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ABSTRACT We present a probability density approach to modeling localized Ca21 influx via L-type Ca21 channels and Ca21-
induced Ca21 release mediated by clusters of ryanodine receptors during excitation-contraction coupling in cardiac myocytes.
Coupled advection-reaction equations are derived relating the time-dependent probability density of subsarcolemmal subspace
and junctional sarcoplasmic reticulum [Ca21] conditioned on ‘‘Ca21 release unit’’ state. When these equations are solved
numerically using a high-resolution finite difference scheme and the resulting probability densities are coupled to ordinary
differential equations for the bulk myoplasmic and sarcoplasmic reticulum [Ca21], a realistic but minimal model of cardiac
excitation-contraction coupling is produced. Modeling Ca21 release unit activity using this probability density approach avoids the
computationally demanding task of resolving spatial aspects of global Ca21 signaling, while accurately representing hetero-
geneous local Ca21 signals in a population of diadic subspaces and junctional sarcoplasmic reticulum depletion domains. The
probability density approach is validated for a physiologically realistic number of Ca21 release units and benchmarked for
computational efficiency by comparison to traditional Monte Carlo simulations. In simulated voltage-clamp protocols, both the
probability density and Monte Carlo approaches to modeling local control of excitation-contraction coupling produce high-gain
Ca21 release that is graded with changes in membrane potential, a phenomenon not exhibited by so-called ‘‘common pool’’
models. However, a probability density calculation can be significantly faster than the corresponding Monte Carlo simulation,
especially when cellular parameters are such that diadic subspace [Ca21] is in quasistatic equilibrium with junctional sarcoplasmic
reticulum [Ca21] and, consequently, univariate rather than multivariate probability densities may be employed.

INTRODUCTION

The mechanical function of the heart depends on complex

bidirectional interactions between electrical and calcium

(Ca21) signaling systems. Each time the heart beats, current

flowing through the ion channels in the plasma membrane

(sarcolemma) causes a characteristic change in membrane volt-

age known as an action potential (AP). Membrane depolari-

zation during the AP causes L-type Ca21 channels to open, and

Ca21 current through these channels causes the release of a

larger amount of Ca21 from the sarcoplasmic reticulum, a

process known as Ca21-induced Ca21 release (CICR). This

leads to a large, transient increase in [Ca21] in each heart cell,

and contraction occurs when these Ca21 ions bind to myofil-

aments, a sequence of events known as excitation-contraction

(EC) coupling. In addition, intracellular [Ca21] feeds back

upon and changes the cell’s membrane potential through the

Ca21 dependence of several ion channels and membrane

transporters.

Mathematical and computational modeling has proved to

be an important tool for understanding cardiac electrophys-

iology and EC coupling. Computer simulations have been

used to test hypotheses about heart cell function and predict

underlying mechanisms (1–4). Most investigations have

employed deterministic models that ignore molecular fluc-

tuations and assume an isopotential cell, an approach that is

valid for simulating current flowing through a large popu-

lation of voltage-gated ion channels. Even though the indi-

vidual channels open and close stochastically, each channel

experiences the same voltage, so identical rate constants

apply to each channel and only average behavior needs to

be considered. However, this approach is not suitable for

simulating CICR release during EC coupling because the

overall release flux represents a collection of discrete events,

known as Ca21 sparks, evoked by local—rather than

global—increases in Ca21 concentration (5). That is, each

spark reflects Ca21 release from a cluster of Ca21-regulated

intracellular Ca21 channels known as ryanodine receptors

(RyRs) that is triggered by entry of Ca21 through nearby

L-type Ca21 channels (6). Thus, different groups of RyRs

experience different local Ca21 concentrations and stochas-

tically gate in a manner that depends on whether nearby sar-

colemmal Ca21 channels have recently been open or closed.

One consequence of this ‘‘local control’’ (7) mechanism

of cardiac CICR is that deterministic ‘‘common pool’’

models—whole cell models in which all RyR clusters in a

myocyte experience the same [Ca21]—fail to reproduce

several important experimental observations. In particular,

the high gain and positive feedback of common pool models

Submitted October 23, 2006, and accepted for publication December 14,
2006.

Address reprint requests to Gregory D. Smith, Dept. of Applied Science,

McGlothlin-Street Hall, Rm. 305, College of William and Mary,

Williamsburg, VA 23187. E-mail: greg@as.wm.edu.

� 2007 by the Biophysical Society

0006-3495/07/04/2311/18 $2.00 doi: 10.1529/biophysj.106.099861

Biophysical Journal Volume 92 April 2007 2311–2328 2311



ensures that Ca21 is released in an all-or-none fashion

(2,3,8–10) as opposed to being graded with the amount of

Ca21 influx, as observed in numerous experiments (6,11,12).

Deterministic common pool models of cardiac CICR during

EC coupling that have been able to reproduce graded release

have done so in an ad hoc fashion (4,13–16).

Models of EC coupling are able to simulate graded Ca21

release mechanistically by treating L-type Ca21 channels and

juxtaposed Ca21 release sites as stochastic ‘‘Ca21 release

units’’ (CaRUs), each of which is associated with its own

diadic subspace Ca21 concentration. When activated spon-

taneously or through membrane depolarization these CaRUs

may deplete Ca21 stored in localized regions of junctional SR

and, on a slower timescale, interact with one another via

diffusion of Ca21 within the network SR and bulk myoplasm.

This approach, however, requires relatively large computa-

tional resources to perform Monte-Carlo simulations of

stochastic Ca21 release from a large population of CaRUs.

Indeed, the number of simulated CaRUs is often reduced to

unphysiological values in such models to obtain shorter run

times (7,17–19).

Two recent deterministic models have used a minimal

Ca21 release unit formulation of interactions between L-type

channels and RyR clusters to produce graded release (20,21).

In these models ordinary differential equations for the fraction

of Ca21 release units in each of a small number of states are

solved under the assumption that subspace [Ca21] is an

algebraic function of the bulk myoplasmic and network SR

[Ca21]. This function depends on Ca21 release unit state and

is determined by balancing the Ca21 fluxes into and out of the

diadic subspace. While the large number of Ca21 release units

in cardiac myocytes—estimated in the range of 10,000–

20,000 via both structural (22) and functional (23) observa-

tions—does indeed suggest that it should be possible to

produce deterministic local control models of EC coupling,

the assumption that diadic subspace [Ca21] is in quasistatic

equilibrium with bulk myoplasmic and network SR Ca21 may

be overly restrictive. Indeed, this modeling approach is only

valid when the dynamics of subspace [Ca21] are very fast

compared to stochastic Ca21 release unit transition rates. More-

over, [Ca21] in a particular subspace is likely to depend on the

local ‘‘junctional’’ SR [Ca21] rather than the bulk or network

SR [Ca21], especially if junctional SR depletion influences

RyR gating, as suggested by both simulations (18) and recent

experiments (24,25).

Here we present an alternative deterministic formalism for

modeling local control of CICR during cardiac EC coupling

that captures the collective behavior of a large population of

Ca21 release units without this restrictive assumption. We

utilize the fact that the number of Ca21 release units is large

(similar to Hinch (20) and Greenstein et al. (21)), but we do

not assume a simple algebraic relationship between the local

diadic subspace [Ca21] associated with each Ca21 release

unit and the bulk Ca21 concentrations. Instead, we define a

set of multivariate continuous probability density functions

for the diadic subspace and junctional SR [Ca21] condi-

tioned on CaRU state (26–28). As described below, these

probability density functions solve a system of advection-

reaction equations that are derived from the stochastic

ordinary differential equations used in Monte Carlo simula-

tions of local control. These equations are solved numeri-

cally using a high-resolution finite difference scheme while

coupled to ordinary differential equations for the bulk myo-

plasmic and network SR [Ca21]. This produces a minimal

model of cardiac EC coupling that avoids computationally

demanding Monte Carlo simulation while accurately represent-

ing heterogeneous local Ca21 signals; in particular, the statis-

tical recruitment of CaRUs and the dynamics of junctional SR

depletion, spark termination, and junctional SR refilling.

Some of these results have previously appeared in abstract

form (29).

MODEL FORMULATION

The minimal whole cell model of cardiac EC coupling that is the focus of

this article can be formulated as a traditional Monte Carlo calculation in

which heterogeneous local Ca21 signals associated with a large number of

CaRUs are simulated. In this Monte Carlo formulation, a diadic subspace

and junctional SR compartment is associated with each CaRU and the

[Ca21] in these compartments is found by solving a large number of ordinary

differential equations. Alternatively, these heterogeneous local Ca21 signals

can be simulated using a novel probability density approach that represents

the distribution of diadic subspace and junctional SR Ca21 concentrations

with a system of partial differential equations (see below). Because many of

the equations and parameters of the whole cell model of EC coupling are

identical in the two formulations, we begin by presenting the Monte Carlo

formulation.

Whole cell model of EC coupling:
Monte Carlo formulation

Fig. 1 shows a diagram of the components and fluxes of the model of local

Ca21 signaling and CaRU activity during cardiac EC coupling that is the

focus of this article. As illustrated in Fig. 1 A, each Ca21 release unit includes

two restricted compartments (the diadic subspace and junctional SR) with

[Ca21] denoted by cn
ds and cn

jsr , respectively, where the superscripted n is an

index over a total number of Ca21 release units (denoted by N). Each Ca21

release unit includes an L-type Ca21 channel dihydropiridine receptor

(DHPR) and a minimal representation of a cluster of RyRs that is either fully

closed or fully open. The fluxes Jn
dhpr and Jn

ryr indicate Ca21 entry into a

subspace via the DHPR or RyR cluster, respectively. Diffusion of Ca21

between the nth diadic subspace and bulk myoplasm (cmyo) is indicated by

Jn
efflux. Similarly, Jn

refill indicates diffusion between the network SR (cnsr) and

junctional SR compartment associated with the nth Ca21 release unit.

