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ABSTRACT We study fundamental relationships between classical and stochastic chemical kinetics for general biochemical
systems with elementary reactions. Analytical and numerical investigations show that intrinsic fluctuations may qualitatively and
quantitatively affect both transient and stationary system behavior. Thus, we provide a theoretical understanding of the role that
intrinsic fluctuations may play in inducing biochemical function. The mean concentration dynamics are governed by differential equa-
tions that are similar to the ones of classical chemical kinetics, expressed in terms of the stoichiometry matrix and time-dependent
fluxes. However, each flux is decomposed into a macroscopic term, which accounts for the effect of mean reactant concentra-
tions on the rate of product synthesis, and a mesoscopic term, which accounts for the effect of statistical correlations among
interacting reactions. We demonstrate that the ability of a model to account for phenomena induced by intrinsic fluctuations may
be seriously compromised if we do not include the mesoscopic fluxes. Unfortunately, computation of fluxes and mean concen-
tration dynamics requires intensive Monte Carlo simulation. To circumvent the computational expense, we employ a moment
closure scheme, which leads to differential equations that can be solved by standard numerical techniques to obtain more ac-
curate approximations of fluxes and mean concentration dynamics than the ones obtained with the classical approach.

INTRODUCTION

The design of predictive models of cellular regulation is an

important problem in computational systems biology. The

majority of models published in the literature assume that

cells are well-stirred, homogeneous biochemical reaction

systems at thermal equilibrium, an assumption that we also

follow in this article. A widely used approach to modeling

cellular regulation characterizes the dynamic evolutions of

molecular concentrations by deterministic first-order ordinary

differential equations, known as chemical kinetics equations

(CKEs) (1). However, to take into account that reactions in

cells occur by random collisions of reactant molecules, we

must employ a stochastic approach to modeling cellular

regulation. A popular approach characterizes the dynamic

evolution of the joint probability mass function of the state of

cellular regulation by a first-order partial differential equation

known as the chemical master equation (CME) (2–4). This

leads to a modeling methodology that has been employed in

several biological settings with remarkable success (5–9).

It has been increasingly recognized that cellular regulation

should be studied at the level of single cells. Despite a grow-

ing effort to develop experimental methods for observing

biochemical activities in single cells (10–12), these methods

can only be used to simultaneously observe a limited number

of molecular dynamics. Most experimental techniques used

today estimate molecular concentrations in tissues contain-

ing a large number of cells (13,14). As a consequence, appre-

ciable research activity is focused on studying the aggregate

behavior of cellular regulation in a large population of cells.

For the purpose of this work, we may assume that a tissue

is composed of K genetically identical cells that express the

same set of genes independently from each other. This is a

convenient albeit reasonable approximation, since it frees us

from modeling tissue inhomogeneities and biological effects

due to complex interactions among cells. We may model

cellular activities in each cell by a stochastic biochemical

reaction system that consists of N molecular species and use

the random variable Xnk(t) to denote the number of mole-

cules of the nth species present in the kth cell at time t. Since

cellular regulation is observed by pooling together molecules

extracted from all cells in the tissue, we may characterize

its state at time t by the molecular concentrations Yn(t) ¼
(Xn1(t) 1 Xn2(t) 1 ��� 1 XnK(t))/KAV, where V is the cellular

volume and A ¼ 6.0221415 3 1023 mol�1 is the Avogadro

constant. The mean value and variance of Yn(t) are given

by E(Yn(t)) ¼ mX,n(t)/AV and Var(Yn(t)) ¼ vX,nn(t)/KA2V2,

where mX,n(t) and vX, nn(t) are the mean and variance of

Xnk(t), respectively. This implies that the mean value of the

molecular concentration Yn(t) of the nth species is indepen-

dent of the number of cells in the tissue, whereas its variance

tends to zero as the number of cells grows to infinity (provided

that the variance vX,nn(t) is finite). As a consequence, we may

approximately characterize cellular regulation in a large

population of cells by the mean concentration vector

uðtÞ ¼ mXðtÞ
AV

; (1)

where mXðtÞ denotes the N 3 1 mean vector with elements

mX,n(t), n ¼ 1, 2, . . . , N.

An important question that arises here is whether the

molecular concentration dynamics predicted by the CKEs

coincide with the mean concentration dynamics predicted by
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the underlying CME and Eq. 1. It turns out that, given the

CME, we can uniquely construct the corresponding CKEs

and vice versa. Therefore, we may expect that the two ap-

proaches lead to the same dynamics. However, by analyzing

a number of simple chemical reactions such as 2A / B,

A 1 B / C, A / B, A / B / C, 2A / B / C, and

2A%B, it was previously shown in the literature (15–17) that

this may not be true in general. A notable exception occurs

at the thermodynamic limit, in which the number of mole-

cules and cellular volume tend to infinity while the molecular

concentrations remain finite, or when all reaction mecha-

nisms are linear. However, both of these cases are clearly

not realistic.

In Zheng and Ross (18), they extended the previous work

by focusing on the autocatalytic cubic Schlögl model A1

2B%3B, B%C. These investigators noted that differences

between classical and stochastic chemical kinetics are due to

a coupling of correlation effects with system nonlinearities.

By focusing on parameter values that lead to the same

stationary states (concentrations of the molecular intermedi-

ate B) for both models, they showed that the deterministic

model may result in quantitatively different transient behav-

ior for the mean concentration of B than the corresponding

stochastic model, with the maximum deviation between the

concentration trajectories decreasing as the model parame-

ters are modified toward a linear kinetic mechanism.

In view of the fact that cellular regulation is controlled by

a complex network of biochemical reactions, it is necessary

to investigate the relationship between classical and sto-

chastic chemical kinetics in a more general setting than the

one considered in the literature (15–18). In this article, we

derive fundamental relationships between the two approaches

for a biochemical reaction system that consists of elementary

(monomolecular or bimolecular) irreversible reactions. We

can use this system to model any set of biochemical reactions,

since we can decompose any reaction that involves more

than two molecules (a rare possibility in practice) into a cascade

of bimolecular reactions and split a reversible reaction into

two separate irreversible reactions (19). We have chosen to

illustrate our results by employing two reaction mechanisms:

a unidirectional dimerization and a quadratic autocatalator

with positive feedback. These mechanisms allow us to clearly

demonstrate that intrinsic stochastic fluctuations may appre-

ciably influence the qualitative and quantitative behavior of

cellular regulation and to analytically investigate the origins

of such influence. Note, however, that our approach is very

general and can be applied to more complex regulatory mech-

anisms as well.

In this article, we show that the mean concentration dy-

namics predicted by the CME are governed by first-order

ordinary differential equations similar to the ones obtained

by classical chemical kinetics, expressed in terms of the stoi-

chiometry coefficients and the time-dependent fluxes of the

underlying reactions. However, the flux is now decomposed

into a macroscopic and a mesoscopic term. The macroscopic

term is analytically identical to the classical flux and accounts

for the effect of mean reactant concentrations on the rate

of product synthesis, whereas the mesoscopic term accounts

for the effect of statistical correlations among interacting

reactions. When all mesoscopic fluxes are zero, a situation

that occurs when the biochemical reaction system consists of

only monomolecular reactions (which leads to linear reaction

mechanisms), the concentration dynamics predicted by the

CKEs will be identical to the mean concentration dynamics

predicted by the CME. However, and by using the two afore-

mentioned examples, our analytical and numerical investi-

gations show that nonzero mesoscopic fluxes may induce

appreciable qualitative and quantitative differences in tran-

sient and stationary system behavior from that predicted by

classical chemical kinetics. In addition to the conclusions

reached by Zheng and Ross (18), we show that the mean

concentration dynamics predicted by the CME may con-

verge to different stationary values than those predicted by

the CKEs, thus supporting the fact that intrinsic stochastic

fluctuations may play an important role in determining a

cell’s phenotype by quantitatively influencing cell regulation

at steady state. Moreover, we analytically and numerically

demonstrate that intrinsic stochastic fluctuations may also

affect the epigenetic properties of cell regulation in a quali-

tative manner by introducing novel modes of stationary be-

havior not accounted for by the CKEs. Hence, a sufficiently

accurate model of mean concentration dynamics must neces-

sarily include all mesoscopic fluxes in its formulation. These

developments provide a theoretical understanding of the role

that intrinsic stochastic fluctuations may play in inducing

biochemical function.

The mesoscopic fluxes cannot be evaluated analytically.

We can estimate them by Monte Carlo simulation, but the

resulting method is computationally intensive in most cases

of interest. To circumvent the computational expense, we

employ a moment closure scheme that allows us to approxi-

mate the underlying covariances (and thus the mesoscopic

fluxes) by first-order ordinary differential equations that are

similar to the CKEs and can be solved by standard nu-

merical techniques. We show that, at least for the quadratic

autocatalator, this approximation leads to more accurate

predictions of fluxes and mean concentration dynamics than

the CKEs.

