, 500, 5000, and
20,000, respectively). Each panel shows a representative Monte Carlo
simulation (solid gray line) and the mean and standard deviation of 10 trials
(open squares and error bars). The solid lines show the corresponding
probability density result (same in each panel).

the voltage dependence of the Ca”* release flux plotted in a
manner that illustrates the pronounced EC coupling gain in
the Monte Carlo calculations, while the dashed lines of Fig.
10 A show that the Ca”* release flux observed in the corre-
sponding probability density calculations also exhibits high
gain. When these trigger and release fluxes are normalized
and replotted in Fig. 10 B, the gradedness of Ca*>" release
with respect to membrane potential and Ca’* influx is
highlighted. In particular, we note that both the Monte Carlo
and probability density calculations exhibit graded Ca”*
release and that the voltage dependence of the EC coupling
gain is nearly identical in the two formulations (see Fig.
10 O).

Computational efficiency of the probability
density approach

The convergence between the Monte Carlo and probability
density calculations presented above indicates that the
probability density approach is a viable alternative to Monte
Carlo simulations of heterogeneous local [Ca2+] and Ca**
release unit activity in cardiac myocytes. In fact, as shown in
Fig. 10, the probability density approach leads to EC cou-
pling dynamics that are nearly identical to Monte Carlo calcu-
lations so long as these Monte Carlo simulations involve a
realistic number of Ca®" release units (N > 5000).
Because the probability density and Monte Carlo calcu-
lations are essentially equivalent in terms of the cellular
responses they predict, it is of interest to explore the compu-
tational efficiency of the two approaches. The solid squares
of Fig. 11 show the run time required to perform a simulated
whole cell voltage clamp protocol such as those presented in

Biophysical Journal 92(7) 2311-2328
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ST
Monte Carlo simulations similar to Fig. 5 but with Jincreasing numbers of
Ca®" release units (N = 50, 500, 5000, and 20,000, respectively) One bin
representing ~57% probability of a replete junctional SR is truncated for
clarity (asterisk). The solid lines show the probability density calculation of
pT(cjsr, t) (Eq. 47), the distribution of the total probability density for the
junctional SR [Ca®"] (same in each panel).

Fig. 2 using traditional Monte Carlo simulation methods. As
expected, the run time increases with the number of Ca**
release units used and this run time scales linearly with the
number of CaRUs when N is large. For comparison, the thick
dashed line of Fig. 11 shows the 2.1-min run time required
for the univariate probability density approach, that is, numer-
ical solution of Egs. 29, 30, and 3845 (see Appendix D).
Notice that the intersection of the filled squares and the thick
dashed line in Fig. 11 shows that a Monte Carlo simulation
using ~500 CaRUs leads to the same run time as the
probability density approach. Not only is this smaller than
the true number of CaRUs in a ventricular myocyte, but in
practice multiple Monte Carlo runs would have to be per-
formed and averaged to obtain a definitive result. For ex-
ample, if 10 trials are to be averaged as in Fig. 8, then the
appropriate comparison is given by the open squares and the
thick dashed line and these show that the probability density
approach requires less run time than 10 Monte Carlo
simulations with 50 CaRUs. Intriguingly, and perhaps most
importantly, when the traditional Monte Carlo simulations use
a physiologically realistic number of CaRUs, the probability
density approach is ~35 times faster than Monte Carlo (73
vs. 2.1 min). Although the computational efficiency of the
probability density approach as compared to Monte Carlo
simulation may be model dependent, in the context of this
whole cell model an additional 20X acceleration is easily
obtained (see thin dotted line in Fig. 8 and Discussion). For
this reason we suggest that the probability density approach
be further investigated and developed as a computationally
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efficient alternative to Monte Carlo simulations of the local
control of EC coupling in cardiac myocytes.