Fig. 1 B illustrates how the bulk myoplasm and network SR Ca21

concentrations in the model are coupled via the diffusion fluxes

(Jn
efflux and Jn

refill) to a large number of Ca21 release units (for clarity only

four are shown). Importantly, each of the N Ca21 release units may have a

different diadic subspace (cn
ds) and junctional SR (cn

jsr) Ca21 concentration.

Four additional fluxes directly influence the bulk myoplasm: a background

Ca21 influx denoted by Jin, extrusion of Ca21 via the Na1-Ca21 exchanger

(Jncx), SR Ca21-ATPase (SERCA) pumps (Jserca) that resequester Ca21 into

the network SR, and a passive leak out of the network SR to the bulk

myoplasm (Jleak).
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A complete description of CICR would include stochastic gating of

roughly N ¼ 20,000 CaRUs, each of which would contain multiple L-type

Ca21 channels (1–10) (30) and RyRs (30–300) (31), with each individual

channel described by a Markov chain that consists of two to several tens of

states. However, previous Monte Carlo simulations of EC coupling focusing

on local control have often used Markov models of reduced complexity

(7,18,20). Because such minimal models capture the essential characteristics

of EC coupling gain and gradedness in simulated whole cell voltage clamp

protocols, this level of resolution will suffice for our main purpose, which is

to introduce the probability density approach as an alternative to Monte

Carlo simulation.

A minimal four-state Ca21 release unit model

Previous modeling studies indicate that the gating of the cluster of RyRs

associated with each CaRU is all-or-none (7,17,18) and this suggests the

following minimal two-state model of an RyR ‘‘megachannel’’,

k 1

ryrðc
n

ds; c
n

jsrÞ
½closed�C E * O½open�

k
�
ryr

; (1)

where the Ca21 activation of the cluster of RyRs is a sigmoidal function of

the diadic subspace [Ca21] (18),

k
1

ryr ¼ �k
1

ryr

ðcn

dsÞ
4

ðKryrÞ4 1 ðcn

dsÞ
4;

and the influence of junctional SR [Ca21] on RyR gating is included by

making the half-maximal activation of the RyR megachannel (Kryr) a

decreasing function of cn
jsr ,

Kryr ¼ K
max

ryr � aryrc
n

jsr;

so that depletion of the junctional SR will render CaRUs refractory to

activation after release terminates (18).

Similarly, to illustrate and validate the probability density approach it is

sufficient to consider a two-state model of the L-type Ca21 channel (DHPR),

k
1

dhprðVÞ
½closed�C E * O½open�

k�dhpr

; (2)

with a voltage-dependent activation rate kdhpr
1 given by (4)

k
1

dhpr ¼ �k
1

dhpr

e
ðV�Vu

dhprÞ=sdhpr

1 1 e
ðV�V

u
dhprÞ=sdhpr

;

and constant deactivation rate k�dhpr that sets the mean open time (0.2 ms) and

maximum open probability (0.1) of the channel. Although this two-state

DHPR model ignores voltage- and Ca21-dependent inactivation of L-type

Ca21 channels, these processes do not significantly influence the triggering

of CICR during the whole-cell voltage clamp protocols that are the focus of

this article (cf. Hinch (20)).

When the kinetic schemes of the RyR megachannel and DHPR (Eqs.

1 and 2) are combined we obtain the following minimal four-state model of a

Ca21 release unit,

FIGURE 1 Diagrams of model components and fluxes. (A) Each Ca21

release unit consists of two restricted compartments (the diadic subspace and

junctional SR with [Ca21] denoted by cds and cjsr, respectively), a two-state

L-type Ca21 channel (DHPR), and a two-state Ca21 release site (a RyR

‘‘megachannel’’ (18)). The t-tubular [Ca21] is denoted by cext and the fluxes

Jn
dhpr, Jn

ryr , Jn
efflux, Jn

refill, Jin, Jncx, Jserca, and Jleak are described in the text. (B)

The bulk myoplasm (cmyo) and network SR (cnsr) Ca21 concentrations in the

model are coupled via Jn
efflux and Jn

refill to a large number of Ca21 release units

(for clarity only four are shown), each with different diadic subspace (cn
ds)

and junctional SR (cn
jsr) Ca21 concentration.

k
1

ryrðc
n

ds; c
n

jsrÞ
½both closed� CC � CO ½RyRs open�

k
�
ryr

k
1

dhprðVÞ p k
�
dhpr k

�
dhpr q k

1

dhprðVÞ
k
�
ryr

½DHPR open� OC � OO ½both open�;
k 1

ryrðc
n

ds; c
n

jsrÞ

(3)
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where the horizontal transitions represent RyR opening and closing whereas

vertical transitions represent DHPR gating.

Concentration balance equations

In the Monte Carlo formulation of the minimal whole cell model of EC

coupling there are 2 1 2N ordinary differential equations representing Ca21

concentration balance for the bulk myoplasm, network SR, N diadic

subspaces, and N junctional SRs. Consistent with Fig. 1 these equations are

dcmyo

dt
¼ Jleak 1 J

T

efflux � Jncx � Jserca 1 Jin (4)

dc
n

ds

dt
¼ 1

lds

J
n

dhpr 1 J
n

ryr � J
n

efflux

� �
(5)

dc
n

jsr

dt
¼ 1

ljsr

J
n

refill � J
n

ryr

� �
(6)

dcnsr

dt
¼ 1

lnsr

Jserca � J
T

refill � Jleak

� �
; (7)

where 1 # n # N in Eqs. 5 and 6 and the total efflux and refill fluxes

occurring in Eqs. 4 and 7 include a contribution from each CaRU and thus

are given by JT
refill ¼ +N

n¼1
Jn

refill and JT
efflux ¼ +N

n¼1
Jn

efflux. Similarly, the total

(trigger) flux via DHPR channels and the total release flux via RyR mega-

channels throughout the whole cell model are given by

J
T

dhpr ¼ +
N

n¼1

J
n

dhpr and J
T

ryr ¼ +
N

n¼1

J
n

ryr: (8)

The effective volume ratios lnsr, lds, and ljsr in Eqs. 5–7 are defined with

respect to the physical volume (Vmyo) and include a constant-fraction Ca21

buffer capacity for the myoplasm (bmyo). For example, the effective volume

ratio associated with the network SR is

lnsr ¼
V̂nsr

V̂myo

¼ Vnsr=bnsr

Vmyo=bmyo

;

with effective volumes defined by V̂nsr ¼ Vnsr=bnsr and V̂myo ¼ Vmyo=bmyo.

Because each individual diadic subspace is assumed to have the same

physical volume (Vds) and buffering capacity (bds), the effective volume

ratio that occurs in Eq. 5 is

lds ¼
V̂ds

V̂myo

¼ Vds=bds

Vmyo=bmyo

¼ 1

N

V
T

ds=bds

Vmyo=bmyo

 !
; (9)

where the second expression defines lds in terms of the total physical volume

of all the diadic subspaces in aggregate (VT
ds ¼ NVds). Similar assumptions

and equations apply for the junctional SR so that the definition of ljsr follows

Eq. 9.

We also define an overall myoplasmic [Ca21] that includes contributions

from the bulk myoplasm and each of the N diadic spaces (scaled by their

effective volumes),

ĉmyo&ds ¼
V̂myocmyo 1 V̂ds +

N

n¼1
c

n

ds

V̂myocmyo 1 NV̂ds

¼ V̂myocmyo 1 V̂
T

dsc
avg

ds

V̂myocmyo 1 V̂T

ds

;

(10)

where the second equality uses natural definitions for the total effective

diadic subspace volume, V̂T
ds ¼ NV̂ds, and the average diadic subspace

[Ca21],

c
avg

ds ¼
1

N
+
N

n¼1

c
n

ds: (11)

Similarly, the overall SR [Ca21] involves both the junctional and network

SR,

ĉnsr&jsr ¼
V̂nsrcnsr 1 V̂jsr+

N

n¼1
c

n

jsr

V̂nsrcnsr 1 NV̂jsr

¼
V̂nsrcnsr 1 V̂

T

jsrc
avg

jsr

V̂nsrcnsr 1 V̂
T

jsr

; (12)

where V̂jsr ¼ Vjsr=bjsr , V̂T
jsr ¼ NV̂jsr , and the average junctional SR [Ca21] is

defined as cavg
jsr ¼ N�1+N

n¼1
cn

jsr .

Description of fluxes

The trigger Ca21 flux into each of the N diadic spaces through DHPR

channels (Jn
dhpr in Eq. 5) is given by

J
n

dhpr ¼ �
Am

zF
I

n

dhpr; (13)

where Am ¼ Cmbmyo/Vmyo. The inward Ca21 current (In
dhpr # 0) is given by

I
n

dhpr ¼ g
n

dhpr

P
T

dhpr

N

zFV

Vu

� �
c

n

dse
V=Vu � cext

e
V=Vu � 1

 !
; (14)

where Vu ¼ RT/zF, PT
dhpr is the total (whole cell) permeability of the L-type

Ca21 channels, and gn
dhpr is a random variable that is 0 when the L-type Ca21

channel associated with the nth CaRU is closed and 1 when this channel is

open (Eqs. 2 and 3).

Similarly, the flux through the RyR megachannel associated with the nth

CaRU (Jn
ryr) is given by

J
n

ryr ¼ g
n

ryr

v
T

ryr

N
c

n

jsr � c
n

ds

� �
; (15)

where gn
ryr ¼ 0 or 1 when the release site is closed or open, respectively (Eqs.

1 and 3). Diffusion from each subspace into the bulk myoplasm is given by

J
n

efflux ¼
v

T

efflux

N
c

n

ds � cmyo

� �
; (16)

and, similarly, diffusion from the network SR to each junctional SR

compartment is given by

J
n

refill ¼
v

T

refill

N
cnsr � c

n

jsr

� �
: (17)

The remaining four fluxes that appear in Eqs. 4–6 include Jin

(background Ca21 influx), Jncx (Na1-Ca21 exchange), Jserca (SR Ca21-

ATPases), and Jleak (the network SR leak). The functional form of these four

fluxes that directly influence the bulk myoplasmic [Ca21] follows previous

work (3,32,33) (see Appendix A).