We should mention that, in a recent work (20), Samoilov

et al. have used a simple example (an enzymatic futile cycle)

to analytically and numerically demonstrate that extrinsic

stochastic fluctuations in biochemical reaction systems may

also produce dynamic behavior not accounted for by clas-

sical chemical kinetics. Our work is complementary to theirs,

since it focuses on the effects of intrinsic stochastic fluctua-

tions on system behavior. Moreover, it supports, both analyt-

ically and computationally, the general belief that stochastic

fluctuations may play an important role in determining bio-

logical function in cells and, therefore, must be accounted for

by computational models of cellular regulation.
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BIOCHEMICAL REACTION SYSTEMS

Deterministic description

In this article, we consider a well-stirred biochemical reaction

system at thermal equilibrium that consists of M elementary

(monomolecular or bimolecular) irreversible reaction chan-

nels. By assuming that the system contains N molecular

species, we may characterize its state at time t $ 0 by an N 3 1

deterministic vector q(t) whose dynamic evolution is governed

by the following CKEs (1):

dqðtÞ
dt
¼ SrðtÞ; t $ 0: (2)

In Eq. 2, S ¼ ðsnmÞ is the N 3 M stoichiometry matrix of

the underlying biochemical reactions. Moreover, r(t) is an

M 3 1 (time-dependent) vector with elements rm(t) ¼ (1/V)

djm(t)/dt, where jm(t) is the extent of the mth reaction,

defined as the amount (in moles) of a species produced or

consumed by the mth reaction during the time interval [0,t),
divided by the corresponding stoichiometric coefficient.

Note that rm(t) is the rate of change in the extent of reaction

per unit volume at time t and, hence, it quantifies the reaction

rate of the mth reaction. These parameters are frequently

referred to as time-dependent fluxes (velocities of molecular

flow) and play a fundamental role in the analysis of biochem-

ical reaction systems (1). The mass action rate law implies

that the mth element of r(t) is given by

rmðtÞ ¼ kmcmðqðtÞÞ; (3)

where km is the reaction rate constant of the mth reaction and

cm(q) is a product of the reactant concentrations of the mth

reaction, given by

cmðqÞ ¼

qn; for monomolecular reactions

qnðqn � 1=AVÞ; for bimolecular reactions

with identical reactants

qnqn9; for bimolecular reactions

with different reactants

:

8>>>><
>>>>:

(4)

Note that in classical chemical kinetics it is assumed that

molecular concentrations are appreciably larger than 1/AV,

in which case cmðqÞ ¼ q2
n for bimolecular reactions with

identical reactants. To account for the possibility that some

molecular concentrations may be comparable to 1/AV, we set

in this article cm(q) ¼ qn(qn – 1/AV).

Although it is commonly believed that q(t) provides a

sufficient approximation to the mean concentration vector

u(t), given by Eq. 1, because of stochastic fluctuations in

biochemical activity, this may not be true. Moreover, the

derivation of Eq. 2 requires that the numbers of molecules in

the system are very large compared to 1. Otherwise, q(t) will

not be a continuous function of t and differentiation of q(t)
will not be possible. Therefore, we may not be able to justify

the CKEs when modeling biochemical reaction systems with

appreciable stochastic fluctuations and small numbers of

reactant molecules. In view of the fact that reactions occur by

random collisions of reactant molecules, it is intuitive to

believe that it will be more appropriate if we employ a sto-

chastic approach.

Stochastic description

If we use a stochastic biochemical reaction system to model

cellular regulation in single cells, then the mean molecular

concentrations u(t), given by Eq. 1, will satisfy the system of

first-order differential equations

duðtÞ
dt
¼ SnðtÞ; t $ 0; (5)

where n(t) is an M 3 1 (time-dependent) flux vector with

elements nm(t) ¼ (1/V) dxm(t)/dt, and xm(t) is the extent of

the mth reaction at time t, which is now defined as the mean

degree of advancement (DA) of the mth reaction at time t
divided by the Avogadro number (see Appendix A for a brief

review of stochastic chemical kinetics). Notably, the flux

nm(t) of the mth reaction is the rate of change in its mean DA

per unit volume divided by the Avogadro number.

Equation 5 is similar to the CKEs with one important

difference. The mth element nm(t) of the flux vector n(t) is

now given by

nmðtÞ ¼ rmðtÞ1 umðtÞ; (6)

where

rmðtÞ ¼ kmcmðuðtÞÞ; (7)

as in the deterministic case, and (see Appendix A)

umðtÞ ¼
1

2AV
+
M

k¼1

+
M

l¼1

hm;klvZ;klðtÞ: (8)

In Eq. 8, hm,kl is the second-order partial derivative of

the propensity function of the mth reaction with respect to

the DAs of the kth and lth reactions, whereas, vZ, kl(t) is the

covariance between the DAs of those reactions. We refer to

rm(t) as the macroscopic flux and to um(t) as the mesoscopic

flux of the mth reaction. Clearly, the macroscopic flux ac-

counts for the effect of mean reactant concentrations on the

rate of product synthesis, whereas the mesoscopic flux ac-

counts for the effect of statistical correlations among interacting

reactions on that rate. Because the propensity functions are

at most quadratic functions of the DAs (see Appendix A),

the mesoscopic flux of a given reaction depends only on the

(nonzero) Hessian elements of the propensity function of that

reaction and on the corresponding DA covariances. As a

consequence of Eq. 8, the mesoscopic flux of a monomo-

lecular reaction will be zero, since the propensity function of

such reaction will be linear and the corresponding Hessian

matrix will be zero (i.e., hm,kl ¼ 0, for every k, l). However,

this may not be true for the mesoscopic flux of a bimolecular
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reaction, whose value will depend on the DA covariances

between reactions that affect the molecular population of one

reactant species and reactions that affect the population of

the other reactant species.

If all reactions are monomolecular, the biochemical reac-

tion system will be linear (i.e., all propensity functions will

be linear). In this case, the second-order partial derivatives of

the propensity functions with respect to the DAs will be zero,

which, together with Eq. 8, implies that um(t) ¼ 0, for every

m (since hm,kl ¼ 0, for every m, k, l). Hence, when all

reactions are monomolecular, Eq. 5 is identical to Eq. 2 of

classical chemical kinetics. This result was derived in

Gillespie (21).

Equations 5–8 extend the classical CKEs 2 and 3 to

account for intrinsic stochastic fluctuations in biochemical

activity and are an exact consequence of the conservation of

mass and the CME underlying the biochemical reaction

system (Eqs. 21 and 27). Note that

duðtÞ
dt
¼ SrðtÞ1 eðtÞ; t $ 0; (9)

where

eðtÞ ¼ SuðtÞ ¼ +
E

m¼1

snmumðtÞ: (10)

We refer to these equations (and Eqs. 5–8) as statistical

chemical kinetics equations (SCKEs), where we use the term

‘‘statistical’’ to emphasize that the equations account for

correlations among reactions. Like the CKEs, the SCKEs

provide a macroscopic description of a biochemical reaction

system. However, this description is now controlled by the

mesoscopic behavior of the system through the forcing term

e(t). If e(t) were known for every t $ 0, then we could

evaluate u(t) by integrating Eq. 9 using standard numerical

techniques. However, this is not true and u(t) must be

estimated by computationally intensive Monte Carlo simu-

lation using the Gillespie algorithm (22). In an effort to

circumvent this computational expense, we later discuss a

method that allows us to approximately evaluate u(t) by

numerically integrating an appropriately derived system of

first-order ordinary differential equations.

Deterministic versus stochastic description

Equation 9 reveals that intrinsic stochastic fluctuations may

influence the mean concentration dynamics u(t) through the

mesoscopic forcing term e(t). This fact is not considered by

the CKEs and its importance should not be underestimated.

If, for some species n, en(t) 6¼ 0, for every t $ 0, then at least

one function cm will be quadratic, where m is a reaction that

consumes or produces the nth molecular species, and the nth

SCKE will therefore be nonlinear. Indeed, if cm is linear, for

any reaction m that consumes or produces the nth molecular

species, then its second-order partial derivative hm,kl will be

zero, for every k, l, which implies that um(t) ¼ 0, by virtue

of Eq. 8. Since the mesoscopic forcing term en(t) is given by

Eq. 10, this implies that en(t) ¼ 0 for every t $ 0, which

contradicts our assumption that en(t) 6¼ 0 for every t $ 0. By

combining this observation with the fact that a nonzero

forcing term may substantially affect the solution of a non-

linear differential equation, we may expect that nonzero

mesoscopic forcing terms could appreciably affect the mean

behavior of a nonlinear biochemical reaction system.