DISCUSSION

In this article we have introduced, validated, and benchmarked
a novel probability density approach to modeling localized
Ca”" influx via L-type Ca®" channels and Ca”*-induced
Ca’* release mediated by clusters of RyRs during excitation-
contraction coupling in cardiac myocytes. To illustrate the
approach we have focused on a minimal whole cell model of
cardiac EC coupling that includes a four-state Ca®" release
unit representing voltage-dependent activation of an L-type
Ca”* channels as well as Ca” " -induced Ca” " release mediated
by a two-state RyR cluster that includes regulation by both
diadic subspace and junctional SR Ca’t, Howeyver, it is im-
portant to note that the probability density formulation does
not require a minimal Ca®" release unit model; in fact, the ap-
proach is fully generalizable to CaRUs with an arbitrary
number of states (see Appendix B).

As illustrated by leftmost schematic in Fig. 12, the Monte
Carlo formulation of the minimal whole cell model of EC
coupling that is the focus of this article includes 2 + 2N
ordinary differential equations representing [Ca”* ] balance for
the bulk myoplasm, network SR, N diadic subspaces, and N
junctional SRs. Alternatively, the probability density formu-
lation represents the dynamics of these heterogeneous local
Ca®* signals using a system of advection-reaction equations
for the time-dependent probability density of diadic subspace
and junctional SR [Ca®"] conditioned on Ca®" release unit
state. In this formulation, the number of equations (M) is equal
the number of unique states that define the gating behavior of
the CaRU. As originally derived, these joint probability
densities are two-dimensional, that is, at a specified time they
are functions of both ¢4 and cjs,. The system of advection-
reaction equations satisfied by these multivariate probability
densities is the ‘‘master equation’’ for diadic subspace and
junctional SR [Ca** ] jointly distributed with the Ca*>* release
unit state. The only approximation used in the derivation of
these equations is that the number of CaRUs units is very large
(N— ).

In the Monte Carlo simulations of the whole cell model of
cardiac EC coupling we observed that diadic subspace [Ca® "]
was in quasistatic equilibrium with junctional SR [Ca®"]. Fig.
12 illustrates this feature of the simulations with two thick
gray lines in two (cgqCjs)-planes labeled ‘‘slaved diadic
subspace’’ (the lines have different slopes as in Fig. 5). In this
situation the multivariate probability density functions de-
fined in Eq. 18 are well approximated by univariate (marginal)
probability densities representing the time-dependent proba-
bility density of junctional sarcoplasmic reticulum [Ca®"]
jointly distributed with CaRU state. These marginal proba-
bility densities are one-dimensional, that is, at a specified time
they are functions of cj (illustrated by narrow rectangles in
Fig. 12). When the system of advection-reaction equations
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FIGURE 10 Summary of simulated whole cell voltage clamp protocols
such as those presented in Fig. 2 using both the Monte Carlo and probability
density formulations. (A) Open circles and error bars show trigger Ca**
influx via L-type Ca®" channels integrated over the 20-ms voltage step to
test potentials in the range —40—40 mV (mean *= SD for 10 Monte Carlo
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satisfied by these marginal probability densities was solved
numerically using a high-resolution finite difference scheme
(see Appendix D), a realistic but minimal model of cardiac
excitation-contraction coupling is produced that includes a
novel representation of heterogeneous junctional SR [Ca®*].

Importantly, we have validated this novel probability den-
sity approach to modeling local control of Ca*" release against
traditional Monte Carlo simulations with a physiologically
realistic number of CaRUs. In simulated voltage-clamp
protocols, the univariate probability density formulation of
our whole cell model of cardiac EC coupling produced high-
gain Ca”" release that was graded with changes in membrane
potential. Indeed, the voltage dependence of trigger Ca®"
influx via L-type Ca®" channels, the resulting Ca’* release
via RyR clusters, and the observed EC coupling gain obtained
using the univariate probability density formulation are nearly
identical to that seen in corresponding Monte Carlo calcula-
tions. This agreement validates the conceptually novel aspects
of the probability density formulation as well as our imple-
mentation of both approaches.

Relationship to other simplified models of
EC coupling

It is instructive to compare and contrast the probability
density approach introduced in this article to models of the
local control of EC coupling that have previously appeared.
As shown diagrammatically in Fig. 12, the Monte Carlo local
control model of EC coupling that is our starting point
includes 2N + 2 compartments, similar to the functional orga-
nization of some previously published Monte Carlo models
of local control (19), but distinct from two recently published
simplified models (20,21) that do not make a distinction
between junctional and network SR.