Whole cell model of EC coupling: probability
density formulation

The probability density approach to modeling local Ca21 signaling and CaRU

activity during cardiac EC coupling is an alternative to Monte Carlo

simulation that is valid when the number of Ca21 release units is large. We

begin by defining continuous multivariate probability density functions for

the diadic subspace (c̃ds) and junctional SR (c̃jsr) Ca21 concentrations jointly

distributed with the state of the Ca21 release unit (S̃) (34,35,26), that is,

r
iðcds; cjsr; tÞdcdsdcjsr ¼ Prfcds , c̃dsðtÞ, cds 1 dcds and

cjsr , c̃jsrðtÞ, cjsr 1 dcjsr and

S̃ðtÞ ¼ ig;
(18)
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where the index i 2 fCC; CO;OC;OOg runs over the four Ca21 release unit

states (see Eq. 3) and the tildes on c̃dsðtÞ, c̃jsrðtÞ, and S̃ðtÞ indicate random

quantities. If the meaning of Eq. 18 is not obvious, it may be helpful to imagine

performing a Monte Carlo simulation as described in the previous section with

a very large number of CaRUs. At any time t one could randomly sample one

CaRU from this population to produce an instance of the random variables

S̃ðtÞ, c̃dsðtÞ, and c̃jsrðtÞ, corresponding to the current state of the sampled

L-type channel and RyR cluster and the diadic subspace and junctional SR

[Ca21] associated with this CaRU. The quantity ri(cds, cjsr, t) defined in Eq. 18

simply indicates the probability with which you would find this sampled

CaRU in state i with diadic subspace [Ca21] in the range [cds, cds 1 dcds] and

junctional SR [Ca21] in the range [cjsr, cjsr 1 dcjsr] provided the total number

of CaRUs is very large.

For the multivariate probability densities defined by Eq. 18 to be

consistent with the dynamics of the Monte Carlo model of cardiac EC

coupling described in the previous section, they must satisfy the following

system of advection-reaction equations (26–28),

where the advection rates f CCds , f COds , � � � , fOOjsr are functions of cds and cjsr that

can be read off the ordinary differential equations for the evolution the diadic

subspace and junctional SR [Ca21]. Consistent with Eqs. 5 and 6 we have

f
i

ds ¼
1

l
T

ds

g
i

dhprJ
T

dhpr 1 g
i

ryrJ
T

ryr � J
T

efflux

� �
(23)

f
i

jsr ¼
1

l
T

jsr

J
T

refill � g
i

ryrJ
T

ryr

� �
; (24)

where gdhpr
i indicates whether or not the L-type Ca21 channel is open

(gCCdhpr ¼ gCOdhpr ¼ 0, gOCdhpr ¼ gOOdhpr ¼ 1) and, similarly, gi
ryr indicates whether

or not the RyR channel cluster is open (gCCryr ¼ gCOryr ¼ 0, gOCryr ¼ gOOryr ¼ 1).

Eqs. 23 and 24 include four fluxes that may influence the diadic subspace and

junctional SR [Ca21] and consistent with Eqs. 13–17 these are given by

J
T

ryr ¼ v
T

ryrðcjsr � cdsÞ (25)

J
T

efflux ¼ v
T

efflux½cds � cmyoðtÞ� (26)

JT

refill ¼ vT

refill½cnsrðtÞ � cjsr� (27)

J
T

dhpr ¼ �AmP
T

dhpr

V

Vu

cn

dse
V=Vu � cext

e
V=Vu � 1

 !
: (28)

The advection terms in Eqs. 19–22 involving partial derivatives with

respect to cds and cjsr correspond to the deterministic dynamics of diadic

subspace and junctional SR Ca21 that depend on Ca21 release unit state via

gi
dhpr and gi

ryr (Eqs. 5 and 6). Conversely, the reaction terms in Eqs. 19 and 22

correspond to the stochastic gating of the four-state Ca21 release unit model

whose transition rates are presented above (Eqs. 1–3). That is, Ca21 release

unit state changes move probability from one joint probability density to

another in a manner that may [k1
ryrðcds; cjsrÞ] or may not [k1

dhprðVÞ, k�dhpr, and

k�ryr] depend on the diadic subspace and junctional SR [Ca21].

It is important to note that the functional form of the fluxes JT
efflux and JT

refill

occurring in Eqs. 23 and 24 involve the bulk myoplasmic and network SR Ca21

concentrations (cmyo(t) and cnsr(t) in Eqs. 26 and 27). These bulk Ca21

concentrations satisfy ordinary differential equations (ODEs) that are similar in

form to the concentration balance equations used in the Monte Carlo approach

(Eqs. 4 and 7),

dcmyo

dt
¼ Jleak 1 J

�
efflux � Jncx � Jserca 1 Jin (29)

dcnsr

dt
¼ 1

lnsr

Jserca � J�refill � Jleak

� �
; (30)

where Jleak, Jncx, Jserca, and Jin are defined as in the Monte Carlo approach

(see Appendix A), but Jefflux* and Jrefill* are functionals of the probability

densities [ri(cds, cjsr, t)] governed by Eqs. 19–22, that is,

J�efflux ¼
Z N

0

Z N

0

vT

efflux½cds � cmyoðtÞ�rTðcds; cjsr; tÞdcdsdcjsr

(31)

J
�
refill ¼

Z N

0

Z N

0

v
T

refill½cnsrðtÞ � cjsr�rTðcds; cjsr; tÞdcdsdcjsr; (32)

where rTðcds; cjsr; tÞ ¼ rCC1rCO1rOC1rOO is the total probability distri-

bution of the diadic subspace and junctional SR [Ca21] irrespective of the

state of a randomly sampled CaRU, and the double integrals account for all

possible values of diadic and junctional SR [Ca21].

Summary of model formulation

The probability density and Monte Carlo formulations of the minimal model

of EC coupling presented above have much in common. For example, the

dynamics of the bulk myoplasmic and network SR [Ca21] take similar forms

(compare Eqs. 29 and 30 to Eqs. 4 and 7). However, the two approaches differ

fundamentally in how the heterogeneous localized Ca21 concentrations

associated with a large number of Ca21 release units are represented. In the

traditional Monte Carlo simulation, 2N ordinary differential equations are

solved to determine the dynamics of [Ca21] in the diadic subspace and

junctional SR compartments associated with N Ca21 release units (Eqs. 5 and

6). In the probability density formulation, time-dependent multivariate

probability densities for the diadic subspace and junctional SR [Ca21] jointly

distributed with CaRU state are updated by solving four coupled advection-

reaction equations (Eqs. 19–22), one for each state of the chosen CaRU model

(Eq. 3). Further details of the probability density approach are presented in

Appendices B–D.
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RESULTS

In the following sections, traditional Monte Carlo simula-

tions of voltage-clamp protocols using the minimal whole

cell model of EC coupling presented above are shown to

produce high-gain Ca21 release that is graded with changes

in membrane potential, a phenomenon not exhibited by so-

called ‘‘common pool’’ models of excitation-contraction

coupling. Analysis of these Monte Carlo results suggests a

simplification of the advection-reaction equations that form

the basis of the probability density approach. This reduced

probability density formulation is subsequently validated

against, and benchmarked for computational efficiency by

comparison to, traditional Monte Carlo simulations.

Representative Monte Carlo simulations

Fig. 2 A shows representative Monte Carlo simulations of the

minimal whole cell model of EC coupling presented above

(Eqs. 1–17 and Appendix A). In this simulated voltage-clamp

protocol, the holding potential of�80 mV is followed by a 20-

ms duration test potential to�30,�20, and�10 mV (dotted,

dot-dashed, and solid lines, respectively). Because these

simulations involve a large but finite number of Ca21 release

units (N ¼ 5000), the resulting Ca21 influx through L-type

Ca21 channels (JT
dhpr), elevation in the average diadic sub-

space concentration (cavg
ds ), and the induced Ca21 release flux

(JT
ryr) are erratic functions of time. As expected, the test poten-

tial of �10 mV leads to greater Ca21 influx, higher diadic

subspace [Ca21], and more Ca21 release than the test

potentials of �30 and �20 mV. When the test potential is

�10 mV a 303 ‘‘gain’’ is observed, here defined as the ratio
�J T
ryr=

�J T
dhpr where the overbar indicates an average over the

duration of the pulse. Importantly, Ca21 release exhibited by

this Monte Carlo model is graded with changes in membrane

potential (compare traces) and depolarization duration (not

shown), phenomena that are not exhibited by common pool

models of excitation-contraction coupling.

Figs. 2 B shows a direct comparison between test potentials

of �10 and 10 mV. These test potentials result in nearly

identical whole cell Ca21 currents (averaged over the duration

of the pulse, �JT
dhpr ¼ 1.6 and 1.4 mM/s, respectively). In spite

of this, the induced Ca21 release flux is significantly greater

when the test potential is �10 mV (�J T
ryr ¼ 47 mM/s) as

opposed to 10 mV (21 mM/s). This phenomenon occurs

because the L-type channel open probability is greater at 10

mV than �10 mV (Eq. 2), while the driving force for Ca21

ions is reduced (Eqs. 13 and 14). Although the overall trigger

Ca21 flux is nearly the same at these two test potentials, Ca21

release is more effectively induced when the trigger Ca21 is

apportioned in larger quantities among a smaller number of

diadic subspaces, because the influx that does occur is then

more likely to trigger Ca21 sparks. This physiologically real-

istic aspect of local control during EC coupling is observed in

Monte Carlo simulations (see also (19,21)), but cannot be re-

produced by common pool models (7), nor is it seen in models

in which SR Ca21 release depends explicitly on whole-cell

Ca21 current (e.g., (16)).

The solid lines of Fig. 3 show [Ca21] in the bulk myo-

plasm (cmyo) and network SR (cnsr) during and after the �10

mV voltage pulse (note change in timescale). Approximately

400 ms is required for the bulk myoplasm and network SR

concentrations to return to resting levels. Note that although

the voltage pulse ends at t ¼ 30 ms, the bulk myoplasmic

[Ca21] continues to increase for ;20 ms. Similarly, the

network SR [Ca21] concentration continues to decrease until

t ¼ 80 ms.