It is clear from our previous discussion that we may use

the CKEs to characterize the mean concentration dynamics if

and only if, at any time t $ 0, the mesoscopic flux vector u(t)
is in the null space of the stoichiometry matrix S. In this

case, eðtÞ ¼ S uðtÞ ¼ 0, for every t $ 0, and the SCKEs will

be reduced to the CKEs. Eq. 8 suggests that this will happen

if all underlying reactions are monomolecular (see also

(18,21)). We may also use the CKEs when all covariances

are zero, a condition that will be satisfied in the thermody-

namic limit. However, most biochemical reaction systems of

interest are nonlinear and there is no way to know a priori

whether the covariances are zero or, more generally, whether

u(t) is in the null space of S. Therefore, to account for the

influence of nonzero mesoscopic fluxes on system dynamics,

we must include them in the formulation.

Numerical example

To provide a simple illustration of our discussion so far, we

consider the following unidirectional dimerization reaction,

P 1 Q /
c1

P � Q; (11)

with specific probability rate constant c1, initialized with S
molecules P and S molecules Q (see Appendix B for details).

In Fig. 1, we depict the normalized (with respect to the

steady-state dimer concentration s ¼ S/AV) dimer concen-

tration and flux dynamics, predicted by the underlying SCKE

(solid lines) versus the ones predicted by the corresponding

CKE (dotted lines), for S ¼ 1, in Fig. 1 A, and S ¼ 10, in

Fig. 1 B. We also depict the dynamics of the normalized

mesoscopic forcing term. We have estimated the concentra-

tions, fluxes, and forcing terms by Monte Carlo simulation

using the Gillespie algorithm (22,23), and calculated the

CKE concentrations and fluxes analytically (see Eq. 38). It

turns out that, as t/N, both models converge to the same

steady-state concentration s.

When the initial number of reactant molecules is very

small (e.g., when S ¼ 1 in Fig. 1 A), the CKE concentration

dynamics do not match the SCKE dynamics obtained by

Monte Carlo simulation. According to the results depicted

in Fig. 1 A, small differences in flux dynamics may lead to

substantial differences in concentration dynamics. However,

a sufficient increase in the initial number of reactant mole-

cules (e.g., by tenfold in Fig. 1 B) may drastically alleviate

this difference. For sufficiently large S (S $ 100) the flux
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and concentration dynamics are virtually identical (data not

shown).

The observed differences are due to the mesoscopic forc-

ing term, which coincides in this case with the mesoscopic

flux of the reaction. Since all reactants are eventually trans-

formed into dimers, the mesoscopic forcing term tends to

zero as t/N. Its magnitude and rate of convergence to zero

affect the SCKE concentration dynamics and the time it takes

for the system to reach steady state. Because the flux is

given by Eq. 37, larger values of the mesoscopic forcing

term will promote faster reaction rates and thus faster re-

laxation to steady state (for this example, the mesoscopic

forcing term is nonnegative). Fig. 1 shows that, when S¼ 1,

the mesoscopic forcing term converges to zero slower than

when S ¼ 10. Our simulations show that the response pre-

dicted by the SCKE reaches steady state at ;2 h, whereas

the response predicted by the CKE requires substantially

more time (;24 h) to reach steady state. This example pro-

vides an analytical justification, by means of the mesoscopic

forcing term, of a previously recognized fact that intrinsic

stochastic fluctuations in biochemical activity may produce

quantitative differences between the transient concentration

dynamics predicted by classical and stochastic chemical

kinetics (15,18).

A QUADRATIC AUTOCATALATOR

Although the dimer concentration dynamics predicted by the

CKE of the reaction equation of the previous example (Eq. 11)

may follow a different trajectory than the dynamics predicted

by the corresponding SCKE, eventually the two trajectories

reach the same steady state. We will now show that this may

not be necessarily true. To do so, we turn to a more complex

example, governed by the following six reactions:

Reaction 1: S /
c1

P

Reaction 2: D 1 P /
c2

D 1 2P

Reaction 3: P 1 P /
c3

P 1 Q

Reaction 4: P 1 Q /
c4

2Q

Reaction 5: P /
c5 ;

Reaction 6: Q /
c6 ;

:

(12)

FIGURE 1 Normalized dimer accumula-

tion in the unidirectional dimerization reac-

tion, given by Eq. 11, predicted by the

SCKEs (solid lines) and CKEs (dotted lines).

The dynamics obtained by the SCKEs have

been computed by Monte Carlo simulation

using the Gillespie algorithm, whereas the

dynamics obtained by the CKEs have been

computed analytically from Eq. 38. The

system is initialized with (A) one molecule P

and one molecule Q, (B) 10 molecules P, and

10 molecules Q. The associated normalized

flux and mesoscopic forcing term dynamics

are depicted as well. Parameters used are

c1¼ 10�3 s�1, V¼ 2 pL, and K¼ 6000 cells.
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These reactions convert substrate molecules S into

proteins Q. An intermediate protein P is first produced by

Reaction 1 and, subsequently, by Reaction 2 via transcrip-

tion and translation in which P acts as a transcription factor to

promote its own synthesis from a DNA template D. P is then

transformed into Q via the intermolecular reactions 3 and 4,

with P and Q, respectively. Finally, Reactions 5 and 6 model

degradation of P and Q. Due to Reactions 2 and 3, we refer to

this system as quadratic autocatalator with positive feedback,

since Reaction 3 is autocatalytic with quadratic concentration

dependence (see also (24)) and Reaction 2 applies (positive)

feedback on the synthesis of P. The resulting system is

similar to a reaction cascade considered in Kaufman et al.

(25), which involves the autophosphorylation of protein

tyrosine kinase activity in T cell stimulation, obtained by

ignoring all dephosphorylation reactions. This simplification

leads to a biologically relevant example, which allows us to

analytically demonstrate that intrinsic stochastic fluctuations

may appreciably affect, both qualitatively and quantitatively,

the stationary behavior of a biochemical reaction system. We

could use more complicated reaction schemes (e.g., schemes

that involve phosphorylation/dephosphorylation, transcrip-

tion, translation, etc.), but it would not be possible to proceed

analytically.

Quantitative stationary behavior

The steady-state concentrations �u1 of P and �u2 of Q,

predicted by the SCKEs associated with the quadratic

autocatalator with feedback are given by (see Appendix C

for details)

�u1ðsÞ ¼ �
bðsÞ
2a

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ
2a

� �2

1
k1s� �eðsÞ

a

s
(13)

�u2ðsÞ ¼
k1s 1 ðk2d � k5Þ�u1ðsÞ

k6

; (14)

where

a ¼ k3 1
k4

k6

ðk2d � k5Þ and

bðsÞ ¼ k1k4

k6

s� k3

AV
1 k5 � k2d; (15)

provided that a . 0 and k1s.�eðsÞ (see also the first row of

Table 1). In these equations, s ¼ S/AV and d ¼ D/AV, where

S, D are the numbers of S and D molecules, respectively.

Moreover, �eðsÞ is the sum of the mesoscopic fluxes of the

third and fourth reactions at steady state, which depends on s,

and the k-values are the reaction rate constants, given by

Eq. 42. We use the notation �u1ðsÞ, �u2ðsÞ, and �eðsÞ to explic-

itly denote that the stationary quantities �u1, �u2, and �e depend

on the input substrate concentration s. By setting �eðsÞ ¼ 0 in

Eq. 13 (i.e., by ignoring the mesoscopic fluxes), we obtain

the steady-state concentrations predicted by the CKEs (see

Table 2).

According to Eq. 14, when k5 ¼ k2d, the steady-state

concentration �u2 of Q predicted by the SCKEs will be

identical to the one predicted by the CKEs; this concentration

is given by k1s/k6. However, this may not be true for the

steady-state concentration �u1 of P, since this concentration

depends on �eðsÞ, according to Eq. 13. If lims/N�eðsÞ=s ¼ 0,

then Eqs. 13 and 14 imply that lims/N�u1ðsÞ ¼ k6=k4 (this is

also true when k5 6¼ k2d; see Appendix C), in which case,

both models will asymptotically (as s /N) reach the same

steady-state concentration for P as well. However, for finite

input substrate concentrations, we may not be able to ig-

nore the steady-state mesoscopic forcing term �eðsÞ, in which

case the steady-state concentration of P predicted by the

SCKEs will be different than the one predicted by the CKEs,

with the difference being controlled by the sign and magni-

tude of �eðsÞ. This is illustrated in Fig. 2, which depicts the

concentration dynamics of P and Q and the flux dynamics

of the third and fourth reactions predicted by the SCKEs

(solid lines), estimated by Monte Carlo simulation using the

Gillespie algorithm, and the CKEs (dotted lines), obtained

numerically. In this case, the steady-state P concentration

predicted by the CKEs is larger than the one predicted by

the SCKEs, since �e ¼ 3:65310�3 pM=s.0. Note the quan-

titative differences between the transient mean concentra-

tion dynamics and fluxes. As a matter of fact, the CKEs

wrongly predict that the mean concentration of Q will be

zero during the first minute, whereas the SCKEs predict a

gradual increase in the mean concentration of Q from 0 pM

to ;0.033 pM.