The one requirement for the validity of the multivariate
probability density approach is that the number of CaRUs
units is very large (denoted by N — o in Fig. 12). Although
previously published models of local control also assume that
the number of CaRUs is very large (20,21), the multivariate
probability density approach represents this ‘‘large system
size’’ limit in a manner that accounts for the heterogeneous
diadic subspace and junctional SR Ca®>" concentrations.

Similar to previously published simplified models of local
control (20,21), we make use of the fact that diadic subspace
Ca’" is a fast dynamic variable. Because Hinch (20) and
Greenstein et al. (21) do not distinguish junctional and network

simulations using 10,000 CaRUs). Open squares and error bars show the
voltage dependence of the resulting Ca>* release. The solid and dashed lines
of Fig. 10 A show that the trigger and release fluxes as calculated using the
probability density approach agrees with these Monte Carlo simulations. (B)
Results from panel A normalized and replotted to emphasize gradedness of
Ca®" release with respect to membrane potential and Ca>* influx. (C) EC
coupling gain as a function of membrane potential for Monte Carlo (open
squares and error bars) and probability density (solid line) calculations.

Biophysical Journal 92(7) 2311-2328
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FIGURE 11 Solid squares show the run time required to perform a
simulated whole cell voltage clamp protocol such as those presented in Fig.
2 using traditional Monte Carlo simulation methods when the number of
Ca*" release units is increased from N = 50 to 20,000. Open squares show
10 times the Monte Carlo run time to account for averaging multiple trials as
in Fig. 8. The thick dashed line and thin dot-dashed lines show the run time
required for the univariate probability density approach using mesh sizes of
L =50, 100, and 200 and a time step of 1 us. The thin dotted line shows the
univariate probability density approach run time using mesh sizes of
L =100 and a time step of 0.02 ms (see Discussion and Appendix D). Total
simulation time is 60 ms.

SR, the assumption of fast diadic subspace Ca®" immediately
leads to a simplified local control model involving M ODEs
(one for each CaRU state). Conversely, in this article the
observation that diadic subspace Ca’" is in quasistatic
equilibrium with junctional SR Ca*>" allows us to reduce the
multivariate probability density formulation to a univariate
form that still accounts for the dynamics of junctional SR
depletion. This reduction from the multivariate to univariate
probability density approach is denoted by the arrow labeled
““fast ds/slow jsr’” in Fig. 12.

Note that if diadic subspace and junctional SR [Ca
changes were both fast compared to the stochastic gating of
Ca" release units, the Monte Carlo simulations of Fig. 2 would
have revealed 8-function-like probability densities. That is,
rather than observing the linear relationship between diadic

2+]

Monte Carlo

Probability Density

slaved diadic subspace

Williams et al.

subspace and junctional SR [Ca2+] in each (c4s,Cjsr)-plane that
suggested Eq. 34, we would instead have observed that the
probability density in each plane was well approximated by

pi(Cds, str, t) = 7Ti([)8(cds — E;S)S(str — E;sr)7

where 1 =i = M is the index over CaRU states and ¢y and ¢},
are functions of ¢y, and ¢, found by simultaneously solving
Eqgs. 5 and 6 with the left-hand sides equal to zero. Although
this ‘‘fast domain limit’’ was not observed in our Monte Carlo
simulations, for completeness it is denoted in Fig. 12 by the
arrow labeled ‘‘fast ds/fast jsr’’. If the simplified models of
local control that have previously appeared (20,21) were
generalized to account for heterogeneous junctional SR
[Ca2+], they would correspond to the *‘fast domain limit’’ of

the multivariate probability density approach presented here.