The dashed line of Fig. 3 shows that the total SR [Ca21]

including both network and junctional SR (Eq. 12) is

transiently less than the network SR [Ca21] (ĉnsr&jsr,cnsr),

reflecting the fact that for several hundred milliseconds after

FIGURE 2 (A) Monte Carlo simulation of the whole cell model exhibits

graded release during step depolarization from a holding potential of �80

mV to �30, �20, and �10 mV (dotted, dot-dashed, and solid lines,

respectively). From top to bottom: command voltage, average diadic

subspace [Ca21] (cavg
ds , Eq. 11), total Ca21 flux via L-type PM Ca21 channels

(JT
dhpr, Eqs. 8, 13, and 14), and total Ca21-induced Ca21 release flux (JT

ryr,

Eqs. 8 and 15). The simulation used N¼ 5000 Ca21 release units. (B) Monte

Carlo simulations similar to panel A except that the step potential is �10

(solid lines) and 110 mV (dotted lines), respectively. Here and below

parameters are as in Tables 1–3.
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the voltage pulse junctional SR Ca21 is depleted. While the

ratio between the total junctional SR effective volume and the

network SR effective volume is V̂T
jsr=V̂nsr � 2, the correspond-

ing ratio between the total diadic subspace volume and the

myoplasmic volume is much smaller (V̂T
ds=V̂myo � 10�4).

Consequently, the elevated average diadic subspace [Ca21]

during the depolarizing voltage step (cavg
ds � 10 mM as shown

in Fig. 2) does not significantly increase the overall myo-

plasmic [Ca21] (ĉmyo&ds � cmyo and the two traces overlap in

Fig. 3). On the other hand, depleted junctional SR Ca21 during

and after the voltage pulse (cavg
jsr � 500 mM, not shown)

represents a significant depletion of the overall SR Ca21

content (ĉnsr&jsr,cnsr in Fig. 3). Although junctional SR

depletion develops rapidly after the initiation of the voltage

pulse, refilling of these compartments via diffusion of Ca21

from the network SR (Jn
refill in Eq. 6) is not complete until ;400

ms after the termination of the voltage pulse (compare solid
and dashed lines).

Dynamics of a representative Ca21 release unit

Fig. 4 shows the dynamics of an individual Ca21 release unit

from the Monte Carlo simulations above (test potential of

�10 mV, solid line of Fig. 2). Fig. 4 A shows the state of this

representative Ca21 release unit and the associated diadic

subspace and junctional SR Ca21 concentrations. When the

DHPR initially opens (transition from state CC toOC in Eq. 3)

an influx of trigger Ca21 leads to ;7 mM increase in diadic

subspace [Ca21] and causes the RyR cluster to open (OC/
OO transition). The resulting Ca21-induced Ca21 release

quickly drives the diadic subspace [Ca21] to ;150 mM but

over the next 10 ms the resulting decrease in junctional SR

[Ca21] leads to decreasing diadic subspace [Ca21]. Note that

junctional SR depletion is nearly complete in Fig. 4 before the

CO to CC transition that ends Ca21 release; however, this

example is not representative in this regard because most

sparks terminate via stochastic attrition whereas depletion is

only partial. Superimposed on the gradual decrease in diadic

subspace [Ca21] are square pulses of increased [Ca21] (67

mM) due to the stochastic openings of the L-type Ca21 channel

associated with this CaRU (CO�OO transitions).

The observation that diadic subspace [Ca21] decreases

during the voltage pulse suggests that its dynamics are fast

compared to the time evolution of junctional SR [Ca21]. In

fact, for the physiologically realistic parameters used in Figs.

2–4, the diadic subspace [Ca21] (cn
ds) is well approximated

by assuming quasistatic equilibrium with the junctional SR

(cn
jsr), bulk myoplasmic (cmyo), and network SR (cnsr) Ca21

concentrations. Setting the dcn
ds/dt ¼ 0 in Eq. 5 and solving

for cn
ds we find that

FIGURE 3 Solid lines show the dynamics of bulk myoplasmic (cmyo) and

network SR (cnsr) [Ca21] in the whole cell voltage clamp protocol of Fig. 2

with step potential of �10 mV (note longer timescale). Dashed lines show

the overall myoplasmic (ĉmyo ds, Eq. 10) and network SR (ĉnsr&jsr , Eq. 12)

[Ca21] that include contributions from diadic subspaces and junctional SR,

respectively. Note that ĉmyo&ds is only slightly greater than cmyo and the two

traces are not distinguishable.

FIGURE 4 (A) Dynamics of the diadic subspace (cn
ds) and junctional SR

(cn
jsr) Ca21 concentrations associated with a single Ca21 release unit during

the voltage clamp protocol of Figs. 2 and 3. (B) The dynamics of these local

Ca21 concentrations in the (cds,cjsr)-plane. Trajectory color indicates CaRU

state: both the L-type channel and the RyR cluster closed (CC, black); L-type

channel open and RyR cluster closed (OC, green); L-type channel closed

and RyR cluster open (CO, blue); both the L-type channel and the RyR

cluster open (OO, red). Colored dashed lines correspond to estimates of

diadic subspace [Ca21] given by Eq. 33.
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efflux � g
i

dhprJ
1

dhpr

; (33)

where gi
dhpr and gi

ryr depend on Ca21 release unit state and

J0
dhpr and J1

dhpr are functions of plasma membrane voltage de-

fined by JT
dhpr ¼ J0

dhpr1cdsJ
1
dhpr with JT

dhpr as in Eq. 28.

Fig. 4 B replots the dynamics of the diadic subspace and

junctional SR [Ca21] shown in Fig. 4 A in the (cds, cjsr)-

plane. The black arrows indicate the direction of the tra-

jectories and color of the solid lines indicates CaRU state

(CC, black; OC, green; OO, red; CO, blue). The diagonal

trajectory is one consequence of diadic subspace [Ca21]

being ‘‘slaved’’ to junctional SR [Ca21] as the junctional SR

depletes. The four colored dotted lines correspond to the four

functional relationships between cn
ds and cn

jsr given by Eq. 33

(one for each CaRU state). The dynamics of diadic subspace

[Ca21] (solid lines) are well approximated by these dotted

lines (save for short time intervals immediately following

CaRU state transitions), demonstrating the validity of the

quasistatic approximation leading to Eq. 33.

Dynamics of the population of Ca21 release units

Fig. 4 shows the dynamics of the diadic subspace and

junctional SR [Ca21] associated with a single Ca21 release

unit during a voltage clamp step (Figs. 2 and 3). Conversely,

Fig. 5 presents the state of each of the 5000 CaRUs at a

particular moment in time (t¼ 30 ms, halfway through the test

potential of �10 mV). To interpret this figure, it is important

to understand that the four central panels of Fig. 5 correspond

to the four CaRU states and are arranged in a manner

corresponding to the transition state diagram of Eq. 3. At this

moment during the simulation, ;5% of the Ca21 release units

have open L-type channels (NOC1NOO ¼ 244) whereas

;30% have an open RyR cluster (NCO1NOO ¼ 1459).

Note that for each of the four subpopulations of CaRUs there

is a linear relationship between cds and cjsr, that is, the open

circles tend to be arranged in lines, the position of which

depends on CaRU state (and the slope of which depends on

whether or not the RyR cluster is open). Thus, Fig. 5 de-

monstrates that across the entire population of Ca21 release

units, the observed diadic subspace [Ca21] is well approxi-

mated by the quasistatic approximation given by Eq. 33.

Fig. 5 also shows histograms of the observed distribution

of diadic subspace [Ca21] (horizontal) and junctional SR

[Ca21] (vertical). The histograms associated with CaRU

state CC clearly indicate that most of these 3387 CaRUs have

replete junctional SR (cn
jsr � 1000mM), something that is not

obvious from the open circles in the (cds, cjsr)-plane.

Similarly, most of the 154 CaRUs in state OC are associated

with replete junctional SR. Conversely, the junctional SR

[Ca21] for the 1369 CaRUs in state CO is broadly distributed

with the ‘‘average’’ junctional SR severely depleted (;100

mM). At t ¼ 30 ms only 90 CaRUs are in state OO and the

distributions of junctional SR [Ca21] and diadic subspace

[Ca21] associated with this state are bimodal.

A univariate probability density formulation for
junctional SR [Ca21]

It is important to note that the Monte Carlo simulations pre-

sented in Fig. 5 are only a snapshot of the population of 5000

Ca21 release units. As the simulation progresses, imagine the

open circles moving around in these four (cds, cjsr)-planes

consistent with Eqs. 5 and 6 with occasional jumps from one

plane to another when a CaRU changes state. These four

planes are analogous to the four time-dependent joint prob-

ability densities that form the basis of the probability density

approach presented above (Eq. 18).

The observation that the diadic subspace [Ca21] is well

approximated by Eq. 33 across the entire population of Ca21

release units (Fig. 5) suggests that the multivariate joint

probability density functions defined in Eq. 18 will be well

approximated by

r
iðcds; cjsr; tÞ ¼ r

i

jsrðcjsr; tÞd cds � �c
i

ds

� �
; (34)

where �ci
ds is a function of CaRU state and the junctional SR,

bulk myoplasmic, and network SR [Ca21] analogous to Eq. 33,

�c
i

ds ¼
g

i

dhprJ
0

dhpr 1 v
T

effluxcmyo 1 g
i

ryrv
T

ryrcjsr

g
i

ryrv
T

ryr 1 v
T

efflux � g
i

dhprJ
1

dhpr

; (35)

where gi
dhpr, gi

ryr, J0
dhpr, and J1

dhpr are as defined in the pre-

vious section. The univariate probability density ri
jsr(cjsr, t)

FIGURE 5 The open circles are a snapshot at t ¼ 30 ms of the diadic

subspace (cn
ds) and junctional SR (cn

jsr) Ca21 concentrations in the Monte

Carlo simulation of Fig. 2. Each of the four central panels corresponds to a

particular Ca21 release unit state and size of each subpopulation at this

moment is indicated by NCC through NOO. The horizontally (vertically)

oriented histograms give the marginal distribution of diadic subspace

(junctional SR) [Ca21] conditioned on CaRU state. Histograms are scaled

for clarity and in some cases also truncated (asterisks).
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that appears in Eq. 34 is the marginal density of the junc-

tional SR [Ca21] jointly distributed with CaRU state defined

by

r
i

jsrðcjsr; tÞdcjsr ¼ Prfcjsr , c̃jsrðtÞ, cjsr 1 dcjsr and

S̃ðtÞ ¼ ig: (36)

That is, when the observed form of the joint multivariate

probability densities (Eq. 34) is integrated with respect to

diadic subspace [Ca21] we obtainZ N

0

ðri
cds; cjsr; tÞdcds ¼

Z N

0

r
i

jsrðcjsr; tÞd cds � �c
i

ds

� �
dcds

¼ r
i

jsrðcjsr; tÞ
Z N

0

d cds � �c
i

ds

� �
dcds

¼ r
i

jsrðcjsr; tÞ; (37)

where the last equality uses the unit mass of the d function,RN
0

d cds � �ci
ds

� �
dcds ¼ 1.