Similar remarks apply when k5 6¼ k2d. However, the

steady-state concentrations of both P and Q depend now on �e
(the concentration of Q depends on �e through the concen-

tration of P; recall Eq. 14) and the CKEs may not provide

good approximations at finite input substrate concentrations.

We illustrate this case in Fig. 3.

TABLE 1 Stationary concentrations of P, predicted by the SCKEs, in the quadratic autocatalator with feedback

a . 0 b(s) $ 0 b(s) , 0

k1s.�eðsÞ �u1ðsÞ ¼ �bðsÞ
2a

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ
2a

h i2

1
k1s��eðsÞ

a

r
�u1ðsÞ ¼ �bðsÞ

2a
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ
2a

h i2

1
k1s��eðsÞ

a

r

k1s ¼ �eðsÞ �u1ðsÞ ¼ 0 �u1ðsÞ ¼ 0 or �u1ðsÞ ¼ �bðsÞ
a

k1s,�eðsÞ No steady-state concentration �u1ðsÞ ¼ �bðsÞ
2a

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ
2a

h i2

1
k1s��eðsÞ

a

r
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Our previous investigation shows that intrinsic stochastic

fluctuations may produce appreciable quantitative differ-

ences between the stationary behavior of a biochemical re-

action system predicted by classical chemical kinetics and

the stationary behavior predicted by stochastic chemical ki-

netics. These differences are caused by nonzero mesoscopic

forcing terms at steady state, which may influence stationary

molecular concentrations and appreciably affect their values.

The stationary behavior of biochemical activity may affect

cells in a biologically significant way. For example, it has

been suggested that concentrations of regulatory proteins

synthesized at steady state may be responsible for a cell’s

unique characteristics (phenotype) (26). As a consequence,

the previous analytical and numerical investigations show

that intrinsic stochastic fluctuations may quantitatively affect

the epigenetic properties of cell regulation in a manner not

accounted for by classical chemical kinetics. In addition, we

show in the following that nonzero stationary mesoscopic

forcing terms may influence the steady-state properties of a

biochemical reaction system in a qualitative way, thus dem-

onstrating the fact that intrinsic stochastic fluctuations may

play a significant role in influencing cellular function.

Qualitative stationary behavior

In the quadratic autocatalator with positive feedback, the

stationary concentration of P predicted by the SCKEs de-

pends on the signs of parameters a and b(s), given by Eq. 15,

and the value of the input flux k1s as compared to the value

of the steady-state mesoscopic forcing term �eðsÞ. The re-

sulting concentrations are summarized in Table 1 for a . 0

(similar results hold for a , 0). In particular, if k1s.�eðsÞ, the

system has a unique stable stationary P concentration �u1ðsÞ,
given by Eq. 13, regardless of the value of b(s). The

situation, however, is different when k1s#�eðsÞ. If k1s ¼ �eðsÞ
and b(s) $ 0, the system relaxes to a zero P concentration at

steady state, whereas, if k1s,�eðsÞ and b(s) $ 0, the system

has no stationary P concentration. However, if k1s # �eðsÞ
and b(s) , 0, the system has two stationary P concentrations

�u�1ðsÞ and �u��1 ðsÞ, given by

�u
�
1ðsÞ ¼ �

bðsÞ
2a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ
2a

� �2

1
k1s� �eðsÞ

a

s
;

and

�u
��
1 ðsÞ ¼ �

bðsÞ
2a

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ
2a

� �2

1
k1s� �eðsÞ

a

s
:

Note that �u�1ðsÞ#�u��1 ðsÞ, with the two concentrations being

equal when the input substrate concentration is set to s�,
where s� satisfies k1s� ¼ �eðs�Þ � b2ðs�Þ=4a.

On the other hand, although the stationary concentration

of P predicted by the CKEs still depends on the signs of

FIGURE 2 Protein accumulation in the

quadratic autocatalator, given by Eq. 12, for

the case when k5 ¼ k2d, initialized with 10

molecules S (concentration of 8.30 pM),

two molecules D (the number of DNA

copies of a particular gene per eukaryotic

cell), and zero molecules P and Q, predicted

by the SCKEs (solid lines) and CKEs

(dotted lines). The dynamics obtained by

the SCKEs have been computed by Monte

Carlo simulation using the Gillespie algo-

rithm, whereas the dynamics obtained by

the CKEs have been computed numeri-

cally. The flux dynamics of the third and

fourth reactions are depicted as well.

Parameters used are c1 ¼ 0.002 s�1, c2 ¼
0.001 s�1, c3 ¼ 0.005 s�1, c4 ¼ 0.004 s�1,

c5 ¼ 0.002 s�1, c6 ¼ 0.05 s�1, V ¼ 2 pL,

and K ¼ 10,000 cells. Although the steady-

state concentration of Q predicted by the

CKEs is theoretically identical to the one

predicted by the SCKEs, this is not true for

the concentration of P. The dashed lines

indicate the mean concentration and flux

dynamics predicted by the second-order

SCKEs discussed in this article.

TABLE 2 Stationary concentrations of P, predicted by the

CKEs, in the quadratic autocatalator with feedback

a . 0 b(s) $ 0 b(s) , 0

s ¼ 0 �q1ð0Þ ¼ 0 �q1ð0Þ ¼ 0 or �q1ð0Þ ¼ �
bð0Þ

a

s . 0 �q1ðsÞ ¼ �
bðsÞ
2a

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ
2a

h i2

1 k1s
a

r
�q1ðsÞ ¼ �

bðsÞ
2a

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ
2a

h i2

1 k1s
a

r
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parameters a and b(s), this concentration does not depend on

the input flux values k1s but only on whether or not the input

substrate concentration is zero. The resulting concentrations

are summarized in Table 2, for a . 0. When s ¼ 0 and

b(0) $ 0, the CKEs predict zero stationary P concentration,

whereas, when s¼ 0 and b(0) , 0, the CKEs predict two sta-

tionary P concentrations, �q1ð0Þ ¼ 0 and �q1ð0Þ ¼ �bð0Þ=a,

with the former being stable and the latter unstable. However,

when s . 0, the CKEs predict a unique steady-state P

concentration, regardless of the value of s and b(s), which is

the same as the concentration �u1ðsÞ predicted by the SCKEs,

given by Eq. 13 with �eðsÞ ¼ 0.

To illustrate the previous analytical results and demon-

strate their biological significance, we depict in Fig. 4 the

stationary concentration of P as a function of the input

substrate concentration s, predicted by the SCKEs (solid
lines), estimated by Monte Carlo simulation using the

Gillespie algorithm, and by the CKEs (dotted lines),

obtained analytically. In Fig. 4 A, k1s.�eðsÞ, for every s .

0, in which case, the steady-state response curve predicted

by the SCKEs will be given by �u1ðsÞ. The response curve

�q1ðsÞ, predicted by the CKEs, is similar to the one pre-

dicted by the SCKEs, with lims/N�q1ðsÞ ¼ lims/N�u1ðsÞ ¼
k6=k4 ¼ 10:38 pM, since lims/N�eðsÞ=s ¼ 0. The situation,

however, is very different in Fig. 4 B, in which k1s,�eðsÞ, for

0,s,s�� ’ 47:5 pM, and k1s.�eðsÞ, for s . s��, where s�� is

the input substrate concentration that satisfies k1s�� ¼
�eðs��Þ. In this case, the steady-state response curve predicted

by the SCKEs is obtained by stitching together three stable

stationary P concentrations, namely, �u�1ðsÞ, for 0 # s # s� ’
22.5 pM, �u��1 ðsÞ, for s� # s # s��, and �u1ðsÞ, for s $ s��. Note

that the slope of �u�1 is larger than the slope of �u��1 , whereas,

the slope of �u1 tends to zero as s /N. As a consequence,

and similarly to the behavior shown in Fig. 4 A, the system

experiences appreciable protein amplification at low input

substrate concentrations (i.e., for s # s�; see the open region in

Fig. 4 B), a moderate amplification at intermediate input

concentrations (i.e., for s�# s # s��—see the light shaded
region in Fig. 4 B), and diminishing amplification at high

input concentrations (i.e., for s $ s��; see the dark shaded
region in Fig. 4 B). This behavior is essential to guarantee that,

besides its normal operational range, the system responds

quickly to low input substrate concentrations (high amplifi-

cation) but very slowly to high concentrations (saturation).