Computational efficiency of the probability
density approach

While the probability density and Monte Carlo calculations are
essentially equivalent in terms of the dynamics cellular
responses they predict, the probability density approach can
be significantly faster than Monte Carlo simulation (Fig. 11).
Indeed, when both methods are applied using the same
(nonadaptive) time step, our current implementation of the
univariate probability density approach is ~35X faster than
Monte Carlo simulations that employ a physiologically realistic
number of CaRUs. Intriguingly, when this comparison is made
using time steps that are distinct and as large as possible while
ensuring numerical stability and accuracy of each calculation,
we find that the univariate probability density approach can be
up to 650X faster than the corresponding Monte Carlo
simulations. For example, the thin dotted line of Fig. 11
indicates a 6.6-s run time for the probability density approach
with a time step of 0.02 ms. This suggests that the probability
density approach could be further investigated and developed as
a computationally efficient alternative to Monte Carlo simula-
tions of the local control of EC coupling in cardiac myocytes.
Although the computational efficiency of the probability
density approach is intriguing, it is important to note that the
relative merits of Monte Carlo and probability density

FIGURE 12 (From left to right) Schematic representa-
tion of the (2N + 2)-compartment Monte Carlo model of
the local control of EC coupling that is the starting point
of this article. Schematic representation of the multivar-
iate ‘‘Probability Density’’ formulation that can be

reduced to the univariate probability density formulation
when diadic subspace Ca’" is in quasistatic equilib-
rium with junctional SR ca’t (slaved diadic subspace).

£E & 777777777777777777
fast ds
slow jsr M 1D PDEs
., ! & 5
1y
NG
2N ODEs M 2D PDEs A fast domain limit
N MCs ML e S T T
[3N] ;
M ODEs

(N =#CaRUs M = #CaRU states L = #mesh points) M]

An alternative reduction is possible if diadic subspace
and junctional SR Ca®" are both fast dynamic variables
(fast domain limit). The large open squares represent
the (cqs.Cjsr)-plane of the probability density approach
and the dotted lines represent the ¢4 and cj nullclines.

Values in brackets show how run times of each method scale with increasing number of Ca" release units (NV), number of Ca®" release unit states (M),

and the number of mesh points used in the probability density approach (L).
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simulation methods are in general model dependent. For
example, the time required for the Monte Carlo simulation of
the whole cell voltage clamp protocols such as those
presented in Fig. 2 is, at least ultimately, a linear function
of the number of CaRUs (i.e., the limiting slope of the solid
squares of Fig. 10 is one). Similarly, we have observed that
the computational efficiency of the univariate probability
density calculation presented in Figs. 6 and 7 scales linearly
with the number of Ca®" release unit states (M) and the
number of mesh points used to discretize the junctional SR
[Ca2+] (L) (not shown). Indeed, the thin dotted lines of Fig.
11 show the run time of the probability density approach
decreasing or increasing by a factor of two when the standard
number of mesh points (L = 100) is decreased or increased to
50 or 200, respectively. Of course, the standard value of
L = 100 was chosen because further refinement resulted in
a negligible change in the probability density result. How-
ever, we expect that the number of mesh points required for
an accurate probability density calculation will generally
depend on the details of the chosen Ca”" release unit model.
In the same way, increasing the number M of CaRU states
will lead to a less efficient probability density calculation.

Indeed, the relative merits of the probability density and
Monte Carlo simulation methods can be clarified if we
assume that the computational effort involved in updating
one mesh point of the probability density calculation is
equivalent to Monte Carlo simulation of one Ca®" release
unit. If we let N denote the number of Ca®™ release units, M
the number of states of the CaRU model, and L the number of
mesh points used in the probability density calculation, then
in a traditional Monte Carlo calculation, there are 2N ODEs
to integrate for the local Ca>* concentrations as well as N
Markov chains to update at each time step, for a (very
roughly calculated) computational effort of 3N. Conversely,
in the univariate probability density approach, there are M
partial differential equations (PDEs) to solve with L mesh
points each, for a computational effort of ML. Given the fact
that the physiologically realistic number of CaRUs is N =
20,000 and the observed number of mesh points required in
our probability density calculations is L = 100, we might
have expected the univariate probability density approach to
be ~150X computationally more efficient than Monte Carlo
for the minimal M = 4 state CaRU model used here
(consistent with the observed values of 35-700 in Fig. 11).
Continuing this reasoning, we might expect the univariate
probability density approach to outperform Monte Carlo
calculations for any CaRU model with fewer than 600 states
(M = 3N/L).