As shown in Appendix C, the observed form of the

multivariate probability densities (Eq. 34) and the definition

of the marginal density (first equality in Eq. 37) can be used

to reduce Eqs. 19–22 into a univariate version of the prob-

ability density formulation that focuses on the dynamics of

the marginal densities for the junctional SR [Ca21] jointly

distributed with CaRU state [ri
jsr(cjsr, t)]. The resulting

advection-reaction equations are (26–28),
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where the advection rates �f CCjsr , �f COjsr , �fOCjsr , and �fOOjsr are given by

Eq. 24 with the substitution of �ci
ds for cds, that is,

�f
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i

ryrJ
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(42)

¼ 1
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i

ryrv
T

ryr cjsr � �c
i

dsðtÞ
� 	n o

; (43)

where �ci
dsðtÞ is the function of cmyo(t), cjsr, and CaRU state (i)

given by Eq. 35.

In this univariate probability density formulation, the bulk

myoplasmic and network SR [Ca21] are still given by Eqs.

29 and 30, but Jefflux* and Jrefill* are now functionals of the joint

marginal probability densities [ri
jsr(cjsr, t)],

J�efflux ¼ +
M

i¼1

Z N

0

vT

efflux
�c i

ds � cmyoðtÞ
� 	

r
i

jsrðcjsr; tÞdcjsr (44)

J
�
refill ¼ +

M

i¼1

Z N

0

v
T

refill½cnsrðtÞ � cjsr�ri

jsrðcjsr; tÞdcjsr: (45)

Comparison of probability density and Monte
Carlo results

The four histograms presented in Fig. 6, A–D, show the

marginal distributions of junctional SR [Ca21] observed in

Fig. 5 on identical scales. When presented in this fashion it

becomes apparent that at t ¼ 30 ms only a small fraction

(;5%) of the Ca21 release units have open L-type Ca21

channels (statesOC andOO), while ;30% contain open RyR

clusters (CO andOO). Note that in Fig. 6 A the histogram bin

representing Ca21 release units with closed L-type Ca21

channel, closed RyR cluster, and replete junctional SR is

truncated; in fact, ;80% of CaRUs in state CC have cn
jsr � cnsr.

With this understanding, a comparison of Fig. 6, A and B,

shows that CaRUs with open RyR clusters are more likely to

be depleted than CaRUs with closed RyR clusters, but CaRUs

with closed RyR clusters are not necessarily replete, because

recovery of junctional SR [Ca21] is not complete until ;400

ms after RyR closure (cf. Fig. 3).

The solid lines of Fig. 6, A–D, show snapshots of the four

joint probability densities rCCjsr ðcjsr; tÞ, rCOjsr ðcjsr; tÞ, rOCjsr ðcjsr; tÞ,
and rOOjsr ðcjsr; tÞ as calculated using the probability density

approach (t ¼ 30 ms). These results were obtained by

numerically solving Eqs. 29, 30, and 38–45 using the

numerical scheme presented in Appendix D (parameters as

in Figs. 2–5). Importantly, the entire distribution of junctional

SR Ca21 concentrations observed for each CaRU state in the

probability density calculation (solid lines) agrees with the

corresponding Monte Carlo result (histograms), thereby

validating the probability density methodology and our

implementation of both approaches. In particular, notice

that the fraction of CaRUs in each state given by

p
iðtÞ ¼ PrfS̃ðtÞ ¼ ig ¼

Z N

0

r
i

jsrðcjsr; tÞdcjsr; (46)

in the probability density calculation is consistent with the

Monte Carlo simulation Fig. 5, for example, in Fig. 6 A pCC ¼
0:67 and this corresponds to NCC=N ¼ 3387=5000 in Fig. 5 A.

While Fig. 6 shows the four marginal probability densities

[ri
jsr(cjsr, t)] for the junctional SR [Ca21] jointly distributed

with CaRU state at a particular moment in time, Fig. 7 A
shows the total probability density

r
T

jsrðcjsr; tÞ ¼ r
CC
jsr 1 r

CO
jsr 1 r

OC
jsr 1 r

OO
jsr ; (47)

evolving over time. Initially the mass of this probability

density is concentrated at cjsr � 1000 mM (a in Fig. 7).
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During the 20-ms voltage pulse, a significant fraction of the

probability density (;65%) moves to junctional SR Ca21

concentrations that are more than half-depleted (b), while

;35% remains above 500 mM. Interestingly, the probability

density remains bimodal for ;200 ms after the voltage pulse

ends (c and d). During this time, the probability mass that

corresponds to depleted junctional SR (c) gradually moves to

higher values of cjsr as these junctional SR compartments are

refilled via Ca21 transport from the network SR. At the same

time, the probability mass that corresponds to replete junc-

tional SR compartments (d) follows the network SR [Ca21]

that decreases from t ¼ 30–100 ms and increases again when

t . 100 ms (recall the solid line in Fig. 3). Perhaps most

importantly, Fig. 7 shows that the shape and temporal evolu-

tion of the distributions that form the basis of the probability

density approach can be quite complicated.

Monte Carlo simulations converge to the
probability density result

The coupled system of advection-reaction equations used in

the univariate probability density approach (Eqs. 38–41) are

the master equations for the marginal probability densities for

junctional SR [Ca21] jointly distributed with the Ca21 release

unit state (Eq. 36). Solving these partial differential equations

is equivalent to performing Monte Carlo simulation of diadic

subspace [Ca21], junctional SR [Ca21], and CaRU state

provided that: 1), diadic subspace [Ca21] is a fast dynamic

variable in quasistatic equilibrium with junctional SR [Ca21];

and 2), the number of Ca21 release units (N) is large enough.

Fig. 6 demonstrates agreement between probability density

simulations of a minimal whole cell model of EC coupling and

corresponding Monte Carlo simulations using N ¼ 5000

CaRUs. Because this agreement will only improve when the

number of CaRUs is increased to physiologically realistic

values (N ¼ 20,000), the probability density approach is

clearly a viable method of modeling heterogeneous diadic

subspace and junctional SR [Ca21] during EC coupling.

Fig. 8 clarifies this point by showing how the total release

flux (JT
ryr, open squares) observed in Monte Carlo simulation

converges to the probability density result (solid lines) as the

number of Ca21 release units is increased from N ¼ 50–

20,000. Each panel shows a representative Monte Carlo

simulation with voltage step to �10 mV (solid gray line) as

well as the mean and standard deviation of 10 trials (open
squares and error bars). As expected, the fluctuations in the

total release flux decrease in magnitude as the number of

CaRUs used in the Monte Carlo calculation increases. Sim-

ilarly, Fig. 9 shows histograms of the junctional SR [Ca21]

(irrespective of CaRU state) at t ¼ 30 ms in Monte Carlo

simulations performed with a greater or lesser number of

CaRUs. Notice that the probability density function rT(cjsr, t)
(Eq. 47) accurately represents the distribution of junctional

SR [Ca21] so long as the number of CaRUs is 5000 or more.

Indeed, in both Figs. 8 and 9 the Monte Carlo simulations are

converging to the probability density result well before the

Monte Carlo calculations include a physiological number of

Ca21 release units (N ¼ 20,000). This indicates that the

FIGURE 6 Histograms of the junctional SR

Ca21 concentrations (cn
jsr) at t ¼ 30 ms in the

Monte Carlo simulation of Figs. 2–5 jointly

distributed with CaRU state. These histograms

are plotted on the same scale, but one is

truncated for clarity. For comparison, the solid

lines show the four joint probability densities

rCCjsr ðcjsr; tÞ, rCOjsr ðcjsr; tÞ, rOCjsr ðcjsr; tÞ, and

rOOjsr ðcjsr; tÞ for junctional SR [Ca21] (Eq. 34)

calculated via numerical solution of Eqs. 29,

30, and 38–45. The probability density calcu-

lation of the fraction of subunits in each of the

four states is denoted by pi (Eq. 46).
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probability density approach to modeling local Ca21 sig-

naling and Ca21 release unit activity in cardiac myocytes is a

viable alternative to Monte Carlo simulation.

The probability density calculation exhibits gain
and gradedness

To further compare the probability density and Monte Carlo

approaches, Fig. 10 A summarizes a large number of sim-

ulated whole cell voltage clamp protocols such as those

presented in Fig. 2. The open circles and error bars of Fig. 10

A show the trigger Ca21 influx via L-type Ca21 channels

integrated over the 20-ms voltage step to test potentials in the

range �40–40 mV (mean 6 SD for 10 Monte Carlo sim-

ulations using 10,000 CaRUs). For comparison, the solid

lines of Fig. 10 A show that the trigger Ca21 influx in the

probability density calculation agrees with the Monte Carlo

simulations. Similarly, the open squares of Fig. 10 A show

the voltage dependence of the Ca21 release flux plotted in a

manner that illustrates the pronounced EC coupling gain in

the Monte Carlo calculations, while the dashed lines of Fig.