Note that the steady-state response curve predicted by the

CKEs increases abruptly from 0 pM to ;0.95 pM at s ¼ 0,

thus failing to capture the previous ‘‘multistage’’ amplifica-

tion property. However, since lims/N�eðsÞ=s ¼ 0, we have

that lims/N�q1ðsÞ ¼ lims/N�u1ðsÞ ¼ k6=k4 ¼ 1:04 pM, and

the two response curves predicted by the CKEs and the

SCKEs will eventually coincide for a sufficiently large input

substrate concentration.

As a consequence of the previous investigations, intrinsic

stochastic fluctuations may appreciably affect the qualitative

properties of a biochemical reaction system at steady state.

This can be analytically explained by the presence of non-

zero mesoscopic forcing terms, which are responsible for

introducing novel modes of behavior not accounted for by

classical chemical kinetics. The significance of these modes

should not be underestimated, since they may introduce

behavior at low molecular concentrations that is essential for

proper biological function.

FIGURE 3 Protein accumulation and

flux dynamics in the quadratic autocatala-

tor, given by Eq. 12, for the case when k5 .

k2d. The parameters used are the same as in

Fig. 2, but now c5¼ 0.006 s�1. In this case,

the steady-state concentrations of P and Q

predicted by the CKEs (dotted lines) are

both different than the actual steady-state

concentrations predicted by the SCKEs

(solid lines). The dashed lines indicate the

mean concentration and flux dynamics

predicted by the second-order SCKEs

discussed in this article.
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Second-order SCKE approximation

It is unfortunate that we cannot compute the mesoscopic

forcing term e(t) analytically. As a consequence, we cannot

use standard numerical techniques to solve the SCKEs 9 (or

Eqs. 5–8). Instead, we resort to Monte Carlo simulations

using the Gillespie algorithm. However, to obtain accurate

Monte Carlo estimates of mean concentration dynamics

and fluxes, we need to uniformly sample the system state

for a large number of DA trajectories. (Note that the var-

iance of a Monte Carlo estimator with uniform sampling

is ;1/K, where K is the number of samples used.) This

approach is computationally intensive and especially bur-

densome when the biochemical reaction system is large and

highly reactive.

To circumvent the computational expense of Monte Carlo

simulation, we can approximate the SCKEs 5–8 by a system

of first-order ordinary differential equations, which we can

solve efficiently by the same numerical techniques we use to

solve the CKEs. As a matter of fact, we can approximate the

mean molecular concentrations u(t) by concentrations ûðtÞ
that satisfy the system of differential equations (see Appen-

dix D) as

dûðtÞ
dt
¼ Sr̂ðtÞ1 êðtÞ; t $ 0 (16)

with

êðtÞ ¼ SûðtÞ; (17)

where the mth elements of r̂ðtÞ and ûðtÞ are given by

r̂mðtÞ ¼ kmcmðûðtÞÞ (18)

ûmðtÞ ¼
1

2AV
+
M

k¼1

+
M

l¼1

hm;klv̂Z;klðtÞ: (19)

FIGURE 4 The input flux k1s versus

the stationary mesoscopic forcing term

�eðsÞ, the stationary concentration of P

as a function of s, predicted by the

SCKEs (solid lines) and CKEs (dotted
lines), and the ratio �eðsÞ=s associated

with the quadratic autocatalator, given

by Eq. 12. The steady-state values

obtained by the SCKEs have been

computed by Monte Carlo simulation

using the Gillespie algorithm, whereas

the values obtained by the CKEs have

been computed analytically. The sys-

tem is initialized with two molecules D

(the number of DNA copies of a

particular gene per eukaryotic cell),

and zero molecules P and Q. Parame-

ters used are (A) c1 ¼ 0.002 s�1, c2 ¼
0.0005 s�1, c3 ¼ 0.005 s�1, c4 ¼ 0.004

s�1, c5 ¼ 0.004 s�1, c6 ¼ 0.05 s�1, and

(B) c1¼ 0.0004 s�1, c2¼ 0.02 s�1, c3¼
0.05 s�1, c4 ¼ 0.04 s�1, c5 ¼ 0.01 s�1,

and c6 ¼ 0.05 s�1. Moreover, V ¼ 2 pL

and K¼ 8000 cells. The heavy bold line

in the middle figure depicts the steady-

state response curve of P, calculated

by Monte Carlo simulation using the

Gillespie algorithm.
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In Eq. 19, the terms v̂Z;mm9ðtÞ approximate the DA covari-

ances vZ,mm9(t) and satisfy the system of first-order ordinary

differential equations,

dv̂Z;mm9ðtÞ
dt

¼ AV kmcmðûðtÞÞ1
1

2AV
+
M

k¼1

+
M

l¼1

hm;klv̂Z;klðtÞ
� �

dmm9

1 +
M

k¼1

zm;kðûðtÞÞv̂Z;m9kðtÞ1 zm9;kðûðtÞÞv̂Z;mkðtÞ;

t $ 0; m;m9 ¼ 1; 2; . . . ;M; (20)

where dmm9 is the Krönecker delta given by Eq. 31, and zm,k

is the first-order partial derivative of the propensity function

of the mth reaction with respect to zk, given by

zm;kðuÞ ¼ km +
N

n¼1

snk

@cmðuÞ
@un

; k ¼ 1; 2; . . . ;M:

For reasons explained in Appendix D, we refer to Eqs.

16–20 as second-order SCKEs.

We illustrate the quality of approximation obtained by

the second-order SCKEs in Figs. 2 and 3, for the case of the

quadratic autocatalator with feedback. For this example,

the second-order SCKEs provide excellent approximations

(dashed lines) of the mean concentration dynamics predicted

by the CME (solid lines), which are clearly better than the

approximations obtained with the CKEs (dotted lines). We

also show in Fig. 5 that, by using the second-order SCKEs,

we can obtain very good approximations of the dynamic

evolutions of the coefficients of variation (CVs) associated

with the intrinsic stochastic fluctuations in P and Q concen-

trations. (The CVs provide a measure of the relative disper-

sion, i.e., size, of stochastic fluctuations in the concentration

of a molecular species from the mean value; see Appendix

D.) It is clear that calculation of CVs is not possible with the

CKEs. The reader may also refer to Fig. 2 and Fig. 6 in

Goutsias (23) for results obtained with a more complex biolog-

ical system, which includes transcription, translation, protein

dimerization, and molecular degradation. Therefore, in addi-

tion to satisfactorily approximating the mean concentration

dynamics, we may use the second-order SCKEs to charac-

terize intrinsic fluctuations in a stochastic biochemical reac-

tion system by approximating CV dynamics.

Extensive simulations reveal that the quadratic autocata-

lator can be approximated very well by the second-order

SCKEs for a wide range of parameter values and molecular

concentrations (data not shown). One notable exception is at

very low substrate concentrations s, in which case the bio-

chemical reaction system will contain a very small number of

molecules. We illustrate this in Fig. 6, which depicts the

absolute relative errors in the steady-state mean concentra-

tions of P and Q predicted by the second-order SCKEs with

respect to the exact SCKEs (solid lines), by the CKEs with

respect to the exact SCKEs (dotted lines), and by the CKEs

with respect to second-order SCKEs (dashed lines), for the

case when k5 ¼ k2d, in Fig. 6 A, and k5 . k2d, in Fig. 6 B.

Clearly, the second-order SCKEs provide consistently good

and better approximations than the CKEs. As expected, when

k5 ¼ k2d, the errors in approximating the steady-state Q con-

centration are zero. Moreover, the errors in the concentrations

of P and Q predicted by the two models gradually diminish for

large input substrate concentrations. Note however that the

accuracy of the second-order SCKEs decreases at very small

input substrate concentrations.

FIGURE 5 CV dynamics in the quadratic

autocatalator, given by Eq. 12, associated

with intrinsic stochastic fluctuations in the

concentrations of P and Q, for the case

when k5¼ k2d, in panel A, and k5 . k2d, in

panel B, predicted by the exact SCKEs

(solid lines) and second-order SCKEs

(dashed lines). The dynamics obtained by

the exact SCKEs have been computed by

Monte Carlo simulation using the Gillespie

algorithm, whereas the dynamics obtained

by the second-order SCKEs have been

computed numerically. The parameters

used are the same as in Figs. 2 and 3.
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A good match between the predictions obtained by the

second-order SCKEs and the ones obtained by the exact

SCKEs indicates that the mean and covariances provide a

sufficient description of intrinsic stochastic fluctuations, in

which case, the molecular distributions will approximately

follow a Gaussian distribution. However, the observation that,

at very small input substrate concentrations, the second-order

SCKEs may not sufficiently approximate the dynamics

obtained by the exact SCKEs strongly suggests that higher-

order ($3) central moments may play a significant role in

determining these dynamics. In this case, the underlying

reactions will be subject to appreciable higher-order statis-

tical interactions and the underlying probability distributions

will not be Gaussian. Recent findings suggest that molecular

distributions are often non-Gaussian and that such distribu-

tions may play an important role in cellular regulation (27,28).