On the other hand, if model parameters were such that it
was not a good approximation to assume that in each CaRU
diadic subspace [Ca’"] is in quasistatic equilibrium with
junctional SR [Ca®"], then the appropriate probability
density alternative to Monte Carlo simulation would be
multivariate. In this case, each of the M joint probability
densities would require a two-dimensional L X L mesh that
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discretizes both the diadic subspace and junctional SR
[Ca®"]. If we presume that the computational effort of the
multivariate probability density approach scales as ML?, then
we would expect it to be superior to Monte Carlo calcula-
tions involving N = 20,000 CaRUs when the chosen CaRU
model has fewer than six states (M = 3N/L2). Consistent
with this back-of-the-envelope estimate, when we do not
assume fast diadic subspace [Ca®"] but instead numerically
solve the two-dimensional system of advection-reaction
equations given by Egs. 19-22, we find the multivariate
probability density approach is only marginally faster than
Monte Carlo simulation (not shown). However, these
estimates and preliminary benchmarks fail to account for
accelerations of the multivariate probability density ap-
proach that could be obtained by using more sophisticated
numerical schemes (e.g., a nonuniform or adaptive mesh)
and model reduction techniques applicable to the probability
density but not the Monte Carlo formulation. For this reason
we recommend the probability density approach for further
development as a computationally efficient alternative to
Monte Carlo simulations of the local control of EC coupling
in cardiac myocytes.

APPENDIX A: DESCRIPTION OF FLUXES
INFLUENCING BULK MYOPLASMIC AND
NETWORK SR [Ca?*]

The whole cell model of EC coupling that is the focus of this article includes
several fluxes that directly influence the dynamics of the bulk myoplasmic
and network SR [Ca”*]. For example, the Na*-Ca®" exchanger current that
appears in Eq. 29 takes the form (4,3,32),

A
Jncx - _?mlncxa
where
3 Mnex FV/RT 13 (Mnex—1)FV/RT
J [Na ]myoCCX‘e B [N ]exlcmy(’e
e (s +13 nex—FV/RT ) *
(K N2 L K1+ )

Amn = CiBmyo/Vinyor Cexi 18 the extracellular Ca®" concentration, and
[Na+]my0 and [Na®]e, are the intracellular and extracellular sodium
concentrations, respectively (for parameters see Tables 1 and 3).

The SERCA-type Ca-ATPase flux that appears in Egs. 29 and 30
includes both forward and reverse modes (33) and is given by

< Cmyo> s B < Cnsr) Thrs
K s Krs
Jserca = Vserca . Nts Mrs ) (48)
Cmyo Cnsr
1+ +
( Kfs ) (Kr8>

with parameters as in Table 3. In addition, Egs. 29 and 30 include a leakage
Ca®" flux given by Jieax = Vieak (Cosr — Cmyo)-

Following Rice et al. (32), Eq. 29 includes a constant background Ca**
influx that takes the form,

An
; [im
where I = gin(v - ECa) and Ec, = (RT/ZF) ln(cex[/cnxyo)~

Jin:_
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TABLE 1 Model parameters: volume fractions, Ca2* buffering, and exchange between restricted domains and the bulk, physical

constants, and fixed ion concentrations

Parameter Definition Value
N No. of diadic subspaces 50-20,000
Viasr Network SR volume 3.15 X 1077 ns
Vinyo Myoplasmic volume 2.15 X 107> ulL
VI = NVgs Total diadic subspace volume 2 X 1078 uL
Vi = NVig Total junctional SR volume 3.5 X 107 uL

m Capacitive membrane area 1.534 x 1074 uF

Bas Subspace buffering factor 0.5
Bise Junctional SR buffering factor 0.05
Bhusr Network SR buffering factor 1.0
Bmyo Myoplasmic buffering factor 0.05
Ve = Al / Trefil Junctional SR refilling rate 0.018 57"
Vot = A/ Tefflux Diadic subspace efflux rate 5257