10 A show that the Ca21 release flux observed in the corre-

sponding probability density calculations also exhibits high

gain. When these trigger and release fluxes are normalized

and replotted in Fig. 10 B, the gradedness of Ca21 release

with respect to membrane potential and Ca21 influx is

highlighted. In particular, we note that both the Monte Carlo

and probability density calculations exhibit graded Ca21

release and that the voltage dependence of the EC coupling

gain is nearly identical in the two formulations (see Fig.

10 C).

Computational efficiency of the probability
density approach

The convergence between the Monte Carlo and probability

density calculations presented above indicates that the

probability density approach is a viable alternative to Monte

Carlo simulations of heterogeneous local [Ca21] and Ca21

release unit activity in cardiac myocytes. In fact, as shown in

Fig. 10, the probability density approach leads to EC cou-

pling dynamics that are nearly identical to Monte Carlo calcu-

lations so long as these Monte Carlo simulations involve a

realistic number of Ca21 release units (N . 5000).

Because the probability density and Monte Carlo calcu-

lations are essentially equivalent in terms of the cellular

responses they predict, it is of interest to explore the compu-

tational efficiency of the two approaches. The solid squares

of Fig. 11 show the run time required to perform a simulated

whole cell voltage clamp protocol such as those presented in

FIGURE 7 Waterfall plot (A) and snapshots (B) of the time evolution of

the total probability density for the junctional SR [Ca21] (rT(cjsr, t) given by

Eq. 47) calculated via numerical solution of Eqs. 29, 30, and 38–45. The

solid black lines show the 20-ms voltage step to �10 mV. See text for

description of a–d.

FIGURE 8 Total Ca21 release flux (JT
ryr) in Monte Carlo simulations

utilizing increasing numbers of Ca21 release units (N ¼ 50, 500, 5000, and

20,000, respectively). Each panel shows a representative Monte Carlo

simulation (solid gray line) and the mean and standard deviation of 10 trials

(open squares and error bars). The solid lines show the corresponding

probability density result (same in each panel).
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Fig. 2 using traditional Monte Carlo simulation methods. As

expected, the run time increases with the number of Ca21

release units used and this run time scales linearly with the

number of CaRUs when N is large. For comparison, the thick

dashed line of Fig. 11 shows the 2.1-min run time required

for the univariate probability density approach, that is, numer-

ical solution of Eqs. 29, 30, and 38–45 (see Appendix D).

Notice that the intersection of the filled squares and the thick

dashed line in Fig. 11 shows that a Monte Carlo simulation

using ;500 CaRUs leads to the same run time as the

probability density approach. Not only is this smaller than

the true number of CaRUs in a ventricular myocyte, but in

practice multiple Monte Carlo runs would have to be per-

formed and averaged to obtain a definitive result. For ex-

ample, if 10 trials are to be averaged as in Fig. 8, then the

appropriate comparison is given by the open squares and the

thick dashed line and these show that the probability density

approach requires less run time than 10 Monte Carlo

simulations with 50 CaRUs. Intriguingly, and perhaps most

importantly, when the traditional Monte Carlo simulations use

a physiologically realistic number of CaRUs, the probability

density approach is ;35 times faster than Monte Carlo (73

vs. 2.1 min). Although the computational efficiency of the

probability density approach as compared to Monte Carlo

simulation may be model dependent, in the context of this

whole cell model an additional 203 acceleration is easily

obtained (see thin dotted line in Fig. 8 and Discussion). For

this reason we suggest that the probability density approach

be further investigated and developed as a computationally

efficient alternative to Monte Carlo simulations of the local

control of EC coupling in cardiac myocytes.

DISCUSSION

In this article we have introduced, validated, and benchmarked

a novel probability density approach to modeling localized

Ca21 influx via L-type Ca21 channels and Ca21-induced

Ca21 release mediated by clusters of RyRs during excitation-

contraction coupling in cardiac myocytes. To illustrate the

approach we have focused on a minimal whole cell model of

cardiac EC coupling that includes a four-state Ca21 release

unit representing voltage-dependent activation of an L-type

Ca21 channels as well as Ca21-induced Ca21 release mediated

by a two-state RyR cluster that includes regulation by both

diadic subspace and junctional SR Ca21. However, it is im-

portant to note that the probability density formulation does

not require a minimal Ca21 release unit model; in fact, the ap-

proach is fully generalizable to CaRUs with an arbitrary

number of states (see Appendix B).

As illustrated by leftmost schematic in Fig. 12, the Monte

Carlo formulation of the minimal whole cell model of EC

coupling that is the focus of this article includes 2 1 2N
ordinary differential equations representing [Ca21] balance for

the bulk myoplasm, network SR, N diadic subspaces, and N
junctional SRs. Alternatively, the probability density formu-

lation represents the dynamics of these heterogeneous local

Ca21 signals using a system of advection-reaction equations

for the time-dependent probability density of diadic subspace

and junctional SR [Ca21] conditioned on Ca21 release unit

state. In this formulation, the number of equations (M) is equal

the number of unique states that define the gating behavior of

the CaRU. As originally derived, these joint probability

densities are two-dimensional, that is, at a specified time they

are functions of both cds and cjsr. The system of advection-

reaction equations satisfied by these multivariate probability

densities is the ‘‘master equation’’ for diadic subspace and

junctional SR [Ca21] jointly distributed with the Ca21 release

unit state. The only approximation used in the derivation of

these equations is that the number of CaRUs units is very large

(N/N).

In the Monte Carlo simulations of the whole cell model of

cardiac EC coupling we observed that diadic subspace [Ca21]

was in quasistatic equilibrium with junctional SR [Ca21]. Fig.

12 illustrates this feature of the simulations with two thick

gray lines in two (cds,cjsr)-planes labeled ‘‘slaved diadic

subspace’’ (the lines have different slopes as in Fig. 5). In this

situation the multivariate probability density functions de-

fined in Eq. 18 are well approximated by univariate (marginal)

probability densities representing the time-dependent proba-

bility density of junctional sarcoplasmic reticulum [Ca21]

jointly distributed with CaRU state. These marginal proba-

bility densities are one-dimensional, that is, at a specified time

they are functions of cjsr (illustrated by narrow rectangles in

Fig. 12). When the system of advection-reaction equations

FIGURE 9 Histograms of junctional SR [Ca21] (cn
jsr) at t ¼ 30 ms in the

Monte Carlo simulations similar to Fig. 5 but with increasing numbers of

Ca21 release units (N ¼ 50, 500, 5000, and 20,000, respectively) One bin

representing ;57% probability of a replete junctional SR is truncated for

clarity (asterisk). The solid lines show the probability density calculation of

rT(cjsr, t) (Eq. 47), the distribution of the total probability density for the

junctional SR [Ca21] (same in each panel).
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satisfied by these marginal probability densities was solved

numerically using a high-resolution finite difference scheme

(see Appendix D), a realistic but minimal model of cardiac

excitation-contraction coupling is produced that includes a

novel representation of heterogeneous junctional SR [Ca21].

Importantly, we have validated this novel probability den-

sity approach to modeling local control of Ca21 release against

traditional Monte Carlo simulations with a physiologically

realistic number of CaRUs. In simulated voltage-clamp

protocols, the univariate probability density formulation of

our whole cell model of cardiac EC coupling produced high-

gain Ca21 release that was graded with changes in membrane

potential. Indeed, the voltage dependence of trigger Ca21

influx via L-type Ca21 channels, the resulting Ca21 release

via RyR clusters, and the observed EC coupling gain obtained

using the univariate probability density formulation are nearly

identical to that seen in corresponding Monte Carlo calcula-

tions. This agreement validates the conceptually novel aspects

of the probability density formulation as well as our imple-

mentation of both approaches.

Relationship to other simplified models of
EC coupling

It is instructive to compare and contrast the probability

density approach introduced in this article to models of the

local control of EC coupling that have previously appeared.

As shown diagrammatically in Fig. 12, the Monte Carlo local

control model of EC coupling that is our starting point

includes 2N 1 2 compartments, similar to the functional orga-

nization of some previously published Monte Carlo models

of local control (19), but distinct from two recently published

simplified models (20,21) that do not make a distinction

between junctional and network SR.

The one requirement for the validity of the multivariate

probability density approach is that the number of CaRUs

units is very large (denoted by N/N in Fig. 12). Although

previously published models of local control also assume that

the number of CaRUs is very large (20,21), the multivariate

probability density approach represents this ‘‘large system

size’’ limit in a manner that accounts for the heterogeneous

diadic subspace and junctional SR Ca21 concentrations.

Similar to previously published simplified models of local

control (20,21), we make use of the fact that diadic subspace

Ca21 is a fast dynamic variable. Because Hinch (20) and

Greenstein et al. (21) do not distinguish junctional and network

FIGURE 10 Summary of simulated whole cell voltage clamp protocols

such as those presented in Fig. 2 using both the Monte Carlo and probability

density formulations. (A) Open circles and error bars show trigger Ca21

influx via L-type Ca21 channels integrated over the 20-ms voltage step to

test potentials in the range �40–40 mV (mean 6 SD for 10 Monte Carlo

simulations using 10,000 CaRUs). Open squares and error bars show the

voltage dependence of the resulting Ca21 release. The solid and dashed lines

of Fig. 10 A show that the trigger and release fluxes as calculated using the

probability density approach agrees with these Monte Carlo simulations. (B)

Results from panel A normalized and replotted to emphasize gradedness of

Ca21 release with respect to membrane potential and Ca21 influx. (C) EC

coupling gain as a function of membrane potential for Monte Carlo (open

squares and error bars) and probability density (solid line) calculations.
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SR, the assumption of fast diadic subspace Ca21 immediately

leads to a simplified local control model involving M ODEs

(one for each CaRU state). Conversely, in this article the

observation that diadic subspace Ca21 is in quasistatic

equilibrium with junctional SR Ca21 allows us to reduce the

multivariate probability density formulation to a univariate

form that still accounts for the dynamics of junctional SR

depletion. This reduction from the multivariate to univariate

probability density approach is denoted by the arrow labeled

‘‘fast ds/slow jsr’’ in Fig. 12.