In those cases, it will be necessary to derive higher-order

SCKE approximations, by including higher-order moments

in the formulation (see our discussion in Appendix D).

CONCLUSIONS

In this article, by adopting a general framework for modeling

the macroscopic behavior of a biochemical reaction system

consisting of elementary irreversible reactions, we have shown

that a classical chemical kinetics approach to modeling bio-

chemical reaction systems may not be appropriate. The flux

of each reaction is decomposed into two terms, a macro-

scopic term that accounts for the effects of mean molecular

concentrations on the macroscopic behavior of the system

and a mesoscopic term that accounts for the effects of pairwise

correlations among reactions. Based on this decomposition,

we may characterize a biochemical reaction system by a sys-

tem of exact first-order ordinary differential equations, the

SCKEs, which provide a straightforward extension to the

classical CKEs. The SCKEs require use of mesoscopic forc-

ing terms, obtained by linearly transforming the mesoscopic

fluxes through the stoichiometry matrix, whose calculation

requires computationally expensive Monte Carlo simulations

or evaluation of correlation dynamics among pairs, triplets,

quadruplets, and larger groups of biochemical reactions.

To avoid such calculations, we have focused on a second-

order approximation to the SCKEs, which includes only first-

and second-order reaction statistics (i.e., means and pairwise

correlations). These equations can be solved by standard

numerical procedures and may lead to versatile tools for the

analysis of biochemical reaction systems, similar to the ones

used in classical chemical kinetics. Notably, a first-order

approximation to the SCKEs produces the equations of clas-

sical chemical kinetics.

Our analysis indicates that pairwise correlation effects

may lead, through mesoscopic forcing terms, to a dynamic

behavior not accounted for by classical chemical kinetics.

Numerical analysis of a quadratic autocatalator with positive

feedback shows that the proposed second-order approxima-

tion faithfully reproduces system behavior, for a wide range

of molecular concentrations and kinetic parameters. The

success of this approximation demonstrates that the second-

order SCKEs may provide substantial simplification in describ-

ing and analyzing stochastic biochemical reaction systems.

Moreover, it suggests that pairwise statistical interactions

among reactions may be sufficient for determining biological

FIGURE 6 Absolute relative errors in the

steady-state concentrations of P and Q associ-

ated with the quadratic autocatalator, given by

Eq. 12, as a function of the input substrate

concentration. (Solid lines) Second-order

SCKEs with respect to the exact SCKEs;

(dotted lines) CKEs with respect to the exact

SCKEs; and (dashed lines) CKEs with respect

to the second-order SCKEs. The steady-state

values obtained by the exact and second-order

SCKEs have been respectively computed by

Monte Carlo simulation using the Gillespie

algorithm and numerically, whereas the values

obtained by the CKEs have been computed

analytically from Eq. 44. The system is initial-

ized with two molecules D (the number of

DNA copies of a particular gene per eukaryotic

cell), and zero molecules P and Q. Parameters

used are c1 ¼ 0.002 s�1, c2 ¼ 0.001 s�1, c3 ¼
0.005 s�1, c4¼ 0.004 s�1, c6¼ 0.05 s�1, V¼ 2

pL, and K ¼ 8000 cells. Moreover, c5 ¼ 0.002

s�1 in panel A, and c5 ¼ 0.006 s�1 in panel B.
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function and supports the use of multivariate Gaussian dis-

tributions for modeling biochemical reactions. However, this

may not be true at very low molecular concentrations in

which case higher-order approximations may be necessary.

The need to include higher-order moments in the approxi-

mation highlights the importance of higher-order interactions

among biochemical reactions and the inappropriateness of

Gaussian modeling at very low molecular concentrations.

APPENDIX A: STOCHASTIC
CHEMICAL KINETICS

Since biochemical reactions occur by random collisions of reactant mole-

cules, the number of molecules of a particular species present in the system

at time t may fluctuate randomly. It is therefore appropriate to characterize

the state of a biochemical reaction system at time t by an N 3 1 random

vector X(t) whose nth element Xn(t) is the number of molecules of the nth

species present in the system at time t. In addition, we may use the degree of

advancement (DA) Zm(t) to describe the (random) progress of the mth

reaction during the time interval [0, t), where Zm(t) ¼ z $ 0 means that the

mth reaction has occurred z times during the time interval [0, t) (29). Note

that, due to conservation of mass, we can uniquely determine X(t) from the

M 3 1 random vector Z(t) with elements Zm(t), m ¼ 1, 2, . . . , M, since

XðtÞ ¼ xð0Þ1 SZðtÞ; t $ 0: (21)

Recall that our objective is to model the dynamic evolutions of molecular

concentrations in a tissue containing a large population of cells by the N 3 1

vector u(t) given by Eq. 1. By taking expectations on both sides of Eq. 21 and

by dividing with AV, we obtain

uðtÞ ¼ uð0Þ1 1

AV
SmZðtÞ; t $ 0; (22)

where u(0) ¼ x(0)/AV and mZ(t) ¼ E[Z(t)]. If we assume that the mean DA

mZ(t) is differentiable with respect to t (see below why this is true), then, by

differentiating both sides of Eq. 22, we obtain Eq. 5. The average reaction

rate (flux) nm(t) of the mth reaction is given by

nmðtÞ ¼
1

V

dxmðtÞ
dt

; (23)

where xm(t) is the average extent of the mth reaction defined as the mean DA

of the reaction divided by the Avogadro number; i.e.,

xmðtÞ ¼
mZ;mðtÞ

A
: (24)

Computation of nm(t) requires calculation of the derivative of the mean DA

mZ,m(t) with respect to t. We show how to calculate this derivative in the

following.

We denote by um(x) the number of all possible distinct combinations of

the reactant molecules of the mth reaction channel when the system is at state

x, given by (compare with Eq. 4)

umðxÞ ¼

xn; for monomolecular reactions

xnðxn � 1Þ=2; for bimolecular reactions with

identical reactants

xnxn9; for bimolecular reactions with

different reactants

:

8>>>><
>>>>:

(25)

We also denote by cm the specific probability rate constant of the mth reac-

tion (i.e., the probability per unit time that a randomly chosen combination

of reactant molecules will react through the mth reaction channel). Then,

given that the biochemical reaction system is at state X(t) ¼ x at time t, the

probability that one mth reaction will occur during the time interval [t, t 1 dt)

is pm(x)dt 1 o(dt), for a sufficiently small dt, where o(dt) is defined so that

o(dt)/dt / 0, as dt / 0, and

pmðxÞ ¼ cmumðxÞ (26)

is the propensity function of the mth reaction channel (30,31). Moreover, the

probability that more than one reaction will occur during [t, t 1 dt) is o(dt).
If PZ(z;t) ¼ Pr (Z(t) ¼ z) is the probability that the DA vector Z(t) takes

value z at time t, then (23,32,33)

@PZðz; tÞ
@t

¼ +
M

m¼1

amðz� emÞPZðz� em; tÞ

� amðzÞPZðz; tÞ; t $ 0; (27)

where em is the mth column of the M 3 M identity matrix, and

amðzÞ ¼ pmðxð0Þ1 SzÞ: (28)

This chemical master equation (CME) describes the dynamic evolution of

the joint probability mass function of the DA process Z(t). As a conse-

quence, we can show that the means mZ,m(t) and covariances vZ,mm9(t) of the

DA process Z(t) satisfy the system of first-order ordinary differential

equations (23),

dmZ;mðtÞ
dt

¼ E½amðZðtÞÞ�; m ¼ 1; 2; . . . ;M (29)

dvZ;mm9ðtÞ
dt

¼ E½amðZðtÞÞ�dmm9

1 E½ZmðtÞam9ðZðtÞÞ� � mZ;mðtÞE½am9ðZðtÞÞ�
1 E½Zm9ðtÞamðZðtÞÞ� � mZ;m9ðtÞE½amðZðtÞÞ�;
m;m9 ¼ 1; 2; . . . ;M; (30)

for t $ 0, where dmm9 is the Krönecker delta, given by

dmm9 ¼
1; if m ¼ m9

0; otherwise
:

�
(31)

Note that the derivatives dmZ,m(t)/dt and dvZ,mm9(t)/dt always exist at finite

times, regardless of the number of molecules present in the system, since the

CME (Eq. 27) is valid only when the joint probability mass function PZ(z;t)

is a continuous function of t, which in turn implies that the means mZ,m(t)
and covariances vZ,mm9(t) are continuous functions of t as well.