Faraday’s constant

R Gas constant

T Absolute temperature

Coxt Extracellular Ca>* concentration
[Na* Jox Extracellular Na* concentration
[Na*]myo Intracellular Na* concentration

96,480 coul mol !
8314 mJ mol~! K™!
310 K

1.8 mM

140 mM

10.2 mM

APPENDIX B: GENERALIZATION OF THE
PROBABILITY DENSITY APPROACH

The probability density approach is completely general and in principle the
methodology can be applied to Ca®>" release unit models of arbitrary
complexity. Let S(f) =i € {1, ..., M} be the state of a continuous time
discrete state Markov chain model of an individual Ca?* release unit and let
the M X M matrix Q be the infinitesimal generator matrix for this stochastic
process composed of rates that may be constant or, alternatively, arbitrary
functions of voltage, diadic subspace [Ca“], or junctional SR [Ca“]. Letus
also rewrite the multivariate probability density functions defined in Eq. 18
using slightly more compact notation,

p'(c,)de =Pr{c <é(r)<c+dc and S(r) =i},

where ¢ is a vector including both the diadic subspace and junctional SR
Ca** concentrations. Using Bayes’ formula these joint probability densities
can be related to the probability densities for diadic subspace and junctional
SR [Ca®*] conditioned on the state of the channel,

Pr{c <é&(r) <c +dc|S(t) = i}
:Pr{c<5(t)<c+dc and S(t) =i}

Pr{S(r) = i}

That is, if the probability density p(c, ¢) is integrated over all possible diadic
subspace and junctional SR Ca®* concentrations, the probability 7' of
finding the randomly sampled Ca>" release unit in state i is obtained,

7 =Pr{S(t) =i} = /pi(c,t)dc,

where dc = dcy, dcjs; .

Using this notation, the advection-reaction equations (Eqgs. 19-22) for
the probability density of diadic subspace and junctional SR [Ca®*]
jointly distributed with the state of the Ca>" release unit become,

api 9 i O 4 i i
D=l 5[] Tl @9)
o = eyl Dy LI ’

where p is a row vector given by p = (p' ) p%,...,pM) in which each
element p' is a function of ¢4y and cjs;; and [pQ]' is the ith element of the row
vector resulting from a vector-matrix product of p and Q.

APPENDIX C: DERIVATION OF THE UNIVARIATE
PROBABILITY DENSITY APPROACH

Using Eqs. 34-37 the advection-reaction equations of the multivariate
probability density formulation (Egs. 19-22) can be reduced to the univariate
version (Egs. 38—41). For example, here we show that making the substitution
given by Eq. 34 in Eq. 22 and integrating the resulting equations with respect

TABLE 2 Ca®" release unit parameters (L-type Ca®?* channel and RyR cluster)

Parameter Definition Value
\gr = Ny Total RyR cluster release rate 0.9 s7!
Plipr = NPanpe Total DHPR permeability 35X 10 ems™!
Vi DHPR activation threshold —10 mV
T dhpr DHPR activation parameter 6.24 mV
Kipr Maximum rate of DHPR opening 556 57!
Kapr Rate of DHPR closing 5000 s
k:yr Maximum rate of RyR opening 2000 s~
Ky Rate of RyR closing 100 57"
K5 Maximum binding constant for RyR 7.4 uM
Qryr Coefficient of RyR luminal regulation 0.0024

Biophysical Journal 92(7) 2311-2328
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TABLE 3 Model parameters: Na*-Ca?* exchange current, SERCA pumps, and background Ca?* influx

Parameter Definition Value
Ky Forward half-saturation constant for SERCA pump 0.17 uM

K Reverse half-saturation constant 1702 uM

Ns Forward cooperativity constant 0.75

Mrs Reverse cooperativity constant 0.75

Veerca Maximum SERCA pump rate 8.6 uM s
1Dy Magnitude of Na*-Ca®" exchange current 150 pA pF~!
Koexn Na™ half saturation constant 87.5 X 103;u,M
Kiex.c Ca®* half saturation constant 1.38 X 103,u,M
k2 Saturation factor 0.1