Note that if diadic subspace and junctional SR [Ca21]

changes were both fast compared to the stochastic gating of

Ca21 release units, the Monte Carlo simulations of Fig. 2 would

have revealed d-function-like probability densities. That is,

rather than observing the linear relationship between diadic

subspace and junctional SR [Ca21] in each (cds,cjsr)-plane that

suggested Eq. 34, we would instead have observed that the

probability density in each plane was well approximated by

r
iðcds; cjsr; tÞ ¼ p

iðtÞd cds � �c
i

ds

� �
d
�
cjsr � �c

i

jsr

�
;

where 1 # i # M is the index over CaRU states and �ci
ds and �ci

jsr

are functions of cmyo and cnsr found by simultaneously solving

Eqs. 5 and 6 with the left-hand sides equal to zero. Although

this ‘‘fast domain limit’’ was not observed in our Monte Carlo

simulations, for completeness it is denoted in Fig. 12 by the

arrow labeled ‘‘fast ds/fast jsr’’. If the simplified models of

local control that have previously appeared (20,21) were

generalized to account for heterogeneous junctional SR

[Ca21], they would correspond to the ‘‘fast domain limit’’ of

the multivariate probability density approach presented here.

Computational efficiency of the probability
density approach

While the probability density and Monte Carlo calculations are

essentially equivalent in terms of the dynamics cellular

responses they predict, the probability density approach can

be significantly faster than Monte Carlo simulation (Fig. 11).

Indeed, when both methods are applied using the same

(nonadaptive) time step, our current implementation of the

univariate probability density approach is ;353 faster than

Monte Carlo simulations that employ a physiologically realistic

number of CaRUs. Intriguingly, when this comparison is made

using time steps that are distinct and as large as possible while

ensuring numerical stability and accuracy of each calculation,

we find that the univariate probability density approach can be

up to 6503 faster than the corresponding Monte Carlo

simulations. For example, the thin dotted line of Fig. 11

indicates a 6.6-s run time for the probability density approach

with a time step of 0.02 ms. This suggests that the probability

density approach could be further investigated and developed as

a computationally efficient alternative to Monte Carlo simula-

tions of the local control of EC coupling in cardiac myocytes.

Although the computational efficiency of the probability

density approach is intriguing, it is important to note that the

relative merits of Monte Carlo and probability density

FIGURE 11 Solid squares show the run time required to perform a

simulated whole cell voltage clamp protocol such as those presented in Fig.

2 using traditional Monte Carlo simulation methods when the number of

Ca21 release units is increased from N ¼ 50 to 20,000. Open squares show

10 times the Monte Carlo run time to account for averaging multiple trials as

in Fig. 8. The thick dashed line and thin dot-dashed lines show the run time

required for the univariate probability density approach using mesh sizes of

L¼ 50, 100, and 200 and a time step of 1 ms. The thin dotted line shows the

univariate probability density approach run time using mesh sizes of

L ¼ 100 and a time step of 0.02 ms (see Discussion and Appendix D). Total

simulation time is 60 ms.

FIGURE 12 (From left to right) Schematic representa-

tion of the (2N 1 2)-compartment Monte Carlo model of

the local control of EC coupling that is the starting point

of this article. Schematic representation of the multivar-

iate ‘‘Probability Density’’ formulation that can be

reduced to the univariate probability density formulation

when diadic subspace Ca21 is in quasistatic equilib-

rium with junctional SR Ca21 (slaved diadic subspace).

An alternative reduction is possible if diadic subspace

and junctional SR Ca21 are both fast dynamic variables

(fast domain limit). The large open squares represent

the (cds,cjsr)-plane of the probability density approach

and the dotted lines represent the cds and cjsr nullclines.

Values in brackets show how run times of each method scale with increasing number of Ca21 release units (N), number of Ca21 release unit states (M),

and the number of mesh points used in the probability density approach (L).
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simulation methods are in general model dependent. For

example, the time required for the Monte Carlo simulation of

the whole cell voltage clamp protocols such as those

presented in Fig. 2 is, at least ultimately, a linear function

of the number of CaRUs (i.e., the limiting slope of the solid
squares of Fig. 10 is one). Similarly, we have observed that

the computational efficiency of the univariate probability

density calculation presented in Figs. 6 and 7 scales linearly

with the number of Ca21 release unit states (M) and the

number of mesh points used to discretize the junctional SR

[Ca21] (L) (not shown). Indeed, the thin dotted lines of Fig.

11 show the run time of the probability density approach

decreasing or increasing by a factor of two when the standard

number of mesh points (L¼ 100) is decreased or increased to

50 or 200, respectively. Of course, the standard value of

L ¼ 100 was chosen because further refinement resulted in

a negligible change in the probability density result. How-

ever, we expect that the number of mesh points required for

an accurate probability density calculation will generally

depend on the details of the chosen Ca21 release unit model.

In the same way, increasing the number M of CaRU states

will lead to a less efficient probability density calculation.

Indeed, the relative merits of the probability density and

Monte Carlo simulation methods can be clarified if we

assume that the computational effort involved in updating

one mesh point of the probability density calculation is

equivalent to Monte Carlo simulation of one Ca21 release

unit. If we let N denote the number of Ca21 release units, M
the number of states of the CaRU model, and L the number of

mesh points used in the probability density calculation, then

in a traditional Monte Carlo calculation, there are 2N ODEs

to integrate for the local Ca21 concentrations as well as N
Markov chains to update at each time step, for a (very

roughly calculated) computational effort of 3N. Conversely,

in the univariate probability density approach, there are M
partial differential equations (PDEs) to solve with L mesh

points each, for a computational effort of ML. Given the fact

that the physiologically realistic number of CaRUs is N ¼
20,000 and the observed number of mesh points required in

our probability density calculations is L ¼ 100, we might

have expected the univariate probability density approach to

be ;1503 computationally more efficient than Monte Carlo

for the minimal M ¼ 4 state CaRU model used here

(consistent with the observed values of 35–700 in Fig. 11).

Continuing this reasoning, we might expect the univariate

probability density approach to outperform Monte Carlo

calculations for any CaRU model with fewer than 600 states

(M # 3N/L).

On the other hand, if model parameters were such that it

was not a good approximation to assume that in each CaRU

diadic subspace [Ca21] is in quasistatic equilibrium with

junctional SR [Ca21], then the appropriate probability

density alternative to Monte Carlo simulation would be

multivariate. In this case, each of the M joint probability

densities would require a two-dimensional L 3 L mesh that

discretizes both the diadic subspace and junctional SR

[Ca21]. If we presume that the computational effort of the

multivariate probability density approach scales as ML2, then

we would expect it to be superior to Monte Carlo calcula-

tions involving N ¼ 20,000 CaRUs when the chosen CaRU

model has fewer than six states (M # 3N/L2). Consistent

with this back-of-the-envelope estimate, when we do not

assume fast diadic subspace [Ca21] but instead numerically

solve the two-dimensional system of advection-reaction

equations given by Eqs. 19–22, we find the multivariate

probability density approach is only marginally faster than

Monte Carlo simulation (not shown). However, these

estimates and preliminary benchmarks fail to account for

accelerations of the multivariate probability density ap-

proach that could be obtained by using more sophisticated

numerical schemes (e.g., a nonuniform or adaptive mesh)

and model reduction techniques applicable to the probability

density but not the Monte Carlo formulation. For this reason

we recommend the probability density approach for further

development as a computationally efficient alternative to

Monte Carlo simulations of the local control of EC coupling

in cardiac myocytes.

APPENDIX A: DESCRIPTION OF FLUXES
INFLUENCING BULK MYOPLASMIC AND
NETWORK SR [Ca21]

The whole cell model of EC coupling that is the focus of this article includes

several fluxes that directly influence the dynamics of the bulk myoplasmic

and network SR [Ca21]. For example, the Na1-Ca21 exchanger current that

appears in Eq. 29 takes the form (4,3,32),

Jncx ¼ �
Am

F
Incx;

where

Incx¼ I
o

ncx

½Na
1 �3

myo
cexte

hncxFV=RT�½Na
1 �3

ext
cmyoeðhncx�1ÞFV=RT

K
3

ncx;n1½Na
1 �3ext

� �
Kncx;c1cextð Þ 11k

sat

ncxe
ðhncx�1ÞFV=RT

� �;

Am ¼ Cmbmyo/Vmyo, cext is the extracellular Ca21 concentration, and

[Na1]myo and [Na1]ext are the intracellular and extracellular sodium

concentrations, respectively (for parameters see Tables 1 and 3).

The SERCA-type Ca-ATPase flux that appears in Eqs. 29 and 30

includes both forward and reverse modes (33) and is given by

Jserca ¼ vserca

cmyo

Kfs

� �hfs

� cnsr

Krs

� �hrs

1 1
cmyo

Kfs

� �hfs

1
cnsr

Krs

� �hrs
; (48)

with parameters as in Table 3. In addition, Eqs. 29 and 30 include a leakage

Ca21 flux given by Jleak ¼ vleakðcnsr � cmyoÞ:
Following Rice et al. (32), Eq. 29 includes a constant background Ca21

influx that takes the form,

Jin ¼ �
Am

zF
Iin;

where Iin ¼ gin(V � ECa) and ECa ¼ (RT/2F) ln(cext/cmyo).
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APPENDIX B: GENERALIZATION OF THE
PROBABILITY DENSITY APPROACH

The probability density approach is completely general and in principle the

methodology can be applied to Ca21 release unit models of arbitrary

complexity. Let S(t) ¼ i 2 {1, . . . , M} be the state of a continuous time

discrete state Markov chain model of an individual Ca21 release unit and let

the M 3 M matrix Q be the infinitesimal generator matrix for this stochastic

process composed of rates that may be constant or, alternatively, arbitrary

functions of voltage, diadic subspace [Ca21], or junctional SR [Ca21]. Let us

also rewrite the multivariate probability density functions defined in Eq. 18

using slightly more compact notation,

r
iðc; tÞdc ¼ Prfc , c̃ðtÞ, c 1 dc and S̃ðtÞ ¼ ig;

where c is a vector including both the diadic subspace and junctional SR

Ca21 concentrations. Using Bayes’ formula these joint probability densities

can be related to the probability densities for diadic subspace and junctional

SR [Ca21] conditioned on the state of the channel,

Prfc , c̃ðtÞ, c 1 dcjS̃ðtÞ ¼ ig

¼ Prfc , c̃ðtÞ, c 1 dc and S̃ðtÞ ¼ ig
PrfS̃ðtÞ ¼ ig :

That is, if the probability density riðc; tÞ is integrated over all possible diadic

subspace and junctional SR Ca21 concentrations, the probability pi of

finding the randomly sampled Ca21 release unit in state i is obtained,

p
i ¼ PrfS̃ðtÞ ¼ ig ¼

Z
r

iðc; tÞdc;

where dc ¼ dcds dcjsr .