If we expand the propensity function am(z) by a Taylor series about the

mean vector mz(t), we have

amðZÞ ¼ amðmZðtÞÞ1 ½Z� mZðtÞ�
T
zmðmZðtÞÞ

1
1

2
½Z� mZðtÞ�

T
Hm½Z� mZðtÞ�; (32)

where zm and Hm denote the gradient vector (of the first-order partial deriv-

atives with respect to z) and the Hessian matrix (of the second-order partial

derivatives with respect to z) of am(z), respectively, and T denotes vector

(matrix) transposition. From Eqs. 25, 26, and 28, note that the propensity

function am is at most a quadratic function of the DAs. Therefore, its

derivatives of order .2 are zero and Eq. 32 is exact. Moreover, the Hessian

Hm does not depend on z. By taking expectations on both sides of Eq. 32 and

by using Eq. 29, we obtain
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dmZ;mðtÞ
dt

¼ amðmZðtÞÞ1
1

2
+
M

k¼1

+
M

l¼1

hm;klvZ;klðtÞ;

t $ 0; m ¼ 1; 2; . . . ;M: (33)

In Eq. 33, hm,kl is the (k, l) element of the Hessian matrix Hm (i.e., the

second-order partial derivative of the propensity function pm(x) with respect

to the DAs of the kth and lth reactions), given by

hm;kl ¼
km

AV
+
N

n¼1

+
N

n9¼1

snksn9l

@
2
cmðuÞ

@un@un9

; k; l ¼ 1; 2; . . . M;

where cm is given by Eq. 4 and

km ¼

cm; for monomolecular reactions

AVcm=2; for bimolecular reactions with

identical reactants

AVcm; for bimolecular reactions with

different reactants:

8>>>><
>>>>:

(34)

Equation 34 relates the specific probability rate constants c with the reaction

rate constants k. Equations 6–8 are now obtained from Eqs. 4, 23–26, 28, 33,

and 34.

APPENDIX B: UNIDIRECTIONAL DIMERIZATION

Let us consider the unidirectional dimerization reaction in Eq. 11. We denote

its DA by Z1(t) and use random variables Xn(t), n¼ 1, 2, 3, to characterize its

state at time t $ 0, where each variable denotes the number of molecules of a

reactant or product species, as identified by the following assignment:

Xn4
P; for n ¼ 1

Q; for n ¼ 2

P � Q; for n ¼ 3

:

8<
:

Note that the stoichiometry matrix is given by

S ¼
�1

�1

1

2
4

3
5; (35)

whereas, the propensity function is given by p1(x1, x2, x3) ¼ c1x1x2. If we

initialize the reaction with x1(0)¼ S molecules P, x2(0)¼ S molecules Q, and

x3(0) ¼ 0 molecules P�Q, then, from Eq. 21 and Eq. 35, we have that

X1ðtÞ ¼ S� Z1ðtÞ
X2ðtÞ ¼ S� Z1ðtÞ
X3ðtÞ ¼ Z1ðtÞ: (36)

Moreover, Eq. 28 implies that a1(z1) ¼ c1(S – z1)2.

Since the reaction is bimolecular with different reactants, c1(u1, u2, u3)¼
u1u2 (see Eq. 4). Moreover, from Eqs. 1 and 36, we have

u1ðtÞ ¼ s� u3ðtÞ and u2ðtÞ ¼ s� u3ðtÞ;
where s ¼ S/AV is the concentration of initial P or Q molecules. In this case,

Eq. 9 implies the following SCKE for the dimer concentration u3(t),

du3ðtÞ
dt
¼ k1½s� u3ðtÞ�2 1 e3ðtÞ; t $ 0;

where the mesoscopic forcing term e3(t) is given by

e3ðtÞ ¼ u1ðtÞ ¼
k1

A
2
V

2vZ;11ðtÞ;

and k1 ¼ AVc1, with initial conditions u3(0) ¼ e3(0) ¼ 0. Moreover, Eq. 6

implies the following expression for the flux:

n1ðtÞ ¼ k1½s� u3ðtÞ�2 1 e3ðtÞ; t $ 0: (37)

Finally, we can verify that the concentration q3(t) and flux r1(t) predicted by

the CKE (obtained by setting e3(t) ¼ 0, for every t $ 0), are given by

q3ðtÞ ¼
k1s

2
t

1 1 k1st
and r1ðtÞ ¼

k1s
2

ð1 1 k1stÞ2
; t $ 0: (38)

APPENDIX C: QUADRATIC AUTOCATALATOR

Let us now consider the six reactions in Eq. 12. We use variables X1(t) and

X2(t) to characterize the molecular state of the system at time t $ 0, where

each variable is identified by the following assignment:

Xn4
P; for n ¼ 1

Q; for n ¼ 2
:

�

In this case, the stoichiometry matrix is given by

S ¼ 1 1 �1 �1 �1 0

1 0 1 1 0 �1

� �
; (39)

whereas, the propensity functions are given by

p1ðx1; x2Þ ¼ c1S
p2ðx1; x2Þ ¼ c2Dx1

p3ðx1; x2Þ ¼ c3x1ðx1 � 1Þ=2

p4ðx1; x2Þ ¼ c4x1x2

p5ðx1; x2Þ ¼ c5x1

p6ðx1; x2Þ ¼ c6x2;

with S and D being the number of S and D molecules, respectively, which we

assume to be fixed. Note also that

c1ðu1; u2Þ ¼ s

c2ðu1; u2Þ ¼ du1

c3ðu1; u2Þ ¼ u1ðu1 � 1=AVÞ
c4ðu1; u2Þ ¼ u1u2

c5ðu1; u2Þ ¼ u1

c6ðu1; u2Þ ¼ u2: (40)

Here, s ¼ S/AV and d ¼ D/AV. We initialize the reactions by setting X1(0)¼
X2(0) ¼ 0. Then, from Eqs. 21 and 39, we have

X1ðtÞ ¼ Z1ðtÞ1 Z2ðtÞ � Z3ðtÞ � Z4ðtÞ � Z5ðtÞ
X2ðtÞ ¼ Z3ðtÞ1 Z4ðtÞ � Z6ðtÞ:

Equations 9, 39, and 40 lead to the following SCKEs for characterizing the

quadratic autocatalator with feedback,

du1ðtÞ
dt
¼ k1s 1 k2du1ðtÞ � k3u1ðtÞ½u1ðtÞ � 1=AV�

� k4u1ðtÞu2ðtÞ � k5u1ðtÞ1 e1ðtÞ
du2ðtÞ

dt
¼ k3u1ðtÞ½u1ðtÞ � 1=AV�1 k4u1ðtÞu2ðtÞ

� k6u2ðtÞ1 e2ðtÞ; (41)

for t $ 0, where
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e1ðtÞ ¼ �e2ðtÞ ¼ �u3ðtÞ � u4ðtÞ;
and (recall Eq. 34)

k1 ¼ c1; k2¼AVc2; k3¼
AV

2
c3; k4¼AVc4; k5¼ c5; k6 ¼ c6:

(42)

Note that u1(t) ¼ u2(t) ¼ u5(t) ¼ u6(t) ¼ 0, since the corresponding pro-

pensity functions are linear in z (reactions 1, 2, 5, and 6 are monomolecular)

and their Hessian matrices are thus zero. The corresponding CKEs are

obtained from Eq. 41 by setting e1(t) ¼ e2(t) ¼ 0, for every t $ 0.

If we set the right-hand sides of Eq. 41 (nullclines) equal to zero, we

obtain the stationary solutions,

�u1ðsÞ ¼ �
bðsÞ
2a

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ
2a

� �2

1
k1s� �eðsÞ

a

s
and

�u2ðsÞ ¼
k1s 1 ðk2d � k5Þ�u1ðsÞ

k6

; (43)

with a and b given by Eq. 15, where �u1 ¼ limt/Nu1ðtÞ, �u2 ¼ limt/Nu2ðtÞ,
and �e ¼ �limt/Ne1ðtÞ. Since only nonnegative solutions are relevant, the

system will relax at steady state to molecular concentrations that depend on

the signs of a, b, and on the value of the input flux k1s as compared to the

value of the steady-state mesoscopic forcing term �eðsÞ. We show this in

Table 1, where we summarize the steady-state concentrations of P predicted

by the SCKEs, which we obtain from Eq. 43 by assuming that a . 0 (we can

obtain similar results for the case when a , 0). The corresponding steady-

state concentrations of Q are obtained from the second Eq. 43, provided that

k1s1ðk2d � k5Þ�u1ðsÞ$0. Note that, by setting �eðsÞ ¼ 0 in Eq. 43, we obtain

the following stationary solutions of the CKEs:

�q1ðsÞ ¼ �
bðsÞ
2a

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ
2a

� �2

1
k1s

a

s
and

�q2ðsÞ ¼
k1s 1 ðk2d � k5Þ�q1ðsÞ

k6

: (44)

For a . 0, the steady-state P concentrations predicted by the CKEs are

summarized in Table 2.