Mnex Voltage dependence of Na*-Ca®" exchange 0.35

Vieak SR Ca®* leak rate constant 24 X 107657t
8in Maximum conductance of background Ca*>" influx 1.5 X 107* mS pF~!

to diadic subspace [Ca®>"] leads term by term to Eq. 41. The first term of

the left-hand side of Eq. 22 involving the partial derivative with respect to time
becomes

N ©o 00 (., =00 .
A ot dcds - \/0 5|:ij[ 8(Cds — Cys ):|dcds

oy [
= 8Jt /0 6(cds cdS )dcds

i.e., the first term of Eq. 41. The first term on the right-hand side of Eq. 22
involving the partial derivative with respect to cys is disappears, that is,

* 6 OO ([0} 00 00
*/O a[ds ldeas = —fi p

because the probability density poa(cds,cjsr,t) evaluates to zero at the
minimum and maximum physical values for diadic subspace [Ca*"]. The
second term on the right-hand side of Eq. 22 involving the partial derivative
with respect to ¢j, becomes

_/Owaf:“[fjg@p‘”}dcds— /T{JgopsfS(Cds—C )}dcd‘

ey
Oc; Jsr

[ 700 00}

jsr Pis

©

=0,

0

where f]st —]; (Lds ,cN) due to the sifting property of the 6 function, in
agreement with Eqs. 41 and 43. Finally, the three reaction terms in Eq. 22
reduce as required because

¢ [ daea =k [ pyalen - )dea
0 0

k pJSr / 8 (cds - Eids)dcdg k szra

%’f [fjsrp] +[p0]".

_|sr

(50)

Numerical solution of these equations was performed using a total variation
diminishing scheme following (36,37). Briefly, we discretize junctional SR
[Ca®*h] according to iy = CAcj + CJ'{‘r‘“ where £ =0, 1, -, L and Acj,, =

(LJ‘:‘;‘X — c‘l:‘r‘“)/L. With these preliminaries, the numerical scheme can be

written as

dPi 1 i i L
d_f = 7@[& - gé—l] + mZ::lp[ q; s

where q},“i is the transition rate in the mth row and ith column of Q evaluated
at a junctional SR [Ca*"] of Cjsr, L. In this expression, g, and g;_, are given by

8= iyt (8- 004) + 0y (b~ #15), 6D

where we have dropped the superscripted i, ¢, = f,p,, and ¢y, is the first-

order Roe flux defined by (36,38)

. 1 1. =
¢é‘+% = _(d’/ + ) — _lfz +foeil(pesr = Po)s

where f, = }jsr , is the discretized advection rate appearing in Eq. 50.
The quantities s and s~ occurring in Eq. 51 are flux limiters given by

lp+ " d)/-i-l - ‘{b;% v " d’e - ‘f’;%
1= Y 3= o
2 d’f - d)z;% s d)/-i-l - ¢j+%
where

Y[r] = max[0, min(2r, 1), min(r, 2)].

The ordinary differential equations in the univariate model (Egs. 29-30)
were integrated using Euler’s method with a time step of 1 us. The efflux
and refill fluxes of Eqs. 31 and 32 were approximated by

Jenux = etﬂuxA‘br Z Z P\ [ ds,t Cmy(](t)}
where i =00, OC, and CO; k% = 7(kr’yr+k;hpr), k€ = k., and i=16=0
KO =k}, x T i
" ettt = VeetinDCise Z Z Pi[Cosr (1) = Cisrd]s
i=10=0

APPENDIX D: NUMERICAL SCHEME FOR
THE UNIVARIATE PROBABILITY
DENSITY APPROACH

In the notation of Appendix B, the advection-reaction equations (Eqs. 38—41)
used in the univariate probability density approach take the form,

where &, is given by Eq. 35 with the junctional SR [Ca®"] evaluated at
cjsr,[-

Some preliminary results appeared previously in abstract form (29).
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