Using this notation, the advection-reaction equations (Eqs. 19–22) for

the probability density of diadic subspace and junctional SR [Ca21]

jointly distributed with the state of the Ca21 release unit become,

@r
i

@t
¼ � @

@cds

f
i

dsr
i

� 	
� @

@cjsr

f
i

jsrr
i

h i
1 ½rQ�i; (49)

where r is a row vector given by r ¼ ðr1; r2; . . . ; rMÞ in which each

element ri is a function of cds and cjsr; and ½rQ�i is the ith element of the row

vector resulting from a vector-matrix product of r and Q.

APPENDIX C: DERIVATION OF THE UNIVARIATE
PROBABILITY DENSITY APPROACH

Using Eqs. 34–37 the advection-reaction equations of the multivariate

probability density formulation (Eqs. 19–22) can be reduced to the univariate

version (Eqs. 38–41). For example, here we show that making the substitution

given by Eq. 34 in Eq. 22 and integrating the resulting equations with respect

TABLE 1 Model parameters: volume fractions, Ca21 buffering, and exchange between restricted domains and the bulk, physical

constants, and fixed ion concentrations

Parameter Definition Value

N No. of diadic subspaces 50–20,000

Vnsr Network SR volume 3.15 3 10�7 mL

Vmyo Myoplasmic volume 2.15 3 10�5 mL

VT
ds ¼ NVds Total diadic subspace volume 2 3 10�8 mL

VT
jsr ¼ NVjsr Total junctional SR volume 3.5 3 10�8 mL

Cm Capacitive membrane area 1.534 3 10�4 mF

bds Subspace buffering factor 0.5

bjsr Junctional SR buffering factor 0.05

bnsr Network SR buffering factor 1.0

bmyo Myoplasmic buffering factor 0.05

vT
refill ¼ lT

jsr=trefill Junctional SR refilling rate 0.018 s�1

vT
efflux ¼ lT

ds=tefflux Diadic subspace efflux rate 5.2 s�1

F Faraday’s constant 96,480 coul mol�1

R Gas constant 8314 mJ mol�1 K�1

T Absolute temperature 310 K

cext Extracellular Ca21 concentration 1.8 mM

[Na1]ext Extracellular Na1 concentration 140 mM

[Na1]myo Intracellular Na1 concentration 10.2 mM

TABLE 2 Ca21 release unit parameters (L-type Ca21 channel and RyR cluster)

Parameter Definition Value

vT
ryr ¼ Nvryr Total RyR cluster release rate 0.9 s�1

PT
dhpr ¼ NPdhpr Total DHPR permeability 3.5 3 10�5 cm s�1

Vu
dhpr DHPR activation threshold �10 mV

sdhpr DHPR activation parameter 6.24 mV
�k1

dhpr Maximum rate of DHPR opening 556 s�1

k�dhpr Rate of DHPR closing 5000 s�1

�k1
ryr Maximum rate of RyR opening 2000 s�1

k�ryr Rate of RyR closing 100 s�1

Kmax
ryr Maximum binding constant for RyR 7.4 mM

aryr Coefficient of RyR luminal regulation 0.0024
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to diadic subspace [Ca21] leads term by term to Eq. 41. The first term of

the left-hand side of Eq. 22 involving the partial derivative with respect to time

becomesZ N

0

@r
OO

@t
dcds ¼

Z N

0

@

@t
r
OO
jsr d cds � �c

OO
ds

� �h i
dcds

¼
@r
OO
jsr

@t

Z N

0

d cds � �c
OO
ds

� �
dcds ¼

@r
OO
jsr

@t
;

i.e., the first term of Eq. 41. The first term on the right-hand side of Eq. 22

involving the partial derivative with respect to cds is disappears, that is,

�
Z N

0

@

@cds

f
OO

ds r
OO� 	

dcds ¼ �f
OO

ds r
OO






N

0

¼ 0;

because the probability density rOOðcds; cjsr; tÞ evaluates to zero at the

minimum and maximum physical values for diadic subspace [Ca21]. The

second term on the right-hand side of Eq. 22 involving the partial derivative

with respect to cjsr becomes

�
Z N

0

@

@cjsr

f
OO

jsr r
OO

h i
dcds¼�

Z N

0

@

@cjsr

f
OO

jsr r
OO
jsr d cds� �c

OO
ds

� �h i
dcds

¼� @

@cjsr

Z N

0

f
OO

jsr d cds��c
OO
ds

� �
dcds

� �
r
OO
jsr


 �

¼ � @

@cjsr

�f
OO

jsr r
OO
jsr

h i
;

where �fOOjsr ¼ fOOjsr �cOOds ; cjsr

� �
due to the sifting property of the d function, in

agreement with Eqs. 41 and 43. Finally, the three reaction terms in Eq. 22

reduce as required because

k
i

Z N

0

r
i
dcds ¼ k

i

Z N

0

r
i

jsrd cds � �c
i

ds

� �
dcds

¼ k
i
r

i

jsr

Z N

0

d cds � �c
i

ds

� �
dcds ¼ k

i
r

i

jsr;

where i ¼ OO, OC, and CO; kOO ¼ � k�ryr1k�dhpr

� �
, kOC ¼ k1

ryr; and

kCO ¼ k1
dhpr.

APPENDIX D: NUMERICAL SCHEME FOR
THE UNIVARIATE PROBABILITY
DENSITY APPROACH

In the notation of Appendix B, the advection-reaction equations (Eqs. 38–41)

used in the univariate probability density approach take the form,

@r
i

@t
¼ � @

@cjsr

�f
i

jsrr
i

h i
1 ½rQ�i: (50)

Numerical solution of these equations was performed using a total variation

diminishing scheme following (36,37). Briefly, we discretize junctional SR

[Ca21] according to cjsr,‘ ¼ ‘Dcjsr 1 cmin
jsr where ‘ ¼ 0, 1, ���, L and Dcjsr ¼

(cmax
jsr � cmin

jsr )/L. With these preliminaries, the numerical scheme can be

written as

dr
i

‘

dt
¼ � 1

Dcjsr

g
i

‘ � g
i

‘�1

� 	
1 +

M

m¼1

r
m

‘ q
mi

‘ ;

where qmi
‘ is the transition rate in the mth row and ith column of Q evaluated

at a junctional SR [Ca21] of cjsr, ‘. In this expression, gi
‘ and gi

‘�1 are given by

g‘ ¼ f
�
‘11

2
1

1

2
c

1

‘�1
2

f‘ � f
�
‘�1

2

� �
1 c

�
‘13

2
f‘11 � f

�
‘13

2

� �
; (51)

where we have dropped the superscripted i, f‘ ¼ �f‘r‘, and f�‘11
2

is the first-

order Roe flux defined by (36,38)

f
�
‘1 1

2
¼ 1

2
ðf‘ 1 f‘1 1Þ �

1

4
j�f‘ 1 �f‘1 1jðr‘1 1 � r‘Þ;

where �f‘ ¼ �f i
jsr;‘ is the discretized advection rate appearing in Eq. 50.

The quantities c1 and c� occurring in Eq. 51 are flux limiters given by

c
1

‘�1
2
¼ c

f‘11 � f
�
‘11

2

f‘ � f
�
‘�1

2

" #
c
�
‘1 3

2
¼ c

f‘ � f
�
‘11

2

f‘11 � f
�
‘13

2

" #
;

where

c½r� ¼ max½0; minð2r; 1Þ; minðr; 2Þ�:

The ordinary differential equations in the univariate model (Eqs. 29–30)

were integrated using Euler’s method with a time step of 1 ms. The efflux

and refill fluxes of Eqs. 31 and 32 were approximated by

J
�
efflux ¼ v

T

effluxDcjsr +
M

i¼1

+
L

‘¼0

r
i

‘ �c
i

ds;‘ � cmyoðtÞ
h i

J
�
refill ¼ v

T

refillDcjsr +
M

i¼1

+
L

‘¼0

r
i

‘½cnsrðtÞ � cjsr;‘�;

where �ci
ds;‘ is given by Eq. 35 with the junctional SR [Ca21] evaluated at

cjsr,‘.

Some preliminary results appeared previously in abstract form (29).

This material is based on work supported by the Joint Division of

Mathematical Sciences/National Institute of General Medical Sciences

TABLE 3 Model parameters: Na1-Ca21 exchange current, SERCA pumps, and background Ca21 influx

Parameter Definition Value

Kfs Forward half-saturation constant for SERCA pump 0.17 mM

Krs Reverse half-saturation constant 1702 mM

hfs Forward cooperativity constant 0.75

hrs Reverse cooperativity constant 0.75

vserca Maximum SERCA pump rate 8.6 mM s�1

Io
ncx Magnitude of Na1-Ca21 exchange current 150 mA mF�1

Kncx,n Na1 half saturation constant 87.5 3 103mM

Kncx,c Ca21 half saturation constant 1.38 3 103mM

ksat
ncx Saturation factor 0.1

hncx Voltage dependence of Na1-Ca21 exchange 0.35

vleak SR Ca21 leak rate constant 2.4 3 10�6 s�1

gin Maximum conductance of background Ca21 influx 1.5 3 10�4 mS mF�1
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