Finally, if we make the reasonable assumption that, for every input

substrate concentration, the steady-state mesoscopic forcing term �eðsÞ is

bounded, then

lim
s/N

�eðsÞ
s
¼ 0; (45)

which implies that

lim
s/N

�u1ðsÞ ¼
k6

k4

:

Indeed, from Eq. 45 and for a sufficiently large s, we have that k1s.�eðsÞ.
Then,

since, from Eq. 15, lims/NbðsÞ=s ¼ k1k4=k6. This implies that, in the limit

of s/N, the steady-state P concentration will not depend on �e. Therefore,

for a sufficiently large input substrate concentration, the steady-state P and Q

concentrations predicted by the CKEs will be approximately equal to the

ones predicted by the SCKEs.

APPENDIX D: SCKE APPROXIMATIONS

To approximate the SCKEs 5–8, we should note that the behavior of a

biochemical reaction system depends on the third-order central moments of

the DA process Z(t). This dependence comes from the second and third

terms on the right-hand side of Eq. 30, due to the second-order term in the

Taylor series expansion of the propensity function, given by Eq. 32.

Including these moments in the formulation requires an additional set of

differential equations, which depend on fourth-order central moments, and

so on. These nested dependencies rule out the possibility of determining the

exact covariance values by solving the system of Eqs. 29 and 30.

To address this problem, we may employ a method of moment closure.

For instance, it might be possible to find an expression for a higher-order

moment in terms of lower-order moments, which would then make the sys-

tem exactly solvable. However, we adopt a much simpler approach here, by

setting the third-order central moments equal to zero (see also ((16,34)).

These moments represent higher-order statistical dependencies among reac-

tion channels due to bimolecular reactions. Note that higher-order statistical

dependencies might become unimportant at some level. Since we do not

know a priori when this might happen, we may assume that the third-order

central moments have negligible effect on the DA means and covariances

and subsequently check the resulting covariance approximations against the

ones obtained by Monte Carlo estimation. If the results are not satisfactory,

lim
s/N

�u1ðsÞ ¼ lim
s/N

�bðsÞ
2a

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ
2a

� �2

1
k1s� �eðsÞ

a

s0
@

1
A

¼ lim
s/N

�bðsÞ
2a

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ
2a

� �2

1
k1s� �eðsÞ

a

s0
@

1
A bðsÞ

2a
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ
2a

� �2

1
k1s� �eðsÞ

a

s0
@

1
A

bðsÞ
2a

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ
2a

� �2

1
k1s� �eðsÞ

a

s

¼ lim
s/N

1

a
k1 �

�eðsÞ
s

� �

bðsÞ
2as

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ
2as

� �2

1
k1

as
� �eðsÞ

as
2

s ¼ k1

lim
s/N

bðsÞ=s
¼ k1

k1k4=k6

¼ k6

k4

;
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then we have to include higher-order ($ 3) moments in the formulation.

Note however that, although the task of including higher-order moments is

straightforward, it will increase the number of differential equations in the

approximation.

To derive our approximation, we expand each propensity function by

a Taylor series about the mean DA vector mz(t) (see Eq. 32), we use this

expansion in Eqs. 29 and 30, and set the third-order central moments of the

DA process Z(t) equal to zero. As a consequence of these steps, we obtain

the system of differential equations, Eqs. 16–20, which allow us to approxi-

mate the mean molecular concentrations u(t) by concentrations ûðtÞ. Equa-

tions 16–20 provide a second-order approximation to the SCKEs, since we

derive them by including only the first- and second-order moments of the

DA process (i.e., the DA means and covariances). In this sense, the classical

CKEs provide a first-order approximation to the SCKEs, since we can derive

them by following the same steps but by including only the first-order DA

moments (i.e., the DA means). In most cases of interest, we expect that

the second-order SCKEs will provide sufficiently good approximations of

the mean concentration dynamics, which will be more accurate than the

approximations obtained by the CKEs.

In sharp contrast to the CKEs, we can use the second-order SCKEs to

approximate the CVs associated with a biochemical reaction system. (The

CV associated with the nth molecular species at time t is the ratio of the

square-root of the nth diagonal element of the covariance matrix Cx(t) of

the molecular population process X(t), divided by the corresponding mean.)

Moreover, we can use the second-order SCKEs to approximate the corre-

lation dynamics between the concentrations of two molecular species, quan-

tified by the correlation coefficient. To do so, we can use the fact that the

covariance matrix Cx(t) is related to the covariance matrix Cz(t) of the DA

process Z(t) by means of CXðtÞ ¼ SCzðtÞST, since XðtÞ ¼ xð0Þ1SZðtÞ
(recall Eq. 21), and approximate Cx(t) by ĈXðtÞ ¼ SĈZðtÞST, where ĈZðtÞ
is a matrix with elements v̂Z;mm9ðtÞ.

An alternative way to approximate the concentration dynamics is to use

Eqs. 16–18 and recognize (by virtue of Eq. 19 and the fact that ĈXðtÞ ¼
SĈZðtÞST) that

ûmðtÞ ¼
1

2AV
+
N

k¼1

+
N

l¼1

hm;klv̂X;klðtÞ; (46)

where hm,kl is the second-order partial derivative of the propensity function

of the mth reaction with respect to xk and xl. The terms v̂X;nn9ðtÞ in Eq. 46

approximate the covariances of the molecular population process X(t) and

can be shown to satisfy the system of first-order ordinary differential

equations

dv̂X;nn9ðtÞ
dt

¼ AV +
M

m¼1

�
snmsn9m

�
kmcmðûðtÞÞ½

1
1

2AV
+
N

k¼1

+
N

l¼1

hm;klv̂X;klðtÞ
�

1 +
N

k¼1

gm;kðûðtÞÞ
AV

½snmv̂X;n9kðtÞ1 sn9mv̂X;nkðtÞ�
�
;

t $ 0; n; n9 ¼ 1; 2; . . . ;N;

where gm,k is the first-order partial derivative of the propensity function of

the mth reaction with respect to xk, given by

gm;kðuÞ ¼ km

@cmðuÞ
@un

; k ¼ 1; 2; . . . ;N:

When the number N of molecular species is smaller than the number M of

reactions, this approach will be computationally more advantageous than

calculating the DA covariances, since the number of population covariances,

which is given by N(N 1 1)/2, will be smaller than the number of DA

covariances, which is given by M(M 1 1)/2. However, we have briefly

discussed in Goutsias (23) that characterizing a stochastic biochemical re-

action system by means of the DA process Z(t) may be more advantageous

in certain circumstances than characterizing the system by means of the

molecular population process X(t). Because our developments in this

article are based on the DA process Z(t), we use Eqs. 16–20 in our numeri-

cal investigations.

We can also derive the second-order SCKEs 16–20 by assuming that

the most important influence on the firing rate of a given reaction in a

stochastic biochemical reaction system is exerted by the mean propensity

function of that reaction through a Poisson process and use an appropriately

chosen zero mean additive correction term to compensate for statistical

variations not accounted for by the Poisson process. This leads to a mean-

field approximation of the system whose state Z(t) approximately follows a

normal Gibbs distribution P̂Zðz; tÞ at temperature 2/kB, with energy function

½z� m̂ZðtÞ�
T½ĈZðtÞ��1½z� m̂ZðtÞ�, where kB is the Boltzmann constant and

the elements of m̂ZðtÞ satisfy Eq. 33 with vZ, kl(t) being replaced by v̂Z;klðtÞ.
The reader is referred to Goutsias (23) for details.

The SCKE approximation method employed in this article is one of

several alternative strategies for approximating stochastic biochemical reac-

tion systems (e.g., see (23)). A frequently used technique is the linear noise

approximation method (29,35). This method is obtained from a Langevin

approximation of the stochastic biochemical reaction system by 1), lin-

earizing the propensity functions about the mean DA values, and 2), taking

the limit of the resulting linear Fokker-Planck equation as the system

volume tends to infinity (e.g., see (23)). Linearization of the propensity

functions implies that their second-order partial derivatives with respect

to the DAs will be zero. In turn, this implies that the mesoscopic fluxes

and, therefore, the mesoscopic forcing terms will also be zero. Hence, the

linear noise approximation method leads to the same system of differential

equations for the mean concentration dynamics as the one obtained by

classical chemical kinetics. As a consequence, the linear noise approxi-

mation method suffers from the same drawbacks as classical chemical

kinetics and should be used with caution when investigating the effects of

intrinsic stochastic fluctuations on biological function at low molecular

concentrations.

The author thanks William Dempsey and Prof. K. Konstantopoulos for their

helpful comments and suggestions.